Architectural Epidemiology References

CONTENTS

Introduction	2
Chapter 1. An Introduction to Architectural Epidemiology	3
Chapter 2. Introduction to Metrics for Built Environment Professionals	6
Architectural Epidemiology Toolbox	8
Chapter 3. Architectural Epidemiology at Each Phase of the Project Delivery Process	50
Chapter 4. Applying Architectural Epidemiology to Different Contract and Financing Structures	55
Chapter 5. Looking Ahead to the Future of Architectural Epidemiology	58
Technical Appendices to Chapter 2	59

Introduction

- **1.** Bulfone TC, Malekinejad M, Rutherford GW, Razani N. Outdoor transmission of SARS-CoV-2 and other respiratory viruses: A systematic review. *Journal of Infectious Diseases* 2021;223(4):550–561. https://doi.org/10.1093/infdis/jiaa742
- 2. American Institute of Architects. Re-occupancy Assessment Tool v3.0. Published July 31, 2020. Accessed June 6, 2024. https://classic.aia.org/resource/6292441-re-occupancy-assessment-tool
- **3.** Fitwel. Fitwel Viral Response Module. Published 2021. https://www.fitwel.org/blog/category/Viral+Response+Module (page removed)
- **4.** International WELL Building Institute. WELL Health-Safety Rating. https://v2.wellcertified.com/en/health-safety /overview
- **5.** Frumkin H. COVID-19, the built environment, and health. *Environmental Health Perspectives*. 2021;129(7):075001. https://doi.org/10.1289/EHP8888
- **6.** Houghton A, Castillo-Salgado C. Analysis of correlations between neighborhood-level vulnerability to climate change and protective green building design strategies: A spatial and ecological analysis. *Building and Environment*. 2020;168:106523. https://doi.org/10.1016/j.buildenv.2019.106523
- 7. Choi BCK, Pak AWP. Multidisciplinary, interdisciplinary and transdisciplinary in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine. 2006;29(6):351–364. http://uvsalud.univalle.edu.co/pdf/politica_formativa/documentos_de_estudio_referencia/multidisciplinarity_interdisciplinarity_transdisciplinarity.pdf
- 8. American Institute of Architects, American Planning Association, American Society of Civil Engineers, et al.
 Promote Healthy Communities: Joint Call to Action. 2017. https://apha.org/-/media/Files/PDF/topics/environment
 /Promote_Healthy_Communities.ashx
- **9.** Council of State and Territorial Epidemiologists (CSTE). Applied Epidemiology Core Competencies. Accessed September 5, 2022. https://www.cste.org/page/CoreCompetencies
- 10. Bomba TH. Building a Real Estate Business Based on Core Competencies. Counselors of Real Estate; 2000:36–42. Accessed September 5, 2022. https://www.cre.org/real-estate-issues/building-real-estate-business-based-core-competencies/
- **11.** National Council of Architectural Registration Boards (NCARB). Architectural Experience Program Guidelines. 2020:1–30. Accessed September 5, 2022. https://www.ncarb.org/sites/default/files/AXP-Guidelines.pdf
- 12. The Council of Landscape Architectural Registration Boards. LARE Orientation: Understanding the Landscape Architect Registration Examination. 2024:1–38. Accessed June 6, 2024. https://www.clarb.org/docs/default-source/take-the-exam/lareorientationguide.pdf
- **13.** Council for Interior Design Qualification (CIDQ). Definition of Interior Design. 2019. Accessed September 5, 2022. https://www.cidq.org/_files/ugd/0784c1_16c47b1a47de44f7b8f3f87367e483ac.pdf
- **14.** National Society of Professional Engineers. *Professional Engineering Body of Knowledge*. 2013:1–60. Accessed September 5, 2022. https://www.nspe.org/sites/default/files/resources/nspe-body-of-knowledge.pdf
- **15.** American Institute of Certified Planners. *American Institute of Certified Planners Core Competencies*. 2017:1–5. Accessed September 5, 2022. https://planning-org-uploaded-media.s3.amazonaws.com/document/Core-Competencies-2017 -revised.pdf
- **16.** US Green Building Council. LEED Professional Credentials. Accessed September 5, 2022. https://www.usgbc.org/credentials
- **17.** International WELL Building Institute. *WELL AP Candidate Handbook*. 2020:1–23. Accessed September 5, 2022. https://a.storyblok.com/f/52232/x/24f20bb7fe/well-ap-candidate-handbook-may-2020_english.pdf
- **18.** Association of Climate Change Officers (ACCO). Core Competencies for Climate Change Officers and Professionals. 2020. Accessed September 5, 2022. https://climateofficers.org/core-competencies
- **19.** Council on Foundations. *Competencies for Chief Executive Officers of Private Foundations*. 2006. Accessed September 5, 2022. https://cof.org/sites/default/files/documents/files/Competencies%20for%20CEOs%20of%20PFs.pdf

- **20.** City of Boston. *Climate Action Plan*. 2019:1–85. Accessed June 4, 2022. https://www.boston.gov/sites/default/files/embed/file/2019-10/city_of_boston_2019_climate_action_plan_update_4.pdf
- 21. City of Boston. *Climate Ready Boston: Executive Summary*. 2016. Accessed June 14, 2022. https://www.boston.gov/sites/default/files/file/2019/12/02_20161206_executivesummary_digital.pdf
- **22.** Boston CHNA-CHIP Collaborative. *Community Health Improvement Plan.* 2020:1–59. Accessed June 14, 2022. http://www.bostonchna.org/wp-content/uploads/2020/12/Boston-CHIP-FINAL-3.5.20.pdf
- 23. City of Boston. *Health Equity Now Plan*. 2021:1–111. Accessed June 14, 2022. https://www.boston.gov/sites/default/files/file/2021/07/Health%20Equity%20Now%20Plan.pdf
- **24.** Harvard University. 2016–2017 Climate Change Task Force Report. Accessed October 9, 2020. https://issuu.com/greenharvard/docs/harvard_climate_action_plan_handout

Chapter 1. An Introduction to Architectural Epidemiology

- Choi BCK, Pak AWP. Multidisciplinary, interdisciplinary and transdisciplinary in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. *Clinical and Investigative Medicine*. 2006;29(6):351–364. http://uvsalud.univalle.edu.co/pdf/politica_formativa/documentos_de_estudio_referencia /multidisciplinarity_interdisciplinarity_transdisciplinarity.pdf
- 2. Porta M, ed. A Dictionary of Epidemiology. Sixth Edition. Oxford University Press; 2014.
- 3. Tejada-Vera B, Bastian B, Arias E, Escobedo LA, Salant B. Life expectancy estimates by US Census Tract, 2010–2015. National Center for Health Statistics. Published 2020. https://www.cdc.gov/nchs/data-visualization/life-expectancy/
- **4.** Birn AE, Pillay Y, Holtz TH. Health and the environment. In: *Textbook of Global Health*. Oxford University Press; 2017. https://doi.org/10.1093/acprof:oso/9780199392285.001.0001
- **5.** Krieger N. Proximal, distal, and the politics of causation: what's level got to do with it? *American Journal of Public Health.* 2008;98(2):221–230. https://doi.org/10.2105/AJPH.2007.111278
- **6.** Schulz A, Northridge ME. Social determinants of health: Implications for environmental health promotion. *Health Education & Behavior*. 2004;31(4):455–471. https://doi.org/10.1177/1090198104265598
- 7. World Health Organization. *A Conceptual Framework for Action on the Social Determinants of Health*. 2007(April):1–77. https://iris.who.int/bitstream/handle/10665/44489/9789241500852_eng.pdf?sequence=1
- 8. Global Alliance for Buildings and Construction, International Energy Agency, United Nations Environment Programme. 2019 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient, and Resilient Buildings and Construction Sector. 2019. Accessed August 9, 2020. https://wedocs.unep.org/bitstream/handle/20.500.11822/30950/2019GSR.pdf
- 9. Prüss-Ustün A, Wolf J, Corvalán C, Neville T, Bos R, Neira M. Diseases due to unhealthy environments: An updated estimate of the global burden of disease attributable to environmental determinants of health. *Journal of Public Health*. 2017;39(3):464–475. https://doi.org/10.1093/pubmed/fdw085
- 10. US Green Building Council. LEED Rating System. Accessed June 29, 2024. https://www.usgbc.org/leed
- 11. WELL Certified. WELL Hits Major global Milestone Supporting Healthier People and Better Buildings. Published February 5, 2020. Accessed January 20, 2021. https://resources.wellcertified.com/press-releases/well-hits-major-global-milestone-supporting-healthier-people-and-better-buildings/
- 12. Global Alliance for Buildings and Construction. 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient, and Resilient Buildings and Construction Sector. International Energy Agency, United Nations Environment Programme; 2020. Accessed June 29, 2024. https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf
- 13. US Centers for Disease Control and Prevention National Center for Health Statistics. Table 13. Respondent-reported prevalence of heart disease, cancer, and stroke among adults aged 18 and over, by selected characteristics: United States, average annual, selected years 1997–1998 through 2016–2017. In: *Health, United States, 2018—Data Finder*. 2018. Accessed January 20, 2021. https://www.cdc.gov/nchs/data/hus/2018/013.pdf

- **14.** US Centers for Disease Control and Prevention. Nutrition, Physical Activity, and Obesity: Data, Trends and Maps. Accessed January 20, 2021. https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.html
- 15. NewClimate Institute, Data-Driven Lab, PBL Netherlands Environmental Assessment Agency, German Development Institute/Deutsches Institut für Entwicklungspolitik (DIE), Blavatnik School of Government, University of Oxford. Global Climate Action from Cities, Regions and Businesses: Impact of Individual Actors and Cooperative Initiatives on Global and National Emissions, Edition 2. 2019. Accessed November 17, 2020. https://newclimate.org/2019/09/18/global-climate-action-from-cities-regions-and-businesses-2019/
- **16.** C40 Cities, ARUP. Deadline 2020: How Cities Will Get the Job Done. Accessed June 29, 2024. https://www.c40knowledge hub.org/s/article/Deadline-2020-How-cities-will-get-the-job-done
- 17. Institute of Medicine (US) Committee for the Study of the Future of Public Health. Chapter 3: A history of the public health system. In: *The Future of Public Health*. National Academies Press; 1988:56–72. Accessed May 4, 2021. https://www.ncbi.nlm.nih.gov/books/NBK218224/
- **18.** The Editors of Encyclopaedia Britannica. Industrial Revolution. 2021. Accessed May 4, 2021. https://www.britannica.com/event/Industrial-Revolution
- **19.** Kostof S. Architectural art and the landscape of industry, 1800–1850. In: *A History of Architecture: Settings and Rituals*. Oxford University Press; 1995:571–604.
- **20.** Rodger R. Political economy, ideology and the persistence of working-class housing problems in Britain, 1850–1914. *International Review of Social History*. 1987;32(2):109–143. https://doi.org/10.1017/S0020859000008397
- **21.** International Code Council. IgCC Code Development. https://www.iccsafe.org/products-and-services/international -green-construction-code-igcc/history-of-the-igcc/
- **22.** Dannenberg AL, Jackson RJ, Ewing R, eds. *Making Healthy Places: Designing and Building for Health, Well-Being, And Sustainability*. Island Press; 2011. https://islandpress.org/books/making-healthy-places#desc
- **23.** Global Heat Health Information Network. *Protecting Health from Hot Weather during the COVID-19 Pandemic*. 2020:1–8. Accessed June 10, 2021. http://centaur.reading.ac.uk/92243/1/technical-brief-COVID-and-Heat-final.pdf
- **24.** Albitar O, Ballouze R, Ooi JP, Ghadzi SMS. Risk factors for mortality among COVID-19 patients. *Diabetes Research and Clinical Practice*. 2020;166:108293. https://doi.org/10.1016/j.diabres.2020.108293
- **25.** Frieden TR. A framework for public health action: The health impact pyramid. *American Journal of Public Health*. 2010;100(4):590–595. https://doi.org/10.2105/AJPH.2009.185652
- **26.** US Centers for Disease Control and Prevention. Interim Guidance for Businesses and Employers to Plan and Respond to Coronavirus 2019 (COVID-19), February 2020. Published February 26, 2020. Accessed June 29, 2024. https://stacks.cdc.gov/view/cdc/85488
- **27.** World Health Organization. The Determinants of Health. Published 2017. Accessed June 29, 2024. https://www.who.int/news-room/questions-and-answers/item/determinants-of-health
- 28. Bipartisan Policy Center. Lots to Lose: How America's Health and Obesity Crisis Threatens our Economic Future. 2012. Accessed June 29, 2024. https://bipartisanpolicy.org/report/lots-lose-how-americas-health-and-obesity-crisis -threatens-our-economic-future/
- **29.** Frieden TR. A framework for public health action: the health impact pyramid. *American Journal of Public Health*. 2010;100(4):590–595. https://doi.org/10.2105/AJPH.2009.185652
- 30. Snow J. On the Mode of Communication of Cholera. 2nd ed. John Churchill, New Burlington Street; 1855:205.
- 31. Nightingale F. Notes on Hospitals. 3rd ed. Longman, Green, Longman, Roberts, and Green; 1863:245.
- **32.** ICF Consulting. *Air Quality Issues in School Site Selection: Guidance Document*. Vol 2005. 2007:82. Accessed June 29, 2024. https://www.aqmd.gov/docs/default-source/planning/air-quality-guidance/school_guidance.pdf
- **33.** Clay RF. Health impact bonds: Will investors pay for intervention? *Environmental Health Perspectives*. 2013;121(2):a45. https://doi.org/10.1289/ehp.121-a45
- **34.** MacNaughton P, Satish U, Cedeno-Laurent JG, et al. The impact of working in a green certified building on cognitive function and health. *Building and Environment*. 2017;114:178–186. https://doi.org/10.1016/j.buildenv.2016.11.041

- **35.** Center for Active Design, QuadReal Property Group. Health Drives Value in Real Estate. 2022:1–15. https://www.fitwel.org/benchmarking-report/?utm_source=email&utm_medium=QRbenchmarkingreport&utm_campaign=06082022
- 36. Heath O, Jackson V, Goode E. Creating Positive Spaces: Using the WELL Building Standard. Oliver Heath Design and Interface; 2018:1–51. http://interfaceinc.scene7.com/is/content/InterfaceInc/Interface/EMEA/eCatalogs/Brochures /Well%20Building%20Design%20Guide/English/ec_eu-wellbuildingguide-en.pdf?utm_campaign=EMEA_UK_EN_18 _Q1_WELL%20Building%20Guide_Download%20Confirmation&utm_medium=email&utm_source=Eloqua
- 37. Coldwell Banker Richard Ellis (CBRE). *Is Sustainability Certification in Real Estate Worth It? Evidence from European Office Markets*. 2021: 1–27. https://s3.eu-central-1.amazonaws.com/cdn.a3bau.at/public/2021-11/CBRE_Sustainability %20certification%20report_nov21.pdf
- **38.** Autocase. *Valuing the Triple Bottom Line Impacts of Howard County Circuit Courthouse*. 2021. https://autocase.com/case-studies/ (page removed)
- **39.** Fannie Mae. Creating Healthier, Greener Affordable Housing at Edgewood Court Apartments. 2018:1–2. Accessed June 29, 2024. https://multifamily.fanniemae.com/media/8371/display
- **40.** Gonzalez T. To Solve the Affordable Housing Crisis, Multifamily Lending is Getting Innovative with Financing. *Bisnow*. Published October 17, 2018. https://www.bisnow.com/new-york/news/affordable-housing/to-solve-the-affordable-housing-crisis-multifamily-lending-is-getting-innovative-with-financing-93474
- **41.** Healthy Neighborhoods Equity Fund LP. *Bartlett Station*. https://static1.squarespace.com/static/5f31ae81bcb71e20e 39311bb/t/5f3c54b89835de6016a8391f/1597789373243/HNEF%2Bbartlett%2B5%2B9-25-19.pdf
- **42.** The City of New York. PlaNYC: A Stronger, More Resilient New York. 2013:445. Accessed June 29, 2024. https://www.nyc.gov/site/sirr/report/report.page
- **43.** National Center for Healthy Housing, Enterprise Community Partners Inc. *The Advent of a Green Community.* 2009:6. Accessed June 29, 2024. https://nchh.org/resource-library/case-study_green-housing-series_the-advent-of-a-green -community.pdf
- **44.** The President. Executive Order 13642: Making open and readable the new default for government information. *Federal Register*. 2013;78(93):28111–28113.
- **45.** EnviroHealth Consulting. Health Impact Assessment: South Lincoln Homes, Denver CO. 2009:49. Accessed June 29, 2024. https://housingis.org/sites/default/files/Denver%20-%20Health%20-%20Impact%20Assessment%20-%20 SouthLincolnHomesHealthImpactAssessmentReport2009.pdf
- **46.** National Council of Architectural Registration Boards. Model Rules of Conduct. 2023:7. Accessed June 29, 2024. https://www.ncarb.org/sites/default/files/Rules_of_Conduct.pdf
- **47.** National Society of Professional Engineers. *Code of Ethics for Engineers*. Publication 1102. 2019:2. Accessed June 29, 2024. https://www.nspe.org/resources/ethics/code-ethics
- **48.** The City of New York. *Active Design Guidelines: Promoting Physical Activity and Health in Design*. 2010:144. Accessed June 29, 2024. https://www.nyc.gov/assets/doh/downloads/pdf/environmental/active-design-guidelines.pdf
- **49.** Clinton Foundation. The Decade of Design: The Global Urban Solutions Challenge. Published 2013. Accessed June 29, 2024. https://stories.clintonfoundation.org/the-decade-of-design-the-global-urban-solutions-challenge-91c1620f2d60
- **50.** Fedrizzi R, Frumkin H, Bernheim A, McCally M, Vittori G. *Health is a Human Right. Green Building Can Help.* US Green Building Council; 2013:38. Accessed June 29, 2024. https://www.usgbc.org/sites/default/files/GBHH_Final_1.pdf
- **51.** Fitwel. Reference Guide for the Fitwel Certification Tool, Version 1. Center for Active Design; 2016:1–117. Accessed February 16, 2019. https://fitwel.org (page removed)
- **52.** Healy A, Malhotra N. Myopic voters and natural disaster policy. *American Political Science Review*. 2009;103(03):387. https://doi.org/10.1017/S0003055409990104
- 53. Abrahams D, Pennington A, Scott-Samuel A, et al. European Policy Health Impact Assessment: A Guide. European Commission; 2004:28. Accessed June 29, 2024. https://ec.europa.eu/health/ph_projects/2001/monitoring/fp _monitoring_2001_a6_frep_11_en.pdf
- 54. Soman D. The Last Mile: Creating Social and Economic Value from Behavioral Insights. University of Toronto Press; 2015.

- **55.** Houghton A. Priority Green for Community Benefit: A Framework for Tailoring Real Estate Entitlement Concessions to Neighborhood-Specific Priorities Around Climate, Health, and Equity. 2023. Harvard University ProQuest Dissertations Publishing: Cambridge, MA. https://www.proquest.com/docview/2813508755
- **56.** American Institute of Architects, American Planning Association, American Society of Civil Engineers, et al. Promote Healthy Communities: Joint Call to Action. 2017. Accessed June 29, 2024. https://apha.org/-/media/Files/PDF/topics/environment/Promote_Healthy_Communities.ashx
- 57. Houghton A. The gap in capacity building on climate, health, and equity in built environment post-secondary education: A mixed-methods study. *Frontiers in Public Health*. 2023; 11:1090725. https://doi.org/10.3389/fpubh.2023.1090725
- **58.** World Health Organization. The Top 10 Causes of Death. Global Health Observatory (GHO) data. Published 2020. Accessed June 29, 2024. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- **59.** Chadwick, Edwin. Report on the Sanitary Condition of the Labouring Population of Great Britain. A Supplementary Report on the Results of a Special Inquiry into the Practice of Interment in Towns. Made at the request of Her Majesty's Principal Secretary of State for the Home Department. London: W. Clowes and Sons. 1843.
- **60.** U.N. Framework Convention on Climate Change. Paris Agreement. 2015. FCCC/CP/2015/10/Add.1. Accessed November 22, 2024. https://unfccc.int/process/conferences/pastconferences/paris-climate-change-conference-november -2015/paris-agreement

Chapter 2. Introduction to Metrics for Built Environment Professionals

- **1.** Guyer B. Problem-solving in public health. In: Armenian HK, Shapiro S, eds. *Epidemiology and Health Services*. Oxford University Press; 1998:15–26.
- 2. Porta M, ed. A Dictionary of Epidemiology. 6th Edition. Oxford University Press; 2014.
- **3.** Paradies Y, Stevens M. Conceptual Diagrams in Public Health Research. *Journal of Epidemiology and Community Health*. 2005;59(12):1012–1013. https://doi.org/10.1136/jech.2005.036913
- **4.** Northridge ME, Sclar ED, Biswas P. Sorting out the connections between the built environment and health: A conceptual framework for navigating pathways and planning healthy cities. *Journal of Urban Health*. 2003;80(4):556–568. https://doi.org/10.1093/jurban/jtg064
- **5.** US Centers for Disease Control and Prevention National Center for Environmental Health. *Environmental Public Health Indicators*. 2006: 1–38. Accessed April 26, 2020. https://stacks.cdc.gov/view/cdc/21578
- **6.** US Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Accessed April 25, 2019. http://ephtracking.cdc.gov/
- 7. Seattle Office of Emergency Management. 9.1 Excessive heat events. In: Seattle Hazard Identification and Vulnerability Analysis.; 2019:9-4–9-9. Accessed April 26, 2020. https://www.seattle.gov/Documents/Departments/Emergency/PlansOEM/SHIVA/SHIVAv7.0.pdf
- 8. Division of Community Health Promotion, Public Health Research Unit. *Health Effects of Summer Heat in Florida*. Florida Department of Health; 2015:1–24. Accessed April 26, 2020. http://www.floridahealth.gov/environmental -health/climate-and-health/_documents/heat-profile.pdf
- 9. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. *Circulation*. 2017;135:e146–e603. https://doi.org/10.1161/CIR.00000000000000485
- 10. World Health Organization. Cardiovascular Diseases (CVDs). Fact Sheets. Published May 2017. Accessed December 17, 2019. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
- 11. US Centers for Disease Control and Prevention. PLACES: Local Data for Better Health. Published July 2023. Accessed June 16, 2024. https://www.cdc.gov/500cities/index.htm
- 12. World Health Organization. Global Health Observatory Data Repository. Accessed November 13, 2019. http://apps.who.int/gho/data/

- **13.** United Nations. SDG Indicators Database. United Nations Sustainable Development Goals. Accessed August 29, 2019. https://unstats.un.org/sdgs/indicators/database/
- **14.** US National Land Cover Database. Urban Imperviousness. Accessed February 28, 2020. https://www.mrlc.gov/data/type/urban-imperviousness
- **15.** Open Knowledge Foundation. Place Overview. Global Open Data Index. Accessed April 28, 2020. https://index.okfn.org/place/
- 16. US Open Data. US States Open Data Census. Accessed April 28, 2020. https://census.usopendata.org/
- 17. Open Knowledge Foundation. US City Open Data Census. Accessed April 28, 2020. http://us-cities.survey.okfn.org
- 18. The World Bank. World Bank Open Data. Accessed April 28, 2020. https://data.worldbank.org
- 19. US Department of Health and Human Services. Healthy People 2030. Accessed January 17, 2022. https://health.gov/healthypeople
- 20. US Centers for Disease Control and Prevention. PLACES: Local Data for Better Health. https://www.cdc.gov/places/
- **21.** United Nations. SDG Indicators Metadata Repository. United Nations Sustainable Development Goals. Published 2018. Accessed May 20, 2019. https://unstats.un.org/sdgs/metadata/
- **22.** Green River District Health Department. *Climate and Health Addendum to 2015 Green River Community Health Assessment*. 2016: 1–78. http://healthdepartment.org/wp-content/uploads/2016/06/GRDHD-2016-CHA-Addendum-Climate -Risks-and-Associated-Negative-Health-Effects-9-2016-CHA-Addendum-2016-1.pdf
- 23. Forsyth A, Slotterback CS, Krizek KJ. Health impact assessment in planning: Development of the design for health HIA tools. *Environmental Impact Assessment Review*. 2010;30(1):42–51. https://doi.org/10.1016/j.eiar.2009.05.004
- **24.** Dannenberg AL. A brief history of health impact assessment in the United States. *Chronicles of Health Impact Assessment*. 2016;1(1):1–8. https://doi.org/10.18060/21348
- **25.** Ricklin A, Madeley M, Whitton E, Carey A. *The State of Health Impact Assessment in Planning*. American Planning Association; 2016:1–53. Accessed May 11, 2020. https://planning-org-uploaded-media.s3.amazonaws.com/document /State-of-Health-Impact-Assessment-in-Planning.pdf
- **26.** World Health Organization, Ministry of Social Affairs and Health Finland. *Health in All Policies: Helsinki Statement Framework for Country Action*. 2014:1–21. Accessed April 9, 2021. https://apps.who.int/iris/bitstream/handle/10665/112636/9789241506908_eng.pdf;jsessionid=FF9DC65B6CF4D4B6C50C4E19F1CC8C36?sequence=1
- 27. Mahoney M, Simpson S, Harris E, Aldrich R, Williams JS. Equity-Focused Health Impact Assessment Framework. Australasian Collaboration for Health Equity Impact Assessment (ACHEIA); 2004:1–39. Accessed May 8, 2020. https://www.researchgate.net/publication/305018353_Equity-focused_health_impact_assessment_framework
- 28. Tumpey AJ, Daigle D, Nowak G. Communicating during an outbreak or public health investigation. In: Rasmussen SA, Goodman RA, eds. *The CDC Field Epidemiology Manual*. Fourth Edition. Oxford University Press; 2019. Accessed May 9, 2020. https://www.cdc.gov/eis/field-epi-manual/chapters/Communicating-Investigation.html
- 29. Rider TR, Lanteigne VA, Hipp JA, Baker K, McDonald R. Exploring health equity and the built environment through the social determinants of health. In: Jarrett C, Sharag-Eldin, A, eds. *Proceedings of the ARCC-EAAE 2022 International Conference, Resilient City: Physical, Social, and Economic Perspectives*. Architectural Research Centers Consortium, Inc.; 2022 pp. 571–578. Accessed June 16, 2024. http://www.arcc-arch.org/wp-content/uploads/2022/09/ARCC-EAAE-2022 _Proceedings_Digital-Version.pdf
- **30.** US Department of Health and Human Services, Office of Disease Prevention and Health Promotion. Social Determinants of Health. Healthy People 2030. Accessed June 16, 2024. https://health.gov/healthypeople/priority-areas/social-determinants-health

Architectural Epidemiology Toolbox

- 1. Houghton A. "Co-Benefits" as a Lens Through Which COVID-19 Building Upgrades Can Advance Environmental Sustainability, Climate Mitigation and Adaptation, and Social Equity. Harvard Public Health Review. 2021;29. https://hphr.org/29-article-houghton/
- 2. National Center for Health Statistics. NCHStats: A Blog of the National Center for Health Statistics. Historical Leading Causes of Death. Published July 6, 2007. Accessed December 13, 2022. https://blogs.cdc.gov/nchs/2007/07/06/7113/
- 3. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Published December 13, 2022. Accessed December 13, 2022. https://covid19.who.int
- **4.** US Centers for Disease Control and Prevention. COVID Data Tracker. Published December 12, 2022. Accessed December 13, 2022. https://covid.cdc.gov/covid-data-tracker/#datatracker-home
- 5. Veenema TG, Thornton CP, Lavin RP, Bender AK, Seal S, Corley A. Climate change-related water disasters' impact on population health. Journal of Nursing Scholarship. 2017;49(6):625–634. https://doi.org/10.1111/jnu.12328
- 6. World Health Organization. Global Status Report on Noncommunicable Diseases: 2014. 2014:1–302. Accessed November 9, 2021. https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf;jsessionid =8A2DE6D35FD565CFADBE9998C81DA16A?sequence=1
- 7. Heron M. Deaths: Leading Causes for 2017. National Center for Health Statistics; 2019:1–76. Accessed December 18, 2019. https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06–508.pdf
- **8.** World Economic Forum. The Global Risks Report 2019, 14th Edition. 2019:1–114. Accessed December 18, 2019. https://www.weforum.org/reports/the-global-risks-report-2019
- **9.** Beaglehole R, Bonita R, Horton R, et al. Measuring progress on NCDs: One goal and five targets. Lancet. 2012;380 (9850):1283–1285. https://doi.org/10.1016/S0140-6736(12)61692-4
- 10. Prüss-Ustün A, Wolf J, Corvalán C, Neville T, Bos R, Neira M. Diseases due to unhealthy environments: An updated estimate of the global burden of disease attributable to environmental determinants of health. Journal of Public Health. 2017;39(3):464–475. https://doi.org/10.1093/pubmed/fdw085
- **11.** Patel V, Saxena S. Transforming lives, enhancing communities—Innovations in global mental health. New England Journal of Medicine. 2014;370:498–501. https://doi.org/10.1056/NEJMp1315214
- 12. World Health Organization. Global Health Estimates 2016: Disease Burden by Cause, Age, Sex, by Country and Region, 2000–2016. 2018. Accessed December 18, 2019. https://www.who.int/healthinfo/global_burden_disease /estimates/en/index1.html
- **13.** Global Burden of Disease Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;386(9995):743–800. https://doi.org/10.1016/S0140-6736(15)60692-4
- 14. Charlson FJ, Diminic S, Lund C, Degenhardt L, Whiteford HA. Mental and substance use disorders in Sub-Saharan Africa: Predictions of epidemiological changes and mental health workforce requirements for the next 40 years. PLoS ONE. 2014;9(10):e110208. https://doi.org/10.1371/journal.pone.0110208
- **15.** World Health Organization. The Global Burden of Disease: 2004 Update. 2008:1–160. Accessed December 19, 2019. https://www.who.int/publications/i/item/978924156371
- 16. Mnookin S, World Bank Group, World Health Organization. Out of the Shadows: Making Mental Health a Global Development Priority. 2016:1–27. Accessed December 18, 2019. https://documents1.worldbank.org/curated/en/270131468187759113/pdf/105052-WP-PUBLIC-wb-background-paper.pdf
- 17. Salomon JA, Wang H, Freeman MK, et al. Healthy life expectancy for 187 countries, 1990–2010: A systematic analysis for the Global Burden Disease Study 2010. Lancet. 380(9859):2144–2162. https://doi.org/10.1016/S0140-6736(12) 61690-0
- **18.** Pearce N, Ebrahim S, McKee M, et al. The road to 25×25: How can the five-target strategy reach its goal? Lancet Global Health. 2014;2(3):E126–E128. https://doi.org/10.1016/S2214-109X(14)70015-4

- **19.** Rappaport SM. Genetic factors are not the major causes of chronic diseases. PLOS ONE. 2016;11(4):e0154387. https://doi.org/10.1371/journal.pone.0154387
- **20.** World Health Organization. Cardiovascular Diseases (CVDs). Fact Sheets. Published May 2017. Accessed December 17, 2019. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
- 21. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation. 2017;135:e146–e603. https://doi.org/10.1161/CIR.00000000000000485
- 22. Yoon PW, Bastian B, Anderson RN, Collins JL, Jaffe HW. Potentially preventable deaths from the five leading causes of death—United States, 2008–2010. Morbidity and Mortality Weekly Report (MMWR). 2014;63(17):369–374. Accessed December 19, 2019. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6317a1.htm?s_cid=mm6317a1_w
- 23. US Centers for Disease Control and Prevention. Stroke Treatment. Stroke Home. Published November 2019. Accessed December 20, 2019. https://www.cdc.gov/stroke/treatments.htm
- **24.** Crimmins A, Balbus J, Gamble JL, et al., eds. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016. https://doi.org/10.7930/J0R49NQX
- 25. Sarofim MC, Saha S, Hawkins, Michelle D, Mills DM. Ch. 2: Temperature-Related Death and Illness. In: Crimmins A, Balbus J, Gamble JL, et al., eds. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:43–68. https://doi.org/10.7930/J0MG7MDX
- **26.** D'Ippoliti D, Michelozzi P, Marino C, et al. The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project. Environmental Health. 2010;9:37. https://doi.org/10.1186/1476-069X-9-37
- 27. Anderson BG, Bell ML. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology. 2009;20(2):205–213. https://doi.org/10.1097/EDE.0b013e318190ee08
- 28. Rappaport EN, Blanchard BW. Fatalities in the United States indirectly associated with Atlantic tropical cyclones. Bulletin of the American Meteorological Society. 2016;97:1139–1148. https://doi.org/10.1175/BAMS-D-15-00042.1
- 29. Shultz JM, Russell J, Espinel Z. Epidemiology of tropical cyclones: The dynamics of disaster, disease, and development. Epidemiologic Reviews. 2005;27(1):21–35. https://doi.org/10.1093/epirev/mxi011
- **30.** Jiao Z, Kakoulides SV, Moscona J, et al. Effect of Hurricane Katrina on incidence of acute myocardial infarction in New Orleans three years after the storm. American Journal of Cardiology. 2011;109(4):502–505. https://doi.org/10.1016/j.amjcard.2011.09.045
- **31.** Bourdrel T, Bind MA, Béjot Y, Morel O, Argachae JF. Cardiovascular effects of air pollution. Archives of Cardiovascular Diseases. 2017;110(11):634–642. https://doi.org/10.1016/j.acvd.2017.05.003
- **32.** Koken PJM, Piver WT, Ye F, Elixhauser A, Olsen LM, Portier CJ. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environmental Health Perspectives. 2003;111:1312–1317. https://doi.org/10.1289/ehp.5957
- **33.** Hart JE, Chiuve SE, Laden F, Albert CM. Roadway proximity and risk of sudden cardiac death in women. Circulation. 2014;130(17):1474–1482. https://doi.org/10.1161/CIRCULATIONAHA.114.011489
- **34.** World Health Organization. Air Pollution. 2018. Accessed October 10, 2019. https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- **35.** Faustini A, Rapp R, Forastiere F. Nitrogen dioxide and mortality: Review and meta-analysis of long-term studies. European Respiratory Journal. 2014;44:744–753. https://doi.org/10.1183/09031936.00114713
- **36.** Downward GS, van Nunen EJHM, Kerckhoffs J, et al. Long-term exposure to ultrafine particles and incidence of cardiovascular and cerebrovascular disease in a prospective study of a Dutch cohort. Environmental Health Perspectives. 2018;126(12):127007. https://doi.org/10.1289/EHP3047
- **37.** Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. New England Journal of Medicine. 2015;372:1333–1341. https://doi.org/10.1056/NEJMoa1406656
- **38.** Afilalo J. Frailty in patients with cardiovascular disease: Why, when, and how to measure. Current Cardiovascular Risk Reports. 2011;5:467–472. https://doi.org/10.1007/s12170-011-0186-0

- **39.** Engberding N, Wenger NK. Acute Coronary Syndromes in the Elderly. F1000Research. 2017;6:1791. https://doi.org/10.12688/f1000research.11064.1
- **40.** American Heart Association. 2019 Heart Disease & Stroke Statistical Update Fact Sheet Older Americans & Cardiovascular Diseases. 2019. Accessed December 19, 2019. https://professional.heart.org/-/media/PHD-Files-2/Science -News/2/2019-Heart-and-Stroke-Stat-Update/2019_Stat_Update_Older_Americans_and_CVD_factsheet.pdf
- **41.** Global Burden of Disease 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015:

 A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659–1724. https://doi.org/10.1016/S0140-6736(16)31679-8
- **42.** Corliss J. How it's Made: Cholesterol Production in your Body. Harvard Health Publishing. Published July 31, 2019. Accessed December 17, 2019. https://www.health.harvard.edu/heart-health/how-its-made-cholesterol-production-in-your-body.
- **43.** World Health Organization. Global Status Report on Noncommunicable Diseases: 2010. 2011:1–176. Accessed December 19, 2019. https://apps.who.int/iris/bitstream/handle/10665/44579/9789240686458_eng.pdf?sequence=1
- **44.** Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Circulation. 2006;113(6):898–918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016
- **45.** Saydah S, Bullard KM, Cheng Y, et al. Trends in cardiovascular disease risk factors by obesity level in adults in the United States, NHANES 1999-2010. Obesity. 2014;22(8):1888–1895. https://doi.org/10.1002/oby.20761
- **46.** Petursson H, Sigurdsson JA, Bengtsson C, Nilsen TIL, Getz L. Body configuration as a predictor of mortality: Comparison of five anthropometric measures in a 12 year follow-up of the Norwegian HUNT 2 study. PLoS ONE. 2011;6(10):e26621. https://doi.org/10.1371/journal.pone.0026621
- **47.** Flegal KM, Graubard BI, Williamson DF, Gail MH. Cause-specific excess deaths associated with underweight, overweight, and obesity. Journal of the American Medical Association. 2007;298(17):2028–2037. https://doi.org/10.1001/jama.298.17.2028
- **48.** Strazzullo P, D'Elia L, Cairella G, Garbagnati F, Cappuccio FP, Scalfi L. Excess body weight and incidence of stroke: Meta-analysis of prospective studies with 2 million participants. Stroke. 2010;41:e418–e426. https://doi.org/10.1161/STROKEAHA.109.576967
- **49.** US National Institute of Diabetes and Digestive and Kidney Diseases. What is Diabetes? Diabetes. Published December 2016. Accessed December 17, 2019. https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes
- **50.** US National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes, Heart Disease, and Stroke. Diabetes. Published February 2017. Accessed December 17, 2019. https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/heart-disease-stroke
- **51.** US Centers for Disease Control and Prevention. Measuring Blood Pressure. High Blood Pressure Home. Published Apil 2019. Accessed December 17, 2019. https://www.cdc.gov/bloodpressure/measure.htm
- **52.** US Centers for Disease Control and Prevention. High Blood Pressure. High Blood Pressure Home. Published November 2019. Accessed December 17, 2019. https://www.cdc.gov/bloodpressure/index.htm
- **53.** Kung HC, Xu J. Hypertension-Related Mortality in the United States: 2000–2013. National Center for Health Statistics; 2015:1–7. https://www.cdc.gov/nchs/data/databriefs/db193.pdf
- 54. Patel SA, Winkel M, Ali MK, Narayan KMV, Mehta NK. Cardiovascular mortality associated with 5 leading risk factors: National and state preventable fractions estimated from survey data. Annals of Internal Medicine. 2015;163(4):245–253. https://doi.org/10.7326/M14-1753
- **55.** US Centers for Disease Control and Prevention. Smoking and Heart Disease and Stroke. Tips From Former Smokers. Published January 2019. Accessed December 19, 2019. https://www.cdc.gov/tobacco/campaign/tips/index.html

- 56. US Department of Health and Human Services. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease. A Report of the Surgeon General. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2010. Accessed December 19, 2019. https://www.ncbi.nlm.nih.gov/books/NBK53017/pdf/Bookshelf_NBK53017.pdf
- **57.** Shah RS, Cole JW. Smoking and stroke: The more you smoke the more you stroke. Expert Review of Cardiovascular Therapy. 2010;8(7):917–932. https://doi.org/10.1586/erc.10.56
- **58.** Cohen BE, Edmondson D, Kronish IM. State of the art review: Depression, stress, anxiety, and cardiovascular disease. American Journal of Hypertension. 2015;28(11):1295–1302. https://doi.org/10.1093/ajh/hpv047
- **59.** Rutledge T, Reis VA, Linke SE, Greenberg BH, Mills PJ. Depression in heart failure: A meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. Journal of the American College of Cardiology. 2006;48:1527–1537. https://doi.org/10.1016/j.jacc.2006.06.055
- **60.** Dong JY, Zhang YH, Tong J, Qin LQ. Depression and risk of stroke: A meta-analysis of prospective studies. Stroke. 2011;43(1):32–37. https://doi.org/10.1161/STROKEAHA.111.630871
- **61.** Hackett ML, Pickles K. Part I: Frequency of depression after stroke: An updated systematic review and meta-analysis of observational studies. International Journal of Stroke. 2014;9(8):1017–1025. https://doi.org/10.1111/jis.12357
- **62.** Roest AM, Martens EJ, de Jonge P, Denollet J. Anxiety and risk of incident coronary heart disease: A meta-analysis. Journal of the American College of Cardiology. 2010;56(1):38–46. https://doi.org/10.1016/j.jacc.2010.03.034
- **63.** Steptoe A, Kivimäki M. Stress and cardiovascular disease: An update on current knowledge. Annual Review of Public Health. 2013;34:337–354. https://doi.org/10.1146/annurev-publhealth-031912-114452
- **64.** Caleyachetty R, Echouffo-Tcheugui JB, Muennig P, Zhu W, Muntner P, Shimbo D. Association between cumulative social risk and ideal cardiovascular health in US adults: NHANES 1999–2006. International Journal of Cardiology. 2015;191:296–300. https://doi.org/10.1016/j.ijcard.2015.05.007
- 65. Wu J, Cheng X, Qiu L, et al. Prevalence and clustering of major cardiovascular risk factors in China: A recent cross-sectional survey. Medicine (Baltimore). 2016;95(10):e2712. https://doi.org/10.1097/MD.000000000002712
- **66.** Howard G, Lackland DT, Kleindorfer DO, et al. Racial differences in the impact of elevated systolic blood pressure on stroke risk. JAMA Internal Medicine. 2013;173(1):46–51. https://doi.org/10.1001/2013.jamainternmed.857
- 67. Galloway J. Cardiovascular Health among American Indians and Alaska Natives: Successes, challenges, and potentials. American Journal of Preventive Medicine. 2005;29(5S1):11–17. https://doi.org/10.1016/j.amepre.2005.07.023
- **68.** Rhoades DA. Racial misclassification and disparities in cardiovascular disease among American Indians and Alaska Natives. Circulation. 2005;111(10):1250–1256. https://doi.org/10.1161/01.CIR.0000157735.25005.3F
- 69. Begg S, Stanley L, Suleman A, Williamson D, Sartori J, Serghi M. The Burden of Disease and Injury in Queenland's Aboriginal and Torres Strait Islander People 2014. Queensland Health; 2014:1–69. Accessed February 20, 2020. https://www.health.qld.gov.au/__data/assets/pdf_file/0014/154121/burden_of_disease.pdf
- **70.** Jamal A, Homa DM, O'Connor E, et al. Current cigarette smoking among adults—United States, 2005–2014. Morbidity and Mortality Weekly Report (MMWR). 2015;64(44):1233–1240. Accessed December 19, 2019. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6444a2.htm
- 71. Homa DM, Neff LJ, King BA, et al. Vital signs: Disparities in nonsmokers' exposure to secondhand smoke—United States, 1999–2012. Morbidity and Mortality Weekly Report (MMWR). 2015;64(4):103–108. Accessed December 19, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584848/
- **72.** Rehm CD, Peñalvo JL, Afshin A, Mozaffarian D. Dietary intake among US Adults, 1999–2012. Journal of the American Medical Association. 2016;315(23):2542–2553. https://doi.org/10.1001/jama.2016.7491
- 73. Kuklina EV, Shaw KM, Hong Y. Vital signs: Prevalence, treatment, and control of high levels of low-density lipoprotein cholesterol—United States, 1999–2002 and 2005–2008. Morbidity and Mortality Weekly Report (MMWR). 2011;60(4): 109–114. Accessed December 19, 2019. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6004a5.htm
- **74.** Beaglehole R, Reddy S, Leeder SR. Poverty and human development: The global implications of cardiovascular disease. Circulation. 2007;116:1871–1873. https://doi.org/10.1161/CIRCULATIONAHA.107.736926

- **75.** Zhang Y, Geng X, Tan Y, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomedicine and Pharmacotherapy. 2020;127:110195. https://doi.org/10.1016/j.biopha.2020.110195
- **76.** Woolf SH, Chapman DA, Lee JH. COVID-19 as the leading cause of death in the United States. Journal of the American Medical Association. 2021;325(2):123–124. https://doi.org/10.1001/jama.2020.24865
- 77. Koh HK, Geller AC, VanderWeele TJ. Deaths from COVID-19. Journal of the American Medical Association. 2021;325 (2):133–134. https://doi.org/10.1001/jama.2020.25381
- 78. Shiels MS, Haque AT, Berrington de González A, Freedman ND. Leading causes of death in the US during the COVID-19 pandemic, March 2020 to October 2021. JAMA Internal Medicine. 2022;182(8):883–885. https://doi.org/10.1001/jamainternmed.2022.2476
- **79.** World Health Organization. Top 10 Causes of Death. Global Health Observatory (GHO) Data. Published 2018. Accessed June 23, 2024. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
- **80.** Global Burden of Disease 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respiratory Medicine. 2017;5(9):691–706. https://doi.org/10.1016/S2213-2600(17)30293-X
- 81. World Health Organization. Global Health Observatory Data Repository. Accessed November 13, 2019. http://apps.who.int/gho/data/
- **82.** World Health Organization. Global Tuberculosis Report 2019. 2019:1–283. Accessed January 14, 2020. https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1
- **83.** World Health Organization. Cancer. 2018. Accessed January 9, 2020. https://www.who.int/news-room/fact-sheets/detail/cancer
- 84. European Lung Foundation. Acute Lower Respiratory Infections. Lung Disease & Information. Accessed January 9, 2020. https://www.europeanlung.org/en/lung-disease-and-information/lung-diseases/acute-lower-respiratory-infections
- **85.** American Lung Association. Learn About Asthma. Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/asthma/learn-about-asthma/
- 86. National Center for Health Statistics. Table A-2. Selected Respiratory Diseases Among Adults aged 18 and Over, by Selected Characteristics: United States, 2018. In: National Health Interview Survey. US Centers for Disease Control and Prevention; 2018. Accessed January 8, 2020. https://ftp.cdc.gov/pub/Health_Statistics/NCHS/NHIS/SHS /2018_SHS_Table_A-2.pdf
- 87. National Center for Health Statistics. Table C-1. Ever Having Asthma and Still Having Asthma for Children under Age 18 years, by Selected Characteristics: United States, 2018. In: National Health Interview Survey. US Centers for Disease Control and Prevention; 2018. Accessed January 8, 2020. https://ftp.cdc.gov/pub/Health_Statistics/NCHS/NHIS/SHS/2018_SHS_Table_C-1.pdf
- 88. National Heart, Lung, and Blood Institute (NHLBI). Morbidity and Mortality: 2012 Chart Book on Cardiovascular, Lung and Blood Diseases. US National Institutes of Health; 2012:1–107. Accessed January 8, 2020. https://www.nhlbi.nih.gov/files/docs/research/2012_ChartBook_508.pdf
- **89.** National Cancer Institute. Respiratory Disease. NCI Dictionary of Cancer Terms. Accessed January 8, 2020. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/respiratory-disease
- **90.** National Heart, Lung, and Blood Institute (NHLBI). What is COPD?. Accessed January 9, 2020. https://www.nhlbi.nih .gov/health/copd
- **91.** National Heart, Lung, and Blood Institute (NHLBI). What is Asthma?. Accessed January 9, 2020. https://www.nhlbi.nih.gov/health/asthma
- **92.** Forum of International Respiratory Societies. The Global Impact of Respiratory Disease. Second Edition. European Respiratory Society; 2017:1–43. Accessed January 8, 2020. https://www.firsnet.org/images/publications/The_Global _Impact_of_Respiratory_Disease.pdf

- **93.** American Lung Association. What Causes Pneumonia? Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-diseases/lung-disease-lookup/pneumonia/what-causes-pneumonia.html
- **94.** American Lung Association. Learn About Pneumonia. Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-diseases/lung-disease-lookup/pneumonia/learn-about-pneumonia.html
- **95.** American Lung Association. Learn About Acute Bronchitis. Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-diseases/lung-disease-lookup/bronchitis/learn-about-bronchitis.html
- **96.** American Lung Association. Learn About Flu. Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-diseases/lung-disease-lookup/influenza/learn-about-influenza.html
- **97.** American Lung Association. Learn about Tuberculosis. Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-diseases/lung-disease-lookup/tuberculosis/learn-about-tuberculosis.html
- **98.** European Lung Foundation. Lung Cancer. Lung Disease & Information. Accessed January 9, 2020. https://www.europeanlung.org/en/lung-disease-and-information/lung-diseases/lung-cancer
- **99.** Lamprecht B, Soriano JB, Studnicka M, et al. Determinants of underdiagnosis of COPD in national and international surveys. Chest. 2015;148(4):971–985. https://doi.org/10.1378/chest.14-2535
- **100.** American Lung Association. Bronchitis Symptoms, Diagnosis and Treatment. Accessed January 9, 2020. https://www.lung.org/lung-health-diseases/lung-disease-lookup/bronchitis/symptoms-diagnosis-treatment
- **101.** American Lung Association. Flu Symptoms, Causes, and Risk Factors. Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/influenza/symptoms-causes-and-risk.html
- 102. Hoffmann B, Hertel S, Boes T, Weiland D, Jöckel K. Increased cause-specific mortality associated with 2003 heat wave in Essen, Germany. Journal of Toxicology and Environmental Health, Part A. 2008;71(11–12):759–765. https://doi.org/10.1080/15287390801985539
- 103. Gronlund CJ, Zanobetti A, Schwartz JD, Wellenius GA, O'Neill MS. Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environmental Health Perspectives. 2014;122(11):1187–1192. https://doi.org/10.1289/ehp.1206132
- **104.** Lane K, Charles-Guzman K, Wheeler K, Abid Z, Graber N, Matte T. Health effects of coastal storms and flooding in urban areas: A review and vulnerability assessment. Journal of Environmental and Public Health. 2013;2013: 913064. https://doi.org/10.1155/2013/913064
- 105. Lowe D, Ebi KL, Forsberg B. Factors increasing vulnerability to health effects before, during and after floods. International Journal of Environmental Research and Public Health. 2013;10(12):7015–7067. https://doi.org/10.3390/ijerph10127015
- **106.** Klinger C, Landeg O, Murray V. Power outages, extreme events and health: A systematic review of the literature from 2011–2012. PLOS Currents Disasters. 2014;6. https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
- **107.** Anderson GB, Bell ML. Lights out: impact of the August 2003 power outage on mortality in New York, NY. Epidemiology. 2012;23(2):189–193. https://doi.org/10.1097/EDE.0b013e318245c61c
- 108. Guenther R, Balbus J. Primary Protection: Enhancing Health Care Resilience for a Changing Climate. 2014. Accessed June 23, 2024. https://toolkit.climate.gov/sites/default/files/SCRHCFI%20Best%20Practices%20Report %20final2%202014%20Web.pdf
- **109.** Arrieta MI, Foreman RD, Crook ED, Icenogle ML. Providing continuity of care for chronic diseases in the aftermath of Katrina: From field experience to policy recommendations. Disaster Medicine and Public Health Preparedness. 2009;3:174–182. https://doi.org/10.1097/DMP.0b013e3181b66ae4
- **110.** Kouadio IK, Aljunid S, Kamigaki T, Hammad K, Oshitani H. Infectious diseases following natural disasters: Prevention and control measures. Expert Review of Anti-infective Therapy. 2012;10(1):95–104. https://doi.org/10.1586/eri.11.155
- 111. World Health Organization. Floods in Pakistan Health Cluster Bulletin No. 12 16 August 2010. Pakistan Situation Reports. Published August 2010. Accessed January 20, 2020. https://reliefweb.int/attachments/c5ef81b9-fecc-3861 -8d7d-b7b56c7e0d5c/F7D281C3508CA8B8C12577800059B31C-Full_report.pdf

- **112.** Quigley MC, Attanayake J, King A, Prideaux F. A Multi-hazards earth science perspective on the COVID-19 pandemic: The potential for concurrent and cascading crises. Environment Systems and Decisions. 2020;40:199–215. https://doi.org/10.1007/s10669-020-09772-1
- **113.** Mudarri D, Fisk WJ. Public health and economic impact of dampness and mold. Indoor Air. 2007;17(3):226–235. https://doi.org/10.1111/j.1600-0668.2007.00474.x
- **114.** Fisk WJ, Eliseeva EA, Mendell MJ. Association of residential dampness and mold with respiratory tract infections and bronchitis: A meta-analysis. Environmental Health. 2010;9(72). https://doi.org/10.1186/1476-069X-9-72
- 115. Ryan B, Franklin RC, Burkle Jr. FM, et al. Identifying and describing the impact of cyclone, storm and flood related disasters on treatment management, care and exacerbations of non-communicable diseases and the implications for public health. PLOS Currents. 2015;7:ecurrents.dis.62e9286d152de04799644dcca47d9288. https://doi.org/10.1371/currents.dis.62e9286d152de04799644dcca47d9288
- **116.** Schraufnagel DE, Balmes JR, Cowl C, et al. Air pollution and noncommunicable diseases. Chest. 2019;155(2):417–426. https://doi.org/10.1016/j.chest.2018.10.041
- **117.** Brunekreef B, Annesi-Maesano I, Ayres JG, et al. Ten principles for clean air. European Respiratory Journal. 2012;39(3):525–528. https://doi.org/10.1183/09031936.00001112
- **118.** Achakulwisut P, Brauer M, Hystad P, Anenberg SC. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planetary Health. 2019;3(4): e166–e178. https://doi.org/10.1016/S2542-5196(19)30046-4
- 119. Schwartz J. Air pollution and children's health. Pediatrics. 2004;113:1037–1043. https://doi.org/0.1542/peds.113.4.S1 .1037
- **120.** McGeachie MJ, Yates KP, Zhou X, et al. Patterns of growth and decline in lung function in persistent childhood asthma. New England Journal of Medicine. 2016;374:1842–1852. https://doi.org/10.1056/NEJMoa1513737
- **121.** Bush A. Lung development and aging. Annals of the American Thoracic Society. 2016;13(S5):S438–S446. https://doi.org/10.1513/AnnalsATS.201602-112AW
- **122.** Shi T, McAllister DA, O'Brien KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet. 2017;390(10098):946–958. https://doi.org/10.1016/S0140-6736(17)30938-8
- **123.** Lai CKW, Beasley R, Crane J, et al. Global variation in the prevalence and severity of asthma symptoms: Phase three of the International Study of Asthma and Allergies in Childhood. Thorax. 2009;64:476–483. https://doi.org/10.1136/thx.2008.106609
- **124.** World Health Organization. Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children. 2016:1–113. Accessed January 15, 2020. https://apps.who.int/iris/bitstream/handle/10665/204717/9789241565233_eng.pdf
- **125.** Dunn RM, Busse PJ, Wechsler ME. Asthma in the elderly and late-onset adult asthma. Allergy. 2018;73:284–294. https://doi.org/10.1111/all.13258
- **126.** Budde J, Skloot GS. Is aging a "comorbidity" of asthma? Pulmonary Pharmacology & Therapeutics. 2018;52:52–56. https://doi.org/10.1016/j.pupt.2018.06.005
- **127.** Barnes PJ. Accelerated ageing in COPD: New insights and targets. Monografías de Archivos de Bronconeumología. 2017;4:00139.
- **128.** Putra Yahya WS, Elhidsi M, Rasmin M. Pneumonia in the elderly. EC Pulmonology and Respiratory Medicine. 2018;7(9):625–634. Accessed January 15, 2020. https://ecronicon.net/assets/ecprm/pdf/ECPRM-07-00259.pdf
- **129.** Shi T, Denouel A, Tietjen AK, et al. Global and regional burden of hospital admissions for pneumonia in older adults: A systematic review and meta-analysis. Journal of Infectious Diseases. 2020;222(Suppl 7):S570-S576. https://doi.org/10.1093/infdis/jiz053
- 130. Agondi RC, Andrade MC, Takejima P, Aun MV, Kalil J, Giavina-Bianchi P. Atopy is associated with age at asthma onset in elderly patients. Journal of Allergy and Clinical Immunology: In Practice. 2018;6(3):865–871. https://doi.org/10.1016/j.jaip.2017.10.028

- 131. Tsai CL, Lee WY, Hanania NA, Camargo Jr. CA. Age-related differences in clinical outcomes for acute asthma in the United States, 2006–2008. Journal of Allergy and Clinical Immunology. 2012;129(5):1252–1258.e1. https://doi.org/10.1016/j.jaci.2012.01.061
- 132. Jordan RE, Hawker JI, Ayres JG, et al. Effect of social factors on winter hospital admission for respiratory disease: A case-control study of older people in the UK. British Journal of General Practice. 2008;58(551):e1–e9. https://doi.org/10.3399/bjgp08X302682
- **133.** Rybka J, Korte SM, Czajkowska-Malinowska M, Wiese M, Kędziora-Kornatowska K, Kędziora J. The links between chronic obstructive pulmonary disease and comorbid depressive symptoms: Role of IL-2 and IFN-y. Clinical and Experimental Medicine. 2016;16:493–502. https://doi.org/10.1007/s10238-015-0391-0
- **134.** Li YF, Langholz B, Salam MT, Gilliland FD. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest. 2005;127:1232–1241. https://doi.org/10.1378/chest.127.4.1232
- **135.** Magnus MC, Håberg SE, Karlstad Ø, Nafstad P, London SJ, Nystad W. Grandmother's smoking when pregnant with the mother and asthma in the grandchild: The Norwegian Mother and Child Cohort Study. Thorax. 2015;70:237–243. https://doi.org/10.1136/thoraxjnl-2014-206438
- **136.** World Health Organization. Tobacco. Fact Sheets. Published July 2019. Accessed January 16, 2020. https://www.who.int/news-room/fact-sheets/detail/tobacco
- **137.** Jha P, Ramasundarahettige C, Landsman V, et al. 21st-Century hazards of smoking and benefits of cessation in the United States. New England Journal of Medicine. 2013;368(4):341–350. https://doi.org/10.1056/NEJMsa1211128
- 138. Hori M, Tanaka H, Wakai K, Sasazuki S, Katanoda K. Secondhand smoke exposure and risk of lung cancer in Japan: A systematic review and meta-analysis of epidemiologic studies. Japanese Journal of Clinical Oncology. 2016;46(10): 942–951. https://doi.org/10.1093/jjco/hyw091
- 139. Henley SJ, Thomas CC, Sharapova SR, et al. Vital signs: Disparities in tobacco-related cancer incidence and mortality—United States, 2004–2013. Morbidity and Mortality Weekly Report (MMWR). 2016;65(44):1212–1218. Accessed January 16, 2020. https://www.cdc.gov/mmwr/volumes/65/wr/mm6544a3.htm
- **140.** Mamary AJ, Stewart JI, Kinney GL, et al. Race and gender disparities are evident in COPD underdiagnoses across all severities of measured airflow obstruction. Chronic Obstructive Pulmonary Diseases. 2018;5(3):177–184. https://doi.org/10.15326/jcopdf.5.3.2017.0145
- **141.** Schneider EC, Cleary PD, Zaslavsky AM, Epstein AM. Racial disparity in influenza vaccination: Does managed care narrow the gap between African Americans and Whites? Journal of the American Medical Association. 2001;286(12):1455–1460. https://doi.org/10.1001/jama.286.12.1455
- 142. Iwane MK, Chaves SS, Szilagyi PG, et al. Disparities between black and white children in hospitalizations associated with acute respiratory illness and laboratory-confirmed influenza and respiratory syncytial virus in 3 US counties—2002–2009. American Journal of Epidemiology. 2013;177(7):656–665. https://doi.org/10.1093/aje/kws299
- 143. Condon JR, Barnes T, Armstrong BK, Selva-Nayagam S, Elwood JM. Stage at diagnosis and cancer survival for Indigenous Australians in the Northern Territory. Medical Journal of Australia. 2005;182(6):277–280. Accessed January 16, 2020. https://www.mja.com.au/system/files/issues/182_06_210305/con10503_fm.pdf
- **144.** Pleasants RA, Riley IL, Mannino DM. Defining and targeting health disparities in chronic obstructive pulmonary disease. International Journal of COPD. 2016;11:2475–2496. https://doi.org/10.2147/COPD.S79077
- **145.** Ford ES, Murphy LB, Khavjou O, Giles WH, Holt JB, Croft JB. Total and state-specific medical and absenteeism costs of COPD among adults aged >18 years in the United States for 2010 and projections through 2020. Chest. 2015;147(1): 31–45. https://doi.org/10.1378/chest.14-0972
- **146.** European Respiratory Society. European Lung White Book. 2013. Accessed January 16, 2020. https://www.ersnet.org/the-european-lung-white-book
- **147.** American Lung Association. The Impact of Asthma. Lung Disease Lookup. Accessed January 9, 2020. https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/asthma/learn-about-asthma/

- 148. Sonego M, Pellegrin MC, Becker G, Lazzerini M. Risk factors for mortality from acute lower respiratory infections (ALRI) in children under five years of age in low and middle-income countries: A systematic review and meta-analysis of observational studies. PLOS ONE. 2015;10(1):e0116380. https://doi.org/10.1371/journal.pone.0116380
- 149. Bruce N, Pope D, Rehfuess E, Balakrishnan K, Adair-Rohani H, Dora C. WHO indoor air quality guidelines on household fuel combustion: strategy implications of new evidence on interventions and exposure-risk functions. Atmospheric Environment. 2015;106:451–457. https://doi.org/10.1016/j.atmosenv.2014.08.064
- **150.** Masuo K, Tuck ML, Lambert GW. Hypertension and diabetes in obesity. International Journal of Hypertension. 2011;2011:695869. https://doi.org/10.4061/2011/695869
- **151.** US Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017. US Department of Health and Human Services; 2017:1–20. Accessed February 15, 2020. https://www.cdc.gov/diabetes/data/statistics/statistics-report.html
- **152.** Hartemink N, Boshuizen H, Nagelkerke NJD, Jacobs MAM, van Houwelingen HC. Combining risk estimates from observational studies with different exposure cutpoints: A meta-analysis on body mass index and diabetes type 2. American Journal of Epidemiology. 2006;163(11):1042–1052. https://doi.org/10.1093/aje/kwj141
- **153.** Global Burden of Disease 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine. 2017;377:13–27. https://doi.org/10.1056/NEJMoa1614362
- 154. Fryar CD, Carroll MD, Ogden CL. Prevalence of Overweight, Obesity, and Extreme Obesity Among Adults: United States, Trends 1960–1962 Through 2009–2010. National Center for Health Statistics Health E-Stats. Published 2012. Accessed February 15, 2020. https://www.cdc.gov/nchs/data/hestat/obesity_adult_09_10/obesity_adult_09_10.htm
- **155.** US Centers for Disease Control and Prevention. Nutrition, Physical Activity, and Obesity: Data, Trends and Maps. Accessed January 20, 2021. https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.html
- **156.** US Department of Health and Human Services Office of Disease Prevention and Health Promotion. Healthy People Data 2020. Healthy People. Published 2020. Accessed February 12, 2020. https://www.healthypeople.gov/2020/data -search/
- **157.** World Health Organization. Hypertension. Fact Sheets. Published September 2019. Accessed February 16, 2020. https://www.who.int/news-room/fact-sheets/detail/hypertension
- **158.** World Health Organization. Disease Burden and Mortality Estimates: Cause-Specific Mortality, 2000–2016. Health Statistics and Information Systems.
- 159. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guide-line for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology. 2018;71(19):e127–e248. https://doi.org/10.1016/j.jacc.2017.11.006
- **160.** Ahmad FS, Ning H, Rich JD, Yancy CW, Lloyd-Jones DM, Wilkins JT. Hypertension, obesity, diabetes, and heart failure-free survival: The Cardiovascular Disease Lifetime Risk Pooling Project. JACC: Heart Failure. 2016;4(12): 911–919. https://doi.org/10.1016/j.jchf.2016.08.001
- **161.** Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Annals of Translational Medicine. 2017;5(7):161. https://doi.org/10.21037/atm.2017.03.107
- **162.** National Institute of Diabetes and Digestive and Kidney Diseases. Definition & Facts for Bariatric Surgery. Published 2016. Accessed February 15, 2020. https://www.niddk.nih.gov/health-information/weight-management/bariatric -surgery/definition-facts
- **163.** Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. New England Journal of Medicine. 2007;357:753–761. https://doi.org/10.1056/NEJMoa066603
- **164.** Zhang L, Qin LQ, Liu AP, Wang PY. Prevalence of risk factors for cardiovascular disease and their associations with diet and physical activity in suburban Beijing, China. Journal of Epidemiology. 2010;20(3):237–243. https://doi.org/10.2188/jea.JE20090119

- **165.** Balbus JM, Crimmins A, Gamble JL. Ch. 1: Introduction: Climate Change and Human Health. In: Climate Change and Human Health. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:25–42. https://doi.org/10.7930/J0VX0DFW
- **166.** Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature. 2016;3(1):119–145. https://doi.org/10.1080/23328940.2015.1131506
- 167. Sherbakov T, Malig B, Guirguis K, Gershunov A, Basu R. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009. Environmental Research. 2018;160:83–90. https://doi.org/10.1016/j.envres.2017.08.052
- **168.** Xu Z, Tong S, Cheng J, et al. Heatwaves and diabetes in Brisbane, Australia: A population-based retrospective cohort study. International Journal of Epidemiology. 2019;48(4):1091–1100. https://doi.org/10.1093/ije/dyz048
- **169.** Kenny GP, Yardley J, Brown C, Sigal R, Jay O. Heat stress in older individuals and patients with common chronic diseases. Canadian Medical Association Journal. 2010;182(10):1053–1060. https://doi.org/10.1503/cmaj.081050
- 170. Eze IC, Hemkens LG, Bucher HC, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: Systematic Review and meta-analysis. Environmental Health Perspectives. 2015;123(5):381–389. https://doi.org/10.1289/ehp.1307823
- 171. Raaschou-Nielson O, Sørensen M, Ketzel M, et al. Long-term exposure to traffic-related air pollution and diabetes-associated mortality: A cohort study. Diabetologia. 2013;56(1):36–46. https://doi.org/10.1007/s00125-012-2698-7
- 172. Jerrett M, McConnell R, Wolch J, et al. Traffic-related air pollution and obesity formation in children: A longitudinal, multilevel analysis. Environmental Health. 2014;13:49. https://doi.org/10.1186/1476-069X-13-49
- 173. Alderete TL, Habre R, Toledo-Corral CM, et al. Longitudinal associations between ambient air pollution with insulin sensitivity, β -cell function, and adiposity in Los Angeles Latino children. Diabetes. 2017;66:1789–1796. https://doi.org/10.2337/db16-1416
- 174. Hendrickson LA, Vogt RL. Mortality of Kauai residents in the 12-month period following Hurricane Iniki. American Journal of Epidemiology. 1996;144(2):188–191. https://doi.org/10.1093/oxfordjournals.aje.a008907
- 175. Freemark M. Childhood obesity in the modern age: global trends, determinants, complications, and costs. In: Freemark M, ed. Pediatric Obesity: Etiology, Pathogenesis and Treatment. 2nd Edition. Contemporary Endocrinology. Humana Press; 2018:3–26. Accessed February 24, 2020. https://doi.org/10.1007/978-3-319-68192-4_1
- 176. Xu S, Xue Y. Pediatric obesity: Causes, symptoms, prevention and treatment. Experimental and Therapeutic Medicine. 2015;11(1):15–20. https://doi.org/10.3892/etm.2015.2853
- 177. Gunnell DJ, Frankel SJ, Nanchahal K, Peters TJ, Smith GD. Childhood obesity and adult cardiovascular mortality: A 57-y follow-up study based on the Boyd Orr cohort. American Journal of Clinical Nutrition. 1998;67(6):1111–1118. https://doi.org/10.1093/ajcn/67.6.1111
- 178. Fagot-Campagna A, Pettitt DJ, Engelgau MM, et al. Type 2 diabetes among North American children and adolescents: An epidemiologic review and a public health perspective. Journal of Pediatrics. 2000;136(5):664–672. https://doi.org/10.1067/mpd.2000.10514
- 179. Aronow WS, Fleg JL, Pepine CJ, et al. ACCF/AHA 2011 Expert consensus document on hypertension in the elderly: A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation. 2011;123(21):2434–2506. https://doi.org/10.1161/CIR.0b013e31821daaf6
- **180.** Singh RB, Fedacko J, Pella D, et al. Prevalence and risk factors for prehypertension and hypertension in five Indian cities. Acta Cardiologica. 2011;66(1):29–37. https://doi.org/10.2143/AC.66.1.2064964
- **181.** Hirakawa Y, Ninomiya T, Kiyohara Y, et al. Age-specific impact of diabetes mellitus on the risk of cardiovascular mortality: An overview from the evidence for cardiovascular prevention from observational cohorts in the Japan Research Group (EPOCH-JAPAN). Journal of Epidemiology. 2017;27:123–129. https://doi.org/10.1016/j.je.2016.04.001
- **182.** Berzigotti A, Albillos A, Villanueva C, et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: The SportDiet study. Hepatology. 2017;65(4):1293–1305. https://doi.org/10.1002/hep.28992

- **183.** Romieu I, Dossus L, Barquera S, et al. Energy balance and obesity: What are the main drivers? Cancer Causes and Control. 2017;28(3):247–258. https://doi.org/10.1007/s10552-017-0869-z
- **184.** Donnelly JE, Honas JJ, Smith BK, et al. Aerobic exercise alone results in clinically significant weight loss for men and women: Midwest Exercise Trial 2. Obesity. 2013;21(3):E219–E228. https://doi.org/10.1002/oby.20145
- **185.** Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–2079. https://doi.org/10.2337/dc16–1728
- **186.** Katzmarzyk PT, Craig CL, Gauvin L. Adiposity, Physical fitness and incident diabetes: the physical activity longitudinal study. Diabetologia. 2007;50:538–544. https://doi.org/10.1007/s00125-006-0554-3
- **187.** Carnethon MR, Gidding SS, Nehgme R, Sidney S, Jacobs, Jr DR, Liu K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. Journal of the American Medical Association. 2003;290(23):3092–3100. https://doi.org/10.1001/jama.290.23.3092
- **188.** Twinamasiko B, Lukenge E, Nabawanga S, et al. Sedentary lifestyle and hypertension in a periurban area of Mbarara, South Western Uganda: A population based cross sectional survey. International Journal of Hypertension. 2018;2018: 8253948. https://doi.org/10.1155/2018/8253948
- **189.** Rayfield S, Plugge E. Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. Journal of Epidemiology and Community Health. 2017;71(2):162–173. https://doi.org/10.1136/jech-2016-207376
- **190.** Maddatu J, Anderson-Baucum E, Evans-Molina C. Smoking and the risk of type 2 diabetes. Translational Research. 2017;184:101–107. https://doi.org/10.1016/j.trsl.2017.02.004
- 191. National Center for Chronic Disease Prevention and Health Promotion US Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. US Centers for Disease Control and Prevention; 2014. Accessed January 16, 2020. https://www.ncbi.nlm.nih.gov/books/NBK179276/
- **192.** Dikalov S, Itani H, Richmond B, et al. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. American Journal of Physiology—Heart and Circulatory Physiology. 2019;316:H639–H646. https://doi.org/10.1152/ajpheart.00595.2018
- **193.** Leone A. Does smoking act as a friend or enemy of blood pressure? Let release Pandora's box. Cardiology Research and Practice. 2011;2011:264894. https://doi.org/10.4061/2011/264894
- **194.** Pulgarón ER. Childhood obesity: A review of increased risk for physical and psychological comorbidities. Clinical Therapeutics. 2013;35(1):A18–A32. https://doi.org/10.1016/j.clinthera.2012.12.014
- **195.** Erhart M, Herpertz-Dahlmann B, Wille N, Sawitzky-Rose B, Hölling H, Ravins-Sieberer U. Examining the relationship between attention-deficit/hyperactivity disorder and overweight in children and adolescents. European Child & Adolescent Psychiatry. 2012;21:39–49. https://doi.org/10.1007/s00787-011-0230-0
- **196.** Lumeng JC, Gannon K, Cabral HJ, Frank DA, Zuckerman B. Association between clinically meaningful behavior problems and overweight in children. Pediatrics. 2003;112(5):1138–1145. https://doi.org/10.1542/peds.112.5.1138
- 197. Osborn DPJ, Wright CA, Levy G, King MB, Deo R, Nazareth I. Relative risk of diabetes, dyslipidaemia, hypertension and the metabolic syndrome in people with severe mental illnesses: Systematic review and metaanalysis. BMC Psychiatry. 2008;8:84. https://doi.org/10.1186/1471-244X-8-84
- **198.** Boyko EJ, Jacobson IG, Smith B, et al. Risk of diabetes in US military service members in relation to combat deployment and mental health. Diabetes Care. 2010;33(8):1771–1777. https://doi.org/10.2337/dc10-0296
- 199. Pinto IC, Martins D. Prevalence and risk factors of arterial hypertension: A literature review. Journal of Cardio-vascular Medicine and Therapeutics. 2017;1(2):1–7. Accessed February 21, 2020. https://www.alliedacademies.org/articles/prevalence-and-risk-factors-of-arterial-hypertension-a-literature-review-7926.html
- **200.** Schiller JS, Lucas JW, Peregoy JA. Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2011. National Center for Health Statistics; 2012:1–218. Accessed December 19, 2019. https://stacks.cdc.gov/view/cdc/21423
- 201. Zanon D, Doucouliagos C, Hall J, Lockstone-Binney L. Constraints to park visitation: A meta-analysis of North American studies. Leisure Sciences: An Interdisciplinary Journal. 2013;35(5):475–493. https://doi.org/10.1080/01490400.2013.831294

- **202.** Crum AJ, Langer EJ. Mind-set matters: Exercise and the placebo effect. Psychological Science. 2007;18(2):165–171. https://doi.org/10.1111/j.1467-9280.2007.01867.x
- 203. Nagata JM, Palar K, Gooding HC, Garber AK, Bibbins-Domingo K, Weiser SD. Food insecurity and chronic disease in US young adults: Findings from the National Longitudinal Study of Adolescent to Adult Health. Journal of General Internal Medicine. 2019;34:2756–2762. https://doi.org/10.1007/s11606-019-05317-8
- **204.** Min J, Zhao Y, Slivka L, Wang Y. Double burden of diseases worldwide: Coexistence of undernutrition and overnutrition-related non-communicable chronic diseases. Obesity Reviews. 2018;19(1):49–61. https://doi.org/10.1111/obr.12605
- **205.** An R. Health care expenses in relation to obesity and smoking among U.S. adults by gender, race/ethnicity, and age group: 1998–2011. Public Health. 2015;129(1):29–36. https://doi.org/10.1016/j.puhe.2014.11.003
- **206.** Stewart BW, Wild CP, eds. World Cancer Report: Cancer Research for Cancer Prevention. International Agency for Research on Cancer; 2014. Accessed January 24, 2020. https://www.iarc.fr/cards_page/world-cancer-report/
- **207.** Prüss-Ustün A, Wolf J, Corvalán C, Bos R, Neira M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks. World Health Organization; 2016:1–147. Accessed January 23, 2020. https://www.who.int/publications/i/item/9789241565196
- **208.** National Cancer Institute. Breast Cancer. NCI Dictionary of Cancer Terms. Accessed January 28, 2020. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/breast-cancer
- **209.** International Agency for Research on Cancer. Global Cancer Observatory: Data Visualization Tools for Exploring the Global Cancer Burden in 2018. Published 2018. Accessed January 28, 2020. https://gco.iarc.fr/today/home
- **210.** National Cancer Institute. Cancer Stat Facts. Surveillance, Epidemiology, and End Results Program. Accessed January 28, 2020. https://seer.cancer.gov/statfacts/
- **211.** National Cancer Institute. Colorectal Cancer. NCI Dictionary of Cancer Terms. Accessed January 28, 2020. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/colorectal-cancer
- 212. World Cancer Research Fund, American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Colorectal Cancer. In: Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018. World Cancer Research Fund International; 2018:1–111. Accessed June 23, 2024. https://www.wcrf.org/wp-content/uploads/2021/02/Colorectal-cancer-report.pdf
- **213.** National Cancer Institute. Blood Cancer. NCI Dictionary of Cancer Terms. Accessed January 28, 2020. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/blood-cancer
- **214.** National Cancer Institute. Oral Cancer. NCI Dictionary of Cancer Terms. Accessed January 28, 2020. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/oral-cancer
- 215. National Cancer Institute. Cancer Types. Accessed January 28, 2020. https://www.cancer.gov/types
- **216.** US Centers for Disease Control and Prevention. What Are the Symptoms of Breast Cancer? Breast Cancer. Published September 2018. Accessed January 28, 2020. https://www.cdc.gov/cancer/breast/basic_info/symptoms.htm
- 217. Man RXG, Lack DA, Wyatt CE, Murray V. The effect of natural disasters on cancer care: A systematic review. Lancet Oncology. 2018;19(9):e482–e499. https://doi.org/10.1016/S1470-2045(18)30412-1
- **218.** Beuy J, Wiwanitkit V. Lesson for management of cancerous patient in the big flooding. Journal of Cancer Research and Therapeutics. 2012;8(1):165–166. https://doi.org/10.4103/0973-1482.95209
- **219.** McKinney N, Houser C, Meyer-Arendt K. Direct and indirect mortality in Florida during the 2004 hurricane season. International Journal of Biometeorology. 2011;55(4):533–546. https://doi.org/10.1007/s00484-010-0370-9
- **220.** Health Effects Institute, Institute for Health Metrics and Evaluation's Global Burden of Disease Project. State of Global Air 2019: A Special Report on Global Exposure to Air Pollution and Its Disease Burden. 2019. Accessed October 10, 2019. https://www.stateofglobalair.org/
- **221.** Hvidtfeldt U, Severi G, Samoli E, et al. Low-level ambient air pollution exposure and risk of lung cancer—A pooled analysis of 7 European cohorts. Environmental Epidemiology. 2019;3:171. https://doi.org/10.1097/01. EE9.0000607668.72511.99

- **222.** Hoek G, Raaschou-Nielson O. Impact of fine particles in ambient air on lung cancer. Chinese Journal of Cancer. 2014;33(4):197–203. https://doi.org/10.5732/cjc.014.10039
- **223.** Katanoda K, Sobue T, Satoh H, et al. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. Journal of Epidemiology. 2011;21(2):132–143. https://doi.org/10.2188/jea.JE20100098
- **224.** Beard CB, Eisen RJ, Barker CM, et al. Ch. 5: Vector-borne diseases. In: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:129–156. https://doi.org/10.7930/J0765C7V
- **225.** Darrigo Jr LG, Machado de Sant'Anna Carvalho A, Machado CM. Chikungunya, dengue, and Zika in immunocompromised hosts. Transplant and Oncology. 2018;20:5. https://doi.org/10.1007/s11908-018-0612-2
- **226.** Carpenter DO, Bushkin-Bedient S. Exposure to chemicals and radiation during childhood and risk for cancer later in life. Journal of Adolescent Health. 2013;52(5 Supplement):S21–S29. https://doi.org/10.1016/j.jadohealth.2013.01.027
- **227.** Raaschou-Nielson O, Hvidtfeldt UA, Roswall N, Hertel O, Poulsen AH, Sørensen M. Ambient benzene at the residence and risk for subtypes of childhood leukemia, lymphoma and CNS tumor. International Journal of Cancer. 2018;143: 1367–1373. https://doi.org/10.1002/ijc.31421
- **228.** Turner MC, Wigle DT, Krewski D. Residential pesticides and childhood leukemia: A systematic review and meta-analysis. Environmental Health Perspectives. 2010;118(1):33–41. https://doi.org/10.1289/ehp.0900966
- **229.** Norman RE, Ryan A, Grant K, Sitas F, Scott JG. Environmental contributions to childhood cancers. Journal of Environmental Immunology and Toxicology. 2014;2(2):86–98. https://doi.org/10.7178/jeit.17
- 230. Havas M. Carcinogenic effects of non-ionizing radiation: A paradigm shift. JSM Environmental Science and Ecology. 2017;5(2):1045. Accessed January 29, 2020. https://pdfs.semanticscholar.org/ac4b/f6390bd50f71b444ad1d26bb4973 ba7674c0.pdf
- **231.** Smetana, Jr. K, Lacina L, Szabo P, Dvořánková B, Brož P, Šedo A. Ageing as an important risk factor for cancer. Anticancer Research. 2016;36:5009–5018. https://doi.org/10.21873/anticanres.11069
- **232.** Zitvogel L, Pietrocola F, Kroemer G. Nutrition, inflammation, and cancer. Nature Immunology. 2017;18(8):843–850. https://doi.org/10.1038/ni.3754
- 233. Cleary MP, Grossman ME. Obesity and breast cancer: The estrogen connection. Endocrinology. 2009;150(6):2537–2542. https://doi.org/10.1210/en.2009-0070
- 234. López-Otín C, Galluzzi L, Freije JMP, Madeo F, Kroemer G. Metabolic control of longevity. Cell. 2016;166(4):802–821. https://doi.org/10.1016/j.cell.2016.07.031
- 235. Guffey CR, Fan D, Singh U, Murphy EA. Linking obesity to colorectal cancer: Recent insights into plausible biological mechanisms. Current Opinion in Clinical Nutrition and Metabolic Care. 2013;6(5):595–600. https://doi.org/10.1097/MCO.0b013e328362d10b
- **236.** Liu PH, Wu K, Ng K, et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncology. 2019;5(1):37–44. https://doi.org/10.1001/jamaoncol.2018.4280
- **237.** Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Annals of Global Health. 2019;85(1):8. https://doi.org/10.5334/aogh.2419
- 238. Didkowska J, Wojciechowska U, Mańczuk M, Łobaszewski J. Lung cancer epidemiology: Contemporary and future challenges. Annals of Translational Medicine. 2016;4(8):150. https://doi.org/10.21037/atm.2016.03.11
- **239.** Kisely S, Crowe E, Lawrence D. Cancer-related mortality in people with mental illness. JAMA Psychiatry. 2013;70(2): 209–217. https://doi.org/10.1001/jamapsychiatry.2013.278
- **240.** DiMatteo MR, Lepper HS, Croghan TW. Depression is a risk factor for noncompliance with medical treatment: Meta-analysis of the effects of anxiety and depression on patient adherence. Archives of Internal Medicine. 2000;160(14):2101–2107. https://doi.org/10.1001/archinte.160.14.2101
- **241.** Hartung TJ, Brähler E, Faller H, et al. The risk of being depressed is significantly higher in cancer patients than in the general population: Prevalence and severity of depressive symptoms across major cancer types. European Journal of Cancer. 2017;72:46–53. https://doi.org/10.1016/j.ejca.2016.11.017

- **242.** Naughton MJ, Weaver KE. Physical and mental health among cancer survivors: considerations for long-term care and quality of life. North Carolina Medical Journal. 2014;75(4):283–286. https://doi.org/10.18043/ncm.75.4.283
- **243.** Stanton AL. What happens now? Psychosocial care for cancer survivors after medical treatment completion. Journal of Clinical Oncology. 2012;30(11):1215–1220. https://doi.org/10.1200/JCO.2011.39.7406
- **244.** Costanzo ES, Ryff CD, Singer BH. Psychosocial adjustment among cancer survivors: Findings from a national survey of health and well-being. Health Psychology. 2009;28(2):147–156. https://doi.org/10.1037/a0013221
- **245.** Weaver KE, Geiger AM, Lu L, Case LD. Rural–urban disparities in health status among US cancer survivors. Cancer. 2013;119:1050–1057. https://doi.org/10.1002/cncr.27840
- **246.** Kish JK, Yu M, Percy-Laurry A, Altekruse SF. Racial and ethnic disparities in cancer survival by neighborhood socioeconomic status in Surveillance, Epidemiology, and End Results (SEER) registries. JNCI Monographs. 2014;2014(49): 236–243. https://doi.org/10.1093/jncimonographs/lgu020
- **247.** Heathcote KE, Armstrong BK. Disparities in cancer outcomes in regional and rural Australia. Cancer Forum. 2007;31(2):70–74. Accessed January 16, 2020. https://pdfs.semanticscholar.org/50d7/ee4144894da17624ddf78cece f1b2ef68426.pdf
- **248.** Jia WH, Qin HD. Non-viral environmental risk factors for nasopharyngeal carcinoma: A systematic review. Seminars in Cancer Biology. 2012;22(2):117–126. https://doi.org/10.1016/j.semcancer.2012.01.009
- **249.** Fleisch Marcus A, Illescas AH, Hohl BC, Llanos AAM. Relationships between social isolation, neighborhood poverty, and cancer mortality in a population-based study of U.S. adults. PLOS ONE. 2017;12(3):e0173370. https://doi.org/10.1371/journal.pone.0173370
- **250.** Chirikos TN, Russell-Jacobs A, Cantor AB. Indirect economic effects of long-term breast cancer survival. Cancer Practice. 2002;10(5):248–255. https://doi.org/10.1046/j.1523–5394.2002.105004.x
- **251.** Ramsey S, Blough D, Kirchhoff A, et al. Washington State cancer patients found to be at greater risk for bankruptcy than people without a cancer diagnosis. Health Affairs. 2013;32(6):1143–1152. https://doi.org/10.1377/hlthaff.2012.1263
- **252.** Ramsey SD, Bansal A, Fedorenko CR, et al. Financial insolvency as a risk factor for early mortality among patients with cancer. Journal of Clinical Oncology. 2016;34(9):980–986. https://doi.org/10.1200/JCO.2015.64.6620
- **253.** Mader L, Roser K, Baenziger J, et al. Household income and risk-of-poverty of parents of long-term childhood cancer survivors. Pediatric Blood and Cancer. 2017;64(8):e26456. https://doi.org/10.1002/pbc.26456
- **254.** Kale H, Carroll NV. Self-reported financial burden of cancer care and its effect on physical and mental health-related quality of life among U.S. cancer survivors. Cancer. 2016;122(8):283–289. https://doi.org/10.1002/cncr.29808
- **255.** Liu B, Lao X, Feng Y, et al. Cancer prevalence among the rural poverty-stricken population in northeast China. Cancer Management and Research. 2019;11:5101–5112. https://doi.org/10.2147/CMAR.S205867
- **256.** Purdue MP, Hutchings SJ, Rushton L, Silverman DT. The proportion of cancer attributable to occupational exposures. Annals of Epidemiology. 2015;25(3):188–192. https://doi.org/10.1016/j.annepidem.2014.11.009
- **257.** Bauer A, Diepgen TL, Schmitt J. Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. British Journal of Dermatology. 2011;165(3):612–625. https://doi.org/10.1111/j.1365-2133.2011.10425.x
- **258.** International Agency for Research on Cancer. Painting, Firefighting, and Shiftwork. 2010:1–818. Accessed January 30, 2020. http://publications.iarc.fr/116
- **259.** Boffetta P, Matisane L, Mundt KA, Dell LD. Meta-analysis of studies of occupational exposure to vinyl chloride in relation to cancer mortality. Scandinavian Journal of Work, Environment and Health. 2003;29(3):220–229. Accessed January 30, 2020. https://pdfs.semanticscholar.org/5c4f/a9ad74cc7f395a80c19d910b40b869003694.pdf
- **260.** Rushton L, Bagga S, Bevan R, et al. Occupation and cancer in Britain. British Journal of Cancer. 2010;102(9):1428–1437. https://doi.org/10.1038/sj.bjc.6605637
- **261.** Khalade A, Jaakkola MS, Pukkala E, Jaakkola JJK. Exposure to benzene at work and the risk of leukemia: A systematic review and meta-analysis. Environmental Health. 2010;9:31. https://doi.org/10.1186/1476-069X-9-31

- **262.** Schwilk E, Zhang L, Smith MT, Smith AH, Steinmaus C. Formaldehyde and leukemia: An updated meta-analysis and evaluation of bias. Journal of Occupational and Environmental Medicine. 2010;52(9):878–886. https://doi.org/10.1097/JOM.0b013e3181ef7e31
- 263. Beigzadeh Z, Pourhassan B, Kalantary S, Goldbabaei F. Occupational exposure to wood dust and risk of nasopharyngeal cancer: A systematic review and meta-analysis. Environmental Research. 2019;171:170–176. https://doi.org/10.1016/j.envres.2018.12.022
- **264.** Bayer O, Cámara R, Zeissig SR, et al. Occupation and cancer of the larynx: A systematic review and meta-analysis. European Archives of Oto-Rhino-Laryngology. 2016;273:9–20. https://doi.org/10.1007/s00405-014-3321-y
- **265.** International Agency for Research on Cancer. Polychlorinated Biphenyls and Polybrominated Biphenyls. 2016:1–510. Accessed January 24, 2020. http://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification -Of-Carcinogenic-Hazards-To-Humans/Polychlorinated-Biphenyls-And-Polybrominated-Biphenyls-2015
- **266.** International Agency for Research on Cancer. 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide). 2008:1–525. Accessed January 24, 2020. http://publications.iarc.fr/115
- 267. Samuelsson LB, Bovbjerg DH, Roecklein KA, Hall MH. Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review. Neuroscience & Biobehavioral Reviews. 2018;84:35–48. https://doi.org/10.1016/j.neubiorev.2017.10.011
- **268.** Ritchie H, Roser M. Mental Health. Our World in Data. Published 2018. Accessed March 5, 2020. https://ourworld indata.org/mental-health
- 269. Global Burden of Disease 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2
- **270.** Evans-Lacko S, Aguilar-Gaxiola S, Al-Hamzawi A, et al. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: Results from the WHO World Mental Health (WMH) surveys. Psychological Medicine. 2018;48(9):1560–1571. https://doi.org/10.1017/S0033291717003336
- 271. Ellis P, Every-Palmer S. Chapter 4: What Causes Mental Illness? In: Bloch S, Green SA, Janca A, Mitchell PB, Robertson M, eds. Foundations of Clinical Psychiatry, Fourth Edition. Melbourne University Press; 2017. Accessed March 4, 2020. https://books.google.com/books?hl=en&lr=&id=RP6yDQAAQBAJ&oi=fnd&pg=PT54&dq=age+vulnerability+to +mental+illness&ots=uLPdmlnQ8_&sig=OKwbZMFsCtidmZYF7ORGQYMg108#v=onepage&q&f=false
- **272.** McCoy DC, Sudfeld CR, Bellinger DC, et al. Development and validation of an early childhood development scale for use in low-resourced settings. Population Health Metrics. 2017;15(1):3. https://doi.org/10.1186/s12963-017-0122-8
- **273.** US National Institute on Aging. What Is Dementia? Symptoms, Types, and Diagnosis. Health Information. Published 2017. Accessed June 23, 2024. https://www.nia.nih.gov/health/what-dementia-symptoms-types-and-diagnosis
- **274.** US National Institute on Aging. What Is Alzheimer's Disease? Health Information. Published 2017. Accessed June 23, 2024. https://www.nia.nih.gov/health/what-alzheimers-disease
- **275.** Harvard Health Publishing. What Causes Depression? Published 2019. Accessed March 5, 2020. https://www.health..harvard.edu/mind-and-mood/what-causes-depression
- 276. Benjet C, Bromet E, Karam EG, et al. The epidemiology of traumatic event exposure worldwide: Results from the World Mental Health Survey Consortium. Psychological Medicine. 2016;46(2):327–343. https://doi.org/10.1017/S0033291715001981
- 277. Perna G, Mingotto E, Alciati A, Caldirola D. Chapter 8: Neuroprogression in anxiety disorders. In: Kapczinski F, Berk M, da Silva Magalhães PV, eds. Neuroprogression in Psychiatry. Oxford University Press; 2019. Accessed March 5, 2020. https://books.google.com/books?hl=en&lr=&id=3BqJDwAAQBAJ&oi=fnd&pg=RA1-PA20&dq
- 278. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biological Psychiatry. 2019;85(6):443–453. https://doi.org/10.1016/j.biopsych.2018.09.031

- 279. Sheline YI, Sanghavi M, Mintun MA, Gado MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Journal of Neuroscience. 1999;19(12):5034–5043. Accessed March 5, 2020. https://www.jneurosci.org/content/jneuro/19/12/5034.full.pdf
- **280.** National Institute of Mental Health. Statistics. Mental Health Information. Published 2018. Accessed March 5, 2020. https://www.nimh.nih.gov/health/statistics/index.shtml
- 281. Pietrzak RH, Goldstein RB, Southwick SM, Grant BF. Prevalence and Axis I comorbidity of full and partial posttraumatic stress disorder in the United States: Results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Journal of Anxiety Disorders. 2011;25(3):456–465. https://doi.org/10.1016/j.janxdis.2010.11.010
- **282.** Sareen J, Cox BJ, Stein MB, Afifi TO, Fleet C, Asmundson GJG. Physical and mental comorbidity, disability, and suicidal behavior associated with posttraumatic stress disorder in a large community sample. Psychosomatic Medicine. 2007;69:242–248. https://doi.org/0033-3174/07/6903-0242
- 283. Perou R, Bitsko RH, Blumberg SJ, et al. Mental health surveillance among children—United States, 2005–2011. Morbidity and Mortality Weekly Report (MMWR). 2013;62(Supplement 2):1–35. Accessed March 5, 2020. https://stacks.cdc.gov/view/cdc/13598
- **284.** Biederman J, Petty CR, Dolan C, et al. The long-term longitudinal course of oppositional defiant disorder and conduct disorder in ADHD boys: Findings from a controlled 10-year prospective longitudinal follow-up study. Psychological Medicine. 2008;38(7):1027–1036. https://doi.org/10.1017/S0033291707002668
- **285.** Gitlin LN, Kales HC, Lyketsos CG. Nonpharmacologic management of behavioral symptoms in dementia. Journal of the American Medical Association. 2012;308(19):2020–2029. https://doi.org/10.1001/jama.2012.36918
- **286.** American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. American Psychiatric Publishing; 2013.
- **287.** Shalev A, Liberzon I, Marmar C. Post-traumatic stress disorder. New England Journal of Medicine. 2017;376(25): 2459–2469. https://doi.org/10.1056/NEJMra1612499
- **288.** Walter EJ, Carraretto M. The neurological and cognitive consequences of hyperthermia. Critical Care. 2016;20:199. https://doi.org/10.1186/s13054-016-1376-4
- **289.** Lõhmus M. Possible Biological mechanisms linking mental health and heat—A contemplative review. International Journal of Environmental Research and Public Health. 2018;15(7):1515. https://doi.org/10.3390/ijerph15071515
- **290.** Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, Menne B. Prognostic factors in heat wave–related deaths: A meta-analysis. Archives of Internal Medicine. 2007;167(20):2170–2176. https://doi.org/10.1001/archinte .167.20.ira70009
- 291. Bark N. Deaths of psychiatric patients during heat waves. Psychiatric Services. 1998;49(8):1088–1090. https://doi.org/10.1176/ps.49.8.1088
- **292.** Vandentorren S, Bretin P, Zeghnoun A, et al. August 2003 Heat wave in France: Risk factors for death of elderly people living at home. European Journal of Public Health. 2006;16(6):583–591. https://doi.org/10.1093/eurpub/ckl063
- **293.** Hansen A, Bi P, Nitschke M, Ryan P, Pisaniello D, Tucker G. The effect of heat waves on mental health in a temperate Australian City. Environmental Health Perspectives. 2008;116(2008):1369–1375. https://doi.org/10.1289/ehp.11339
- **294.** Fazel S, Geddes JR, Kushel M. The health of homeless people in high-income countries: Descriptive epidemiology, health consequences, and clinical and policy recommendations. Lancet. 2014;384(9953):1529–1540. https://doi.org/10.1016/S0140-6736(14)61132-6
- 295. Smartt C, Prince M, Frissa S, Eaton J, Fekadu A, Hanlon C. Homelessness and severe mental illness in low- and middle-income countries: Scoping review. British Journal of Psychiatry Open. 2019;5(4):e57. https://doi.org/10.1192/bjo.2019.32
- **296.** Xue T, Zhu T, Zheng Y, Zhang Q. Declines in mental health associated with air pollution and temperature variability in China. Nature Communications. 2019;10:2165. https://doi.org/10.1038/s41467-019-10196-y
- **297.** Buoli M, Grassi S, Caldiroli A, et al. Is there a link between air pollution and mental disorders? Environment International. 2018;118:154–168. https://doi.org/10.1016/j.envint.2018.05.044

- 298. Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β -42 and α -synuclein in children and young adults. Toxicologic Pathology. 2008;36:289–310. https://doi.org/10.1177/0192623307313011
- **299.** Block ML, Calderón-Garcidueñas L. Air Pollution: Mechanisms of neuroinflammation & CNS disease. Trends in Neurosciences. 2009;32(9):506–516. https://doi.org/10.1016/j.tins.2009.05.009
- **300.** Yao G, Yue H, Yun Y, Sang N. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats. Environmental Research. 2015;137:85–93. https://doi.org/10.1016/j.envres.2014.11.012
- **301.** Sram RJ, Veleminsky, Jr M, Veleminsky, Sr M, Stejskalová J. The impact of air pollution to central nervous system in children and adults. Neuroendocrinology Letters. 2017;38(6):389–396. Accessed March 3, 2020. https://www.nel.edu/the-impact-of-air-pollution-to-central-nervous-system-in-children-and-adults-2532/
- **302.** Li H, Chen L, Guo Z, Sang N, Li G. In vivo screening to determine neurological hazards of nitrogen dioxide (NO2) using Wistar rats. Journal of Hazardous Materials. 2012;225–226:46–53. https://doi.org/10.1016/j.jhazmat.2012.04.063
- **303.** Zhang X, Zhang X, Chen X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? Journal of Environmental Economics and Management. 2017;85:81–94. https://doi.org/10.1016/j.jeem.2017.04.001
- **304.** Ha H. Geographic variation in mentally unhealthy days: Air pollution and altitude perspectives. High Altitude Medicine & Biology. 2017;18(3):258–266. https://doi.org/10.1089/ham.2016.0137
- **305.** Klompmaker JO, Hoek G, Bloemsma LD, et al. Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health. Environment International. 2019;129:525–537. https://doi.org/10.1016/j.envint .2019.05.040
- **306.** Sass V, Kravitz-Wirtz N, Karceski S, Hajat A, Crowder K, Takeuchi D. The effects of air pollution on individual psychological distress. Health Place. 2017;48:72–79. https://doi.org/10.1016/j.healthplace.2017.09.006
- **307.** Szyszkowicz M, Rowe BH, Colman I. Air pollution and daily emergency department visits for depression. International Journal of Occupational Medicine and Environmental Health. 2009;22(4):355–362. https://doi.org/10.2478/v10001-009-0031-6
- **308.** Pedersen CB, Raaschou-Nielson O, Hertel O, Mortensen PB. Air pollution from traffic and schizophrenia risk. Schizophrenia Research. 2004;66(1):83–85. https://doi.org/10.1016/S0920-9964(03)00062-8
- **309.** Kim SC, Plumb R, Gredig QN, Rankin L, Taylor B. Medium-term post-Katrina health sequelae among New Orleans residents: Predictors of poor mental and physical health. Journal of Clinical Nursing. 2008;17(17):2335–2342. https://doi.org/10.1111/j.1365-2702.2008.02317.x
- 310. Springgate BF, Allen C, Jones C, et al. Rapid community participatory assessment of health care in post-storm New Orleans. American Journal of Preventive Medicine. 2009;37(6, Supplement 1):S237–S243. https://doi.org/10.1016/j.amepre.2009.08.007
- **311.** Rhodes J, Chan C, Paxson C, Rouse CE, Waters M, Fussell E. The impact of Hurricane Katrina on the mental and physical health of low-income parents in New Orleans. American Journal of Orthopsychiatry. 2010;80(2):237–247. https://doi.org/10.1111/j.1939-0025.2010.01027.x
- **312.** Roberts S, Arseneault L, Barratt B, et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based shildren from a UK longitudinal cohort study. Psychiatry Research. 2019;272:8–17. https://doi.org/10.1016/j.psychres.2018.12.050
- **313.** Guxens M, Aguilera I, Ballester F, et al. Prenatal exposure to residential air pollution and infant mental development: Modulation by antioxidants and detoxification factors. Environmental Health Perspectives. 2012;120:144–149. https://doi.org/10.1289/ehp.1103469
- **314.** Min J-Y, Min K-B. Exposure to ambient PM10 and NO2 and the incidence of attention-deficit hyperactivity disorder in childhood. Environment International. 2017;99:221–227. https://doi.org/10.1016/j.envint.2016.11.022
- **315.** Corrada MM, Brookmeyer R, Paganini-Hill A, Berlau D, Kawas CH. Dementia incidence continues to increase with age in the oldest old: The 90+ Study. Annals of Neurology. 2010;67(1):114–121. https://doi.org/10.1002/ana.21915

- **316.** Kawas CH, Kim RC, Sonnen JA, Bullain SS, Trieu T, Corrada MM. Multiple pathologies are common and related to dementia in the oldest-old: The 90+ Study. Neurology. 2015;85(6):535–542. https://doi.org/10.1212/WNL.00000000 00001831
- **317.** Liu L, Gou Z, Zuo J. Social support mediates loneliness and depression in elderly people. Journal of Health Psychology. 2016;21(5):75–758. https://doi.org/10.1177/1359105314536941
- 318. Tallon LA, Manjourides J, Pun VC, Salhi C, Suh H. Cognitive impacts of ambient air pollution in the National Social Health and Aging Project (NSHAP) cohort. Environment International. 2017;104:102–109. https://doi.org/10.1016/j.envint.2017.03.019
- **319.** Meyer CM, Armenian HK, Eaton WW, Ford DE. Incident hypertension associated with depression in the Baltimore Epidemiologic Catchment area follow-up study. Journal of Affective Disorders. 2004;83(2–3):127–133. https://doi.org/10.1016/j.jad.2004.06.004
- **320.** Datar A, Sturm R. Childhood overweight and parent- and teacher-reported behavior problems: Evidence from a prospective study of kindergartens. Archives of Pediatrics & Adolescent Medicine. 2004;158(8):804–810. https://doi.org/10.1001/archpedi.158.8.804
- **321.** Huang L, Tao FB, Wan YH, et al. Self-reported weight status rather than BMI may be closely related to psychopathological symptoms among mainland Chinese adolescents. Journal of Tropical Pediatrics. 2011;57(4):307–311. https://doi.org/10.1093/tropej/fmp097
- **322.** Lutgendorf SK, Andersen BL. Biobehavioral approaches to cancer progression and survival: Mechanisms and interventions. American Psychologist. 2015;70(2):186–197. https://doi.org/10.1037/a0035730
- **323.** Das-Munshi J, Stewart R, Ismail K, Bebbington PE, Jenkins R, Prince MJ. Diabetes, common mental disorders, and disability: Findings from the UK National Psychiatric Morbidity Survey. Psychosomatic Medicine. 2007;69(6): 543–550. https://doi.org/10.1097/PSY.0b013e3180cc3062
- **324.** Merikangas AK, Mendola P, Pastor PN, Reuben CA, Cleary SD. The association between major depressive disorder and obesity in U.S. adolescents: Results from the 2001–2004 National Health and Nutrition Examination Survey. Journal of Behavioral Medicine. 2012;35(2):149–154. https://doi.org/10.1007/s10865-011-9340-x
- **325.** Bloom DE, Cafiero ET, Jané-Llopis E, et al. The Global Economic Burden of Non-Communicable Diseases. World Economic Forum; 2011:1–46. Accessed February 19, 2020. https://www3.weforum.org/docs/WEF_Harvard_HE _GlobalEconomicBurdenNonCommunicableDiseases_2011.pdf
- **326.** World Health Organization. Mental Health Atlas 2017. 2018:1–62. Accessed March 4, 2020. https://apps.who.int/iris/bitstream/handle/10665/272735/9789241514019-eng.pdf
- **327.** Behanova M, Katreniakova Z, Nagyova I, van Ameijden EJC, van Dijk JP, Reijneveld SA. Elderly from lower socioeconomic groups are more vulnerable to mental health problems, but area deprivation does not contribute: A comparison between Slovak and Dutch cities. European Journal of Public Health. 2017;27(Supplement 2):80–85. https://doi.org/10.1093/eurpub/ckv096
- **328.** Sarkar C, Webster C, Gallacher J. Residential greenness and prevalence of major depressive disorders: A cross-sectional, observational, associational study of 94,879 adult UK Biobank participants. Lancet Planetary Health. 2018;2(4):e162–e173. https://doi.org/10.1016/S2542-5196(18)30051-2
- **329.** Amoly E, Dadvand P, Forns J, et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: The BREATHE Project. Environmental Health Perspectives. 2014;122(12):1351–1358. https://doi.org/10.1289/ehp .1408215
- **330.** Dadvand P, Nieuwenhuijsen MJ, Esnaola M, et al. Green spaces and cognitive development in primary schoolchildren. Proceedings of the National Academy of Sciences USA. 2015;112(26):7937–7942. https://doi.org/10.1073/pnas.1503402112
- **331.** Isserman AM, Feser E, Warren D E. Why some rural places prosper and others do not. International Regional Science Review. 2009;32(3):300–342. https://doi.org/10.1177/0160017609336090
- **332.** Lal P, Alavalapati JRR, Mercer ED. Socio-economic impacts of climate change on rural United States. Mitigation and Adaptation Strategies for Global Change. 2011;16(7):819–844. https://doi.org/10.1007/s11027-011-9295-9

- **333.** Jones CA, Parker TS, Ahearn M, Mishra AK, Variyam JN. Health Status and Health Care Access of Farm and Rural Populations, EIB-57. 2009:1–64. www.ers.usda.gov/webdocs/publications/44424/9371_eib57_1_.pdf
- **334.** Weaver A, Taylor RJ, Chatters LM, Himle JA. Depressive symptoms and psychological distress among rural African Americans: The role of material hardship and self-rated health. Journal of Affective Disorders. 2018;236:207–210. https://doi.org/10.1016/j.jad.2018.04.117
- 335. Pass LE, Kennelty K, Carter BL. Self-identified barriers to rural mental health services in Iowa by older adults with multiple comorbidities: Qualitative interview study. BMJ Open. 2019;9(11):e029976. https://doi.org/10.1136/bmjopen-2019-029976
- **336.** Stewart H, Jameson JP, Curtin L. The relationship between stigma and self-reported willingness to use mental health services among rural and urban older adults. Psychological Services. 2015;12(2):141–148. https://doi.org/10.1037/a0038651
- **337.** Kirby JB, Zuvekas SH, Borsky AE, Ngo-Metzger Q. Rural residents with mental health needs have fewer care visits than urban counterparts. Health Affairs. 2019;38(12):2057–2060. https://doi.org/10.1377/hlthaff.2019.00369
- 338. Fahey DW, Doherty SJ, Hibbard KA, Romanou A, Taylor PC. Physical drivers of climate change. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, eds. Climate Science Special Report: Fourth National Climate Assessment. Volume 1. US Global Change Research Program; 2017:73–113. Accessed April 1, 2019. https://science2017.globalchange.gov/chapter/2/
- **339.** Bours D, McGinn C, Pringle P. Monitoring and Evaluation for Climate Change Adaptation: A Synthesis of Tools, Frameworks and Approaches. SEA Change Community of Practice and UKCIP; 2013:1–67. Accessed May 20, 2019. https://ukcip.ouce.ox.ac.uk/wp-content/PDFs/SEA-change-UKCIP-MandE-review.pdf
- **340.** Keim ME. Building human resilience: The role of public health preparedness and response as an adaptation to climate change. American Journal of Preventive Medicine. 2008;35(5):508–516. https://doi.org/10.1016/j.amepre.2008.08.022
- 341. Allen MR, Dube OP, Solecki W, et al. Framing and Context. In: Masson-Delmotte V, Zhai P, Pörtner HO, et al., eds. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Intergovernmental Panel on Climate Change; 2018:49–91. Accessed May 20, 2019. https://www.ipcc.ch/sr15/
- 342. Hartmann DL, Klein Tank AMG, Rusticucci M, et al. Observations: Atmosphere and Surface. In: Stocker TF, Qin D, Plattner GK, et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2013: 159–254. Accessed June 23, 2024. https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Chapter02_FINAL.pdf
- 343. Smith KR, Woodward A. Human Health: Impacts, Adaptation, and Co-Benefits. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Final Draf. Intergovernmental Panel on Climate Change Working Group II; 2014. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap11_FINAL.pd
- 344. Robine JM, Cheung SLK, Le Roy S, et al. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies. 2008;331(2):171–178. Accessed June 6, 2019. https://www.sciencedirect.com/science/article/pii/S1631069107003770?via%3Dihub
- **345.** Coumou D, Rahmstorf S. A decade of weather extremes. Nature Climate Change. 2012;2:491–496. https://doi.org/10.1038/NCLIMATE1452
- 346. Hamel L, Wu B, Brodie M, Sim CC, Marks E. One Year After the Storm: Texas Gulf Coast Residents' Views and Experiences with Hurricane Harvey Recovery. Henry J Kaiser Family Foundation and Episcopal Health Foundation; 2018: 1–53. Accessed June 6, 2019. https://www.kff.org/mental-health/report/one-year-after-storm-texas-gulf-coast-residents-views-experiences-hurricane-harvey-recovery/
- **347.** Kjellstrom T, Butler AJ, Lucas RM, Bonita R. Public health impact of global heating due to climate change: Potential effects on chronic non-communicable diseases. International Journal of Public Health. 2010;55:97–103. https://doi.org/10.1007/s00038-009-0090-2

- 348. D'Amato G, Baena-Cagnani CE, Cecchi L, et al. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidisciplinary Respiratory Medicine. 2013;8(12):1–9. https://doi.org/10.1186/2049-6958-8-12
- **349.** Barnes CS, Alexis NE, Bernstein JA, et al. Climate change and our environment: The effect on respiratory and allergic disease. Journal of Allergy and Clinical Immunology. 2013;1(2):137–141. https://doi.org/10.1016/j.jaip.2012.07.002
- **350.** Kossin JP, Hall T, Knutson T, et al. Extreme storms. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, eds. Climate Science Special Report: Fourth National Climate Assessment. Vol Volume 1. US Global Change Research Program; 2017:257–276. Accessed April 2, 2019. https://science2017.globalchange.gov/chapter/9/
- **351.** Centre for Research on the Epidemiology of Disasters. 2018 Review of Disaster Events. Université Catholique de Louvain; 2019:1–10. Accessed April 26, 2019. https://www.cred.be/sites/default/files/CREDNaturalDisaster2018.pdf
- **352.** Smith AB. 2018's Billion Dollar Disasters in Context. ClimateWatch Magazine. Published February 7, 2019. Accessed May 20, 2019. https://www.climate.gov/news-features/blogs/beyond-data/2018s-billion-dollar-disasters-context
- **353.** Paz S, Semenza JC. El Niño and climate change—Contributing factors in the dispersal of Zika virus in the Americas? Lancet. 2016;387(10020):745. https://doi.org/10.1016/S0140-6736(16)00256-7
- **354.** Yang YT, Sarfaty M. Zika virus: A call to action for physicians in the era of climate change. Preventive Medicine Reports. 2016;4:444–446. https://doi.org/10.1016/j.pmedr.2016.07.011
- **355.** National Weather Service Office of Climate, Water, and Weather Services. National Hazard Statistics. Accessed April 26, 2019. https://www.nws.noaa.gov/om/hazstats.shtml
- **356.** Berko J, Ingram DD, Saha S, Parker JD. Deaths Attributed to Heat, Cold, and Other Weather Events in the United States, 2006–2010. National Health Statistic Reports. 2014;76:15. Accessed June 23, 2024. https://www.cdc.gov/nchs/data/nhsr/nhsr076.pdf
- 357. World Meteorological Organization Commission for Climatology Task Team on the Definition of Extreme Weather and Climate Events. Guidelines on the Definition and Monitoring of Extreme Weather and Climate Events—Final Draft. World Meteorological Organization; 2018:1–43. Accessed July 28, 2019. https://library.wmo.int/viewer/58396?medianame=1310_Guidelines_on_DEWCE_en_#page=1&viewer=picture&o=bookmark&n=0&q=
- **358.** Campbell S, Remenyi TA, White CJ, Johnston FH. Heatwave and health impact research: A global review. Health and Place. 53(2018):210–218. https://doi.org/10.1016/j.healthplace.2018.08.017
- **359.** US Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Accessed April 25, 2019. http://ephtracking.cdc.gov/
- **360.** World Meteorological Organization and World Health Organization. Heatwaves and Health: Guidance on Warning-System Development. 2015:1–96. Accessed April 25, 2019. https://cdn.who.int/media/docs/default-source/climate -change/heat-waves-and-health---guidance-on-warning-system-development.pdf?sfvrsn=e4813084_2&download=true
- **361.** Bi P, Williams S, Loughnan M, et al. The effects of extreme heat on human mortality and morbidity in Australia: Implications for public health. Asia Pacific Journal of Public Health. 2011;23(2 Suppl):27S–36S. https://doi.org/10.1177/1010539510391644
- **362.** Thompson R, Hornigold R, Page L, Waite T. Associations between high ambient temperatures and heat waves with mental health outcomes: A systematic review. Public Health. 2018;161(2018):171–191. https://doi.org/10.1016/j.puhe .2018.06.008
- **363.** Berry HL, Bowen K, Kjellstrom T. Climate change and mental health: A causal pathways framework. International Journal of Public Health. 2010;55(2):123–132. https://doi.org/10.1007/s00038-009-0112-0
- **364.** Berry HL, Waite TD, Dear KBG, Capon AG, Murray V. The case for systems thinking about climate change and mental health. Nature Climate Change. 2018;8(4):282–290. https://doi.org/10.1038/s41558-018-0102-4
- **365.** Ding N, Berry HL, Bennett CM. The importance of humidity in the relationship between heat and population mental health: Evidence from Australia. PLOS ONE. 2016;11(10):e0164190. https://doi.org/10.1371/journal.pone.0164190
- **366.** Lee M, Nordio F, Zanobetti A, Kinney P, Vautard R, Schwartz J. Acclimatization across space and time in the effects of temperature on mortality: A time-series analysis. Environmental Health. 2014;13(89). https://doi.org/10.1186/1476-069X-13-89

- **367.** Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet. 2015;386(991):369–375. https://doi.org/10.1016/S0140-6736(14)62114-0
- 368. Luber G, Knowlton K, Balbus J, et al. Ch. 9: Human health. In: Melillo J, Richmond T, Yohe G, eds. Climate Change Impacts in the United States: The Third National Climate Assessment. US Global Change Program; 2014:220–256. https://doi.org/10.7930/J0PN93H5
- **369.** Hanna EG, Tait PW. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. International Journal of Environmental Research and Public Health. 2015;12(7):8034–8074. https://doi.org/10.3390/ijerph120708034
- **370.** Kalkstein LS, Greene S, Mills DM, Samenow J. An evaluation of the progress in reducing heat-related human mortality in major U.S. cities. Natural Hazards. 2011;56(1):113–129. https://doi.org/10.1007/s11069-010-9552-3
- 371. Collins M, Knutti R, Arblaster J, et al. Long-term climate change: Projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2013:1029–1136. Accessed April 25, 2019. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter12_FINAL.pdf
- 372. Vose RS, Easterling DR, Kunkel KE, LeGrande AN, Wehner MF. Temperature changes in the United States. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, eds. Climate Science Special Report: Fourth National Climate Assessment. Vol Volume 1. US Global Change Research Program; 2017:185–206. Accessed April 25, 2019. https://science2017.globalchange.gov/chapter/6
- **373.** Mora C, Dousset B, Caldwell IR, et al. Global risk of deadly heat. Nature Climate Change. 2017;7:501–506. https://doi.org/10.1038/nclimate3322
- 374. Mills D, Schwartz J, Lee M, et al. Climate change impacts on extreme temperature mortality in select metropolitan areas in the United States. Climatic Change. 2015;131(1):83–95. https://doi.org/10.1007/s10584-014-1154-8
- 375. Deschênes O, Greenstone M. Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the US. American Economic Journal: Applied Economics. 2011;3(4):152–185. https://doi.org/10.1257/app.3.4.152
- **376.** Bobb JF, Peng RD, Bell ML, Dominici F. Heat-related mortality and adaptation to heat in the United States. Environmental Health Perspectives. 2014;122(8):811–816. https://doi.org/10.1289/ehp.1307392
- **377.** Barreca AI. Climate change, humidity, and mortality in the United States. Journal of Environmental Economics and Management. 2012;63(1):19–34. https://doi.org/10.1016/j.jeem.2011.07.004
- 378. Greene S, Kalkstein LS, Mills DM, Samenow JP. An examination of climate change on extreme heat events and climate–mortality relationships in large U.S. cities. Weather, Climate, and Society. 2011;3(4):281–292. https://doi.org/10.1175/WCAS-D-11-00055.1
- **379.** Honda Y, Kondo M, McGregor G, et al. Heat-related mortality risk model for climate change impact projection. Environmental Health and Preventative Medicine. 2014;19(1):56–63. https://doi.org/10.1007/s12199-013-0354-6
- **380.** Voorhees SA, Fann N, Fulcher C, et al. Climate change-related temperature impacts on warm season heat mortality: A proof-of-concept methodology using BenMAP. Environmental Science & Technology. 2011;45(4):1450–1457. https://doi.org/10.1021/es102820y
- **381.** Wu J, Zhou Y, Gao Y, et al. Estimation and uncertainty analysis of impacts of future heat waves on mortality in the eastern United States. Environmental Health Perspectives. 2014;122(1):10–16. https://doi.org/10.1289/ehp.1306670
- **382.** United Nations. Paris Agreement. 2015. Accessed August 7, 2020. https://unfccc.int/process/conferences/past conferences/paris-climate-change-conference-november-2015/paris-agreement
- **383.** Hoegh-Guldberg O, Jacob D, Taylor M, et al. Impacts of 1.5°C of Global Warming on Natural and Human Systems. In: Masson-Delmotte V, Zhai P, Pörtner HO, et al., eds. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Intergovernmental Panel on Climate Change; 2018:175–311. Accessed April 26, 2019. https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Chapter_3_LR

- **384.** Bambrick HJ, Capon AG, Barnett GB, Beaty RM, Burton AJ. Climate change and health in the urban environment: Adaptation opportunities in Australian cities. Asia Pacific Journal of Public Health. 2011;23(2 Suppl):67S–79S. https://doi.org/10.1177/1010539510391774
- **385.** Basu R, Samet JM. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiologic Reviews. 2002;24(2):190–202. https://doi.org/10.1093/epirev/mxf007
- **386.** Basu R, Malig B, Ostro BD. High ambient temperature and the risk of preterm delivery. American Journal of Epidemiology. 2010;172(10):1108–1117. https://doi.org/10.1093/aje/kwq170
- **387.** Carolan-Olah M, Frankowska D. High environmental temperature and preterm birth: A review of the evidence. Midwifery. 2014;30(1):50–59. https://doi.org/10.1016/j.midw.2013.01.011
- **388.** Uejio CK, Wilhelmi O V., Golden JS, Mills DM, Gulino SP, Samenow JP. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stabilit. Health & Place. 2011;17(2):498–507. https://doi.org/10.1016/j.healthplace.2010.12.005
- **389.** Gronlund C. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: A review. Current Epidemiology Reports. 2014;1(3):165–173. https://doi.org/10.1007/s40471-014-0014-4
- **390.** O'Neill MS, Zanobetti A, Schwartz J. Disparities by race in heat-related mortality in four US cities: The role of air conditioning prevalence. Journal of Urban Health. 2005;82(2):191–197. https://doi.org/10.1093/jurban/jti043
- **391.** Knowlton K, Rotkin-Ellman M, King GC, et al. The 2006 California heat wave: Impacts on hospitalizations and emergency department visits. Environmental Health Perspectives. 2009;117(1):61–67. https://doi.org/10.1289/ehp.11594
- **392.** Balbus JM, Malina C. Identifying vulnerable subpopulations for climate change health effects in the United States. Journal of Occupational and Environmental Medicine. 2009;51(1):33–37. https://doi.org/10.1097/JOM.0b013e318193e12e
- **393.** US Centers for Disease Control and Prevention. Extreme Heat and Your Health: Heat and Infants and Children. Published 2011. Accessed June 27, 2016. http://www.cdc.gov/extremeheat/children.html
- **394.** Ramin B, Svoboda T. Health of the homeless and climate change. Journal of Urban Health. 2009;86(4):654–664. https://doi.org/10.1007/s11524-009-9354-7
- **395.** Dodgen D, Donato D, Kelly N, et al. Ch. 8: Mental Health and Well-Being. In: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:217–246. Accessed November 7, 2019. http://dx.doi.org/10.7930/J0TX3C9H
- **396.** Christenson ML, Geiger SD, Anderson HA. Heat-related Fatalities in Wisconsin During the Summer of 2012. Wisconsin Medical Journal. 2013;112(5):219–223. Accessed November 7, 2019. https://pdfs.semanticscholar.org/1815/04d42050e206127e7560ad9dec3215022276.pdf
- **397.** Hansen A, Bi L, Saniotis A, Nitschke M. Vulnerability to extreme heat and climate change: Is ethnicity a factor? Global Heath Action. 2013;6(1):21364. https://doi.org/10.3402/gha.v6i0.21364
- **398.** Wolf T, McGregor G. The development of a heat wave vulnerability index for London, United Kingdom. Weather and Climate Extremes. 2013;1:59–68. https://doi.org/10.1016/j.wace.2013.07.004
- **399.** Loughnan M, Nicholls N, Tapper NJ. Mapping heat health risks in urban areas. International Journal of Population Research. 2012;2012:518687. https://doi.org/10.1155/2012/518687
- **400.** Arbury S, Jacklitsch B, Farquah O, et al. Heat illness and death among workers—United States, 2012–2013. Morbidity and Mortality Weekly Report (MMWR). 2014;63(31):661–665.
- **401.** Lundgren K, Kuklane K, Gao C, Holmer I. Effects of heat stress on working populations when facing climate change. Industrial Health. 2013;51(1):3–15. https://doi.org/10.2486/indhealth.2012-0089
- **402.** Associated Programme on Flood Management. Flood Forecasting and Early Warning. World Meteorological Organization; 2013:1–84. Accessed July 28, 2019. https://www.floodmanagement.info/tools/flood-forecasting-and-early-warning/
- **403.** National Oceanic and Atmospheric Administration National Climatic Data Center. Storm Events Database. Accessed June 23, 2024. http://www.ncdc.noaa.gov/stormevents

- **404.** Du W, FitzGerald GJ, Clark M, Hou XY. Health impacts of floods. Prehospital and Disaster Medicine. 2010;25(3): 265–272. https://doi.org/10.1017/S1049023X00008141
- **405.** Kellar DMM, Schmidlin TW. Vehicle-related flood deaths in the United States, 1995–2005. Journal of Flood Risk Management. 2012;5(2):153–163. https://doi.org/10.1111/j.1753-318X.2012.01136.x
- **406.** Sharif HO, Jackson TL, Hossain MdM, Zane D. Analysis of flood fatalities in Texas. Natural Hazards Review. 2015;16(1):04014016. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000145
- **407.** Špitalar M, Gourley JJ, Lutoff C, Kirstetter PE, Brilly M, Carr N. Analysis of flash flood parameters and human impacts in the US from 2006 to 2012. Journal of Hydrology. 2014;519(PA):863–870. https://doi.org/10.1016/j.jhydrol.2014.07.004
- **408.** Alderman K, Turner LR, Tong S. Floods and human health: A systematic review. Environment International. 2012; 47:37–47. https://doi.org/10.1016/j.envint.2012.06.003
- **409.** National Weather Service. Weather Fatalities. U. S. National Hazard Statistics. Accessed June 23, 2024. https://www.weather.gov/hazstat/
- **410.** Lloyd S, Kovats S, Chalabi Z. Coastal Flood Mortality. In: Hales S, Kovats S, Campbell-Lendrum D, eds. Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s. World Health Organization; 2014:27–36. Accessed August 28, 2019. https://apps.who.int/iris/handle/10665/134014
- **411.** US Global Change Research Program (USGCRP). Regional Climate Impacts: Southeast. In: Karl TR, Melillo JM, Peterson TC, eds. Global Climate Change Impacts in the United States. Cambridge University Press; 2009:1–196.
- **412.** U. S. Environmental Protection Agency. Climate Change and Kentucky, EPA 236-F-98-007. 1998. Accessed June 23, 2024. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=40000PRQ.txt
- 413. Hatfield J, Takle G, Grotjahn R, et al. Ch. 6: Agriculture Climate Change Impacts in the United States: The Third National Climate Assessment. In: Melillo J, Richmond T, Yohe G, eds. Climate Change Impacts in the United States. US Global Change Research Program; 2014:150–174. Accessed June 23, 2024. https://nca2014.globalchange.gov/downloads/low/NCA3_Full_Report_06_Agriculture_LowRes.pdf
- **414.** US Environmental Protection Agency. Sanitary Sewer Overflows (SSOs). National Pollutant Discharge Elimination System (NPDES). Published November 1, 2016. Accessed August 28, 2019. https://www.epa.gov/npdes/sanitary -sewer-overflows-ssos
- **415.** US Environmental Protection Agency Office of Wastewater Management. Report to Congress: Combined Sewer Overflows into the Great Lakes Basin. 2016:1–104. Accessed August 28, 2019. https://www.epa.gov/npdes/report -congress-combined-sewer-overflows-great-lakes-basin
- **416.** United Nations. SDG Indicators Metadata Repository. United Nations Sustainable Development Goals. Published 2018. Accessed May 20, 2019. https://unstats.un.org/sdgs/metadata/
- **417.** Backer LC, Manassaram-Baptiste D, LePrell R, Bolton B. Cyanobacteria and algae blooms: review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011. Toxins. 2015;7:1048–1064. https://doi.org/10.3390/toxins7041048
- **418.** US Environmental Protection Agency Office of Water. Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water. US Environmental Protection Agency; 2015:1–70. Accessed August 29, 2019. https://www.epa.gov/ground-water-and-drinking-water/recommendations-public-water-systems-manage-cyanotoxins-drinking
- **419.** Mchau GJ, Makule E, Machunda R, Gong YY, Kimanya M. Harmful algal bloom and associated health risks among users of Lake Victoria freshwater: Ukerewe Island, Tanzania. Journal of Water and Health. 2019:jwh2019083. https://doi.org/10.2166/wh.2019.083
- **420.** Chapra SC, Boehlert B, Fant C, et al. Climate change impacts on harmful algal blooms in U.S. Freshwaters: A screening-level assessment. Environmental Science & Technology. 2017;51(16):8933–8943. https://doi.org/10.1021/acs.est.7b01498
- **421.** Trtanj J, Jantarasami L, Brunkard J, et al. Ch. 6: Climate Impacts on Water-Related Illness. In: The Impacts of Climate Change on Human Health in the United States. US Global Change Research Program; 2016:157–188. Accessed June 23, 2024. https://health2016.globalchange.gov/water-related-illness

- **422.** Hutton G, Chase C. The knowledge base for achieving the sustainable development goal targets on water supply, sanitation and hygiene. International Journal of Environmental Research and Public Health. 2016;13(6):536. https://doi.org/10.3390/ijerph13060536
- **423.** Colford JM, Roy S, Beach MJ, Hightower A, Shaw SE, Wade TJ. A review of household drinking water intervention trials and an approach to the estimation of endemic waterborne gastroenteritis in the United States. Journal of Water and Health. 2006;4(S2):71–88. https://doi.org/10.2166/wh.2006.018
- **424.** Messner M, Shaw S, Regli S, Rotert K, Blank V, Soller J. An approach for developing a national estimate of waterborne disease due to drinking water and a national estimate model application. Journal of Water and Health. 2006;4(S2):201–240. https://doi.org/10.2166/wh.2006.024
- **425.** Reynolds K, Mena K, Gerba C. Risk of waterborne illness via drinking water in the United States. Reviews of Environmental Contamination and Toxicology. 2008;192:117–158. https://doi.org/10.1007/978-0-387-71724-1_4
- **426.** Soller JA, Bartrand T, Ashbolt NJ, Ravenscroft J, Wade TJ. Estimating the primary etiologic agents in recreational freshwaters impacted by human sources of faecal contamination. Water Research. 2010;44(16):4736–4747. https://doi.org/10.1016/j.watres.2010.07.064
- **427.** United Nations. SDG Indicators Database. United Nations Sustainable Development Goals. Accessed August 29, 2019. https://unstats.un.org/sdgs/indicators/database/
- 428. Brennan T, Cummings JB, Lstiburek J. Unplanned airflows & moisture problems. ASHRAE Journal. 2002;44:44–50.
- **429.** Johanning E, Auger P, Morey PR, Yang CS, Olmsted E. Review of health hazards and prevention measures for response and recovery workers and volunteers after natural disasters, flooding, and water damage: Mold and dampness. Environmental Health and Preventive Medicine. 2014;19(2):93–99. https://doi.org/10.1007/s12199-013-0368-0
- **430.** Institute of Medicine. Climate Change, the Indoor Environment, and Health. The National Academies Press; 2011. https://doi.org/10.17226/13115
- **431.** Institute of Medicine. Damp Indoor Spaces and Health. (Committee on Damp Indoor Spaces and Health, Board on Health Promotion and Disease Prevention, Institute of Medicine, eds.). The National Academies Press; 2004. https://doi.org/10.17226/11011
- **432.** Seltenrich N. Healthier tribal housing: Combining the best of old and new. Environmental Health Perspectives. 2012;120:A460–A469. https://doi.org/10.1289/ehp.120-a460
- **433.** Parthasarathy S, Maddalena RL, Russell ML, Apte MG. Effect of temperature and humidity on formaldehyde emissions in temporary housing units. Journal of the Air & Waste Management Association. 2011;61(6):689–695. https://doi.org/10.3155/1047-3289.61.6.689
- **434.** Norbäck D, Wieslander G, Nordström K, Wälinder R. Asthma symptoms in relation to measured building dampness in upper concrete floor construction, and 2-ethyl-1-hexanol in indoor air. International Journal of Tuberculosis and Lung Disease. 2000;4:1016–1025.
- **435.** Markowicz P, Larsson L. Influence of relative humidity on VOC concentrations in indoor air. Environmental Science and Pollution Research. 2015;22(8):5772–5779. https://doi.org/10.1007/s11356-014-3678-x
- **436.** Fann N, Brennan T, Dolwick P, et al. Ch. 3: Air Quality Impacts. In: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:69–98. https://doi.org/10.10.7930/J0GQ6VP6
- **437.** Nazaroff WW. Exploring the consequences of climate change for indoor air quality. Environmental Research Letters. 2013;8(1):015022. https://doi.org/10.1088/1748-9326/8/1/015022
- **438.** Waite T, Murray V, Baker D. Carbon monoxide poisoning and flooding: Changes in risk before, during and after flooding require appropriate public health interventions. PLOS Currents Disasters. 2014;1. https://doi.org/10.1371/currents.dis.2b2eb9e15f9b982784938803584487f1
- **439.** Grigorieva EA, Suprun EN. Climate and children with bronchial asthma: Case study for the Russian Far East. Regional Problems. 2018;21:26–29. https://doi.org/10.31433/1605-220X-2018-21-3(1)-26-29
- **440.** Saporta D. Changes in skin allergy testing reactivity observed after a hurricane. Is the environment responsible? SOJ Immunology. 2015;3(3):1–6. https://doi.org/10.15226/soji/3/3/00131

- **441.** Saporta D, Hurst D. Increased sensitization to mold allergens measured by intradermal skin testing following hurricanes. Journal of Environmental and Public Health. 2017: 2793820. https://doi.org/10.1155/2017/2793820
- **442.** Visitsunthorn N, Chaimongkol W, Visitsunthorn K, Pacharn P, Jirapongsananuruk O. Great flood and aeroallergen sensitization in children with asthma and/or allergic rhinitis. Asian Pacific Journal of Allergy and Immunology. 2018;36:69–76. https://doi.org/10.12932/AP0886
- **443.** Calhoun LM, Avery M, Jones L, et al. Combined sewage overflows (CSO) are major urban breeding sites for Culex quinquefasciatus in Atlanta, Georgia. American Journal of Tropical Medicine and Hygiene. 2007;77(3):478–484. https://doi.org/10.4269/ajtmh.2007.77.478
- **444.** Chuang TW, Hildreth MB, Vanroekel DL, Wimberly MC. Weather and land cover influences on mosquito populations in Sioux Falls, South Dakota. Journal of Medical Entomology. 2011;48:669–679. https://doi.org/10.1603/me10246
- **445.** Barrera R, Amador M, MacKay AJ. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLOS Neglected Tropical Diseases. 2011;5(12). https://doi.org/10.1371/journal.pntd.0001378
- **446.** Jansen CC, Beebe NW. The dengue vector Aedes aegypti: what comes next. Microbes and Infection. 2010;12(4): 272–279. https://doi.org/10.1016/j.micinf.2009.12.011
- **447.** Ritchie SA, Pyke AT, Hall-Mendelin S, et al. An explosive epidemic of DENV-3 in Cairns, Australia. PLOS ONE. 2013;8(7):e68137. https://doi.org/10.1371/journal.pone.0068137
- 448. Ziska L, Crimmins A, Auclair A, et al. Ch. 7: Food Safety, Nutrition, and Distribution. In: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:189–216. Accessed August 29, 2019. http://dx.doi.org/10.7930/J0ZP4417
- 449. Gowda P, Steiner JL, Olson C, Boggess M, Farrigan T, Grusak MA. Agriculture and Rural Communities. In: Reidmiller DR, Avery CW, Easterling DR, et al., eds. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment. Vol Volume 2. US Global Change Research Program; 2018:391–437. Accessed April 2, 2019. https://nca2018.globalchange.gov/chapter/10
- **450.** Rodriguez-Llanes JM, Ranjan-Dash S, Degomme O, Mokhopadhyay A, Guha-Sapir D. Child malnutrition and recurrent flooding in rural eastern India: A community-based survey. BMJ Open. 2011;1:e000109. https://doi.org/10.1136/bmjopen-2011-000109
- **451.** Reacher M, McKenzie K, Lane C, et al. Health impacts of flooding in Lewes: A comparison of reported gastrointestinal and other illness and mental health in flooded and non-flooded households. Communicable Disease and Public Health. 2004;7(1):1–8. Accessed August 29, 2019. https://pubmed.ncbi.nlm.nih.gov/15137280/
- **452.** Pörtner HO, Roberts DC, Masson-Delmotte V, et al., eds. Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. United Nations; 2019:1–1170. Accessed October 9, 2019. https://www.ipcc.ch/srocc/chapter/summary-for-policymakers
- **453.** Centre for Research on the Epidemiology of Disasters (CRED). Natural Disasters 2017: Lower Mortality, Higher Cost. Institute Health and Society, Université Catholique de Louvain; 2018:1–8. https://cred.be/sites/default/files/adsr_2017.pdf
- **454.** Aon Benfield. Weather, Climate, and Catastrophe Insight: 2017 Annual Report. 2018:1–52. Accessed June 23, 2024. https://www.aon.com/spain/temas-destacados/Annual-report-weather-climate-2017.pdf
- **455.** Domingues R, Goni G, Baringer M, Volkov D. What caused the accelerated sea level changes along the U.S. East Coast during 2010–2015? Geophysical Research Letters. 2018;45(24):13,367–13,376. https://doi.org/10.1029/2018GL081183
- **456.** Ezer T, Atkinson LP. Accelerated flooding along the US East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth's Future. 2014;2(8):362–382. https://doi.org/10.1002/2014EF000252
- **457.** Wdowinski S, Bray R, Kirtman BP, Wu Z. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean & Coastal Management. 2016;126:1–8. https://doi.org/10.1016/j.ocecoaman .2016.03.002

- **458.** Kelly SA, Takbiri Z, Belmont P, Foufoula-Georgiou E. Human amplified changes in precipitation–runoff patterns in large river basins of the Midwestern United States. Hydrology and Earth System Sciences. 2017;21(10):5065–5088. https://doi.org/10.5194/hess-21-5065-2017
- **459.** Aich V, Liersch S, Vetter T, Andersson JCM, Müller EN, Hattermann FF. Climate or land use?—Attribution of changes in river flooding in the Sahel zone. Water. 2015;7:2796–2820. https://doi.org/10.3390/w7062796
- **460.** Yoon JH, Wang SYS, Gillies RR, Kravitz B, Hipps L, Rasch P. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nature Communications. 2015;6:8657. https://doi.org/10.1038/ncomms9657
- **461.** Arnell NW, Gosling SN. The impacts of climate change on river flood risk at the global scale. Climatic Change. 2016;134(3):387–401. https://doi.org/10.1007/s10584-014-1084-5
- **462.** Walsh J, Wuebbles D, Hayhoe K, et al. Chapter 2: Our Changing Climate. In: Melillo JM, Richmond TC, Yohe GW, eds. Climate Change Impacts in the United States: The Third National Climate Assessment. US Global Change Research Program; 2014:19–67. https://doi.org/10.7930/J0KW5CXT
- **463.** Blöschl G, Hall J, Parajka J, et al. Changing climate shifts timing of European floods. Science. 2017;357(6351):588–590. https://doi.org/10.1126/science.aan2506
- **464.** Melillo JM, Richmond TC, Yohe GW, eds. Climate Change Impacts in the United States: The Third National Climate Assessment. US Global Change Research Program; 2014. https://doi.org/10.7930/J0Z31WJ2
- **465.** Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLOS ONE. 2015;10(3):e0118571. https://doi.org/10.1371/journal.pone.0118571
- **466.** Urban Climate Change Research Network. The Future We Don't Want: How Climate Change Could Impact the World's Greatest Cities. 2018:1–59. Accessed August 29, 2019. https://www.c40.org/other/the-future-we-don-t-want-homepage
- **467.** World Meteorological Organization. Manual on Flood Forecasting and Warning. 2011:1–142. Accessed July 28, 2019. https://library.wmo.int/index.php?lvl=notice_display&id=5841#.XT3yJVB7nUI
- **468.** Nardi F, Annis A, Di Baldassarre G, Vivoni ER, Grimaldi S. GFPLAIN250m, a global high-resolution dataset of Earth's floodplains. Scientific Data. 2019;6:180309. https://doi.org/10.1038/sdata.2018.309
- **469.** US Centers for Disease Control and Prevention. Flood Vulnerability: Number of People within FEMA Designated Flood Hazard Area. National Environmental Public Health Tracking Network. Accessed September 4, 2019. https://ephtracking.cdc.gov/DataExplorer
- **470.** Frumkin H, Hess J, Luber G, Malilay J, McGeehin M. Climate change: The public health response. American Journal of Public Health. 2008;98(3):435–445. https://doi.org/10.2105/AJPH.2007.119362
- **471.** Jacobs JM, Culp M, Cattaneo L, et al. Transportation. In: Reidmiller DR, Avery CW, Easterling DR, et al., eds. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment. Volume 2. US Global Change Research Program; 2018:479–511. Accessed April 2, 2019. https://nca2018.globalchange.gov/chapter/12
- **472.** Wobus C, Zheng P, Stein J, et al. Projecting changes in expected annual damages from riverine flooding in the United States. Earth's Future. 2019;7(5):516–527. https://doi.org/10.1029/2018EF001119
- **473.** Jacobs JM, Cattaneo LR, Sweet W, Mansfield T. Recent and future outlooks for nuisance flooding impacts on roadways on the U.S. East Coast. Transportation Research Record. 2018;2672(2):1–10. https://doi.org/10.1177/0361198118756366
- **474.** Terti G, Ruin I, Anquetin S, Gourley JJ. A situation-based analysis of flash flood fatalities in the United States. Bulletin of the American Meteorological Society. 2017;98:333–345. https://doi.org/10.1175/BAMS-D-15-00276.1
- **475.** Samuel KJ, Yakubu S, Ologunorisa TE, Kola-Olusanya A. A post-disaster assessment of riverine communities impacted by a severe flooding event. Ghana Journal of Geography. 2017;9(1):17–41.
- **476.** Golz S, Naumann T, Neubert M, Günther B. Heavy rainfall: An underestimated environmental risk for buildings? E3S Web of Conferences. 2016;7:08001. https://doi.org/10.1051/e3sconf/20160708001
- **477.** Scawthorn C, Flores P, Blais N, et al. HAZUS-MH Flood loss estimation methodology. II. Damage and loss assessment. Natural Hazards Review. 2006;7(2):72–81. https://doi.org/10.1061/ASCE 1527-6988 2006 7:2 72

- **478.** Pistrika AK, Jonkman SN. Damage to residential buildings due to flooding of New Orleans after Hurricane Katrina. Natural Hazards. 2010;54:413–434. https://doi.org/10.1007/s11069-009-9476-y
- **479.** Roos W. Damage to Buildings. Delft Cluster; 2003:1–45. Accessed September 5, 2019. http://resolver.tudelft.nl/uuid:1d6ee3ea-de06-4539-810d-a52b6eeccca8
- **480.** Holland J, Banta J, Passmore B, Ayers M, Abbott SP, Cole EC. Bacterial amplification and in-place carpet drying: Implications for category 1 water intrusion restoration. Journal of Environmental Health. 2012;74(9):8–14.
- **481.** Adhikari A, Jung J, Reponen T, et al. Aerosolization of fungi, (1→3)-beta-D glucan, and endotoxin from flood-affected materials collected in New Orleans homes. Environmental Research. 2009;109(3):215–224. https://doi.org/10.1016/j.envres.2008.12.010
- **482.** Chew G, Wilson J, Rabito FA, et al. Mold and endotoxin levels in the aftermath of Hurricane Katrina: A pilot project of homes in New Orleans undergoing renovation. Environmental Health Perspectives. 2006;114:1883–1889. https://doi.org/10.1289/ehp.9258
- **483.** Persily AK, Emmerich SJ. Indoor Environmental Issues in Disaster Resilience. National Institute of Standards and Technology; 2015:1–40. Accessed September 5, 2019. http://dx.doi.org/10.6028/NIST.TN.1882
- **484.** Berkeley III AR, Wallace M. A Framework for Establishing Critical Infrastructure Resilience Goals: Final Report and Recommendations by the Council. National Infrastructure Advisory Council; 2010:1–85. Accessed September 12, 2019. https://www.dhs.gov/publication/niac-framework-establishing-resilience-goals-final-report
- **485.** Huang G. Enhancing dialog between flood risk management and road engineering sectors for flood risk reduction. Sustainability. 2018;10:1773. https://doi.org/10.3390/su10061773
- **486.** Eakin H, Lerner AM, Manuel-Navarette D, et al. Adapting to risk and perpetuating poverty: Household's strategies for managing flood risk and water scarcity in Mexico City. Environmental Science and Policy. 2016;66:324–333. https://doi.org/10.1016/j.envsci.2016.06.006
- **487.** Engelhaupt E. In a changing climate, cities worsen water quality. Environmental Science & Technology. 2008;42(16): 5836.
- **488.** Ebi KL, Balbus JM, Luber G, et al. Human Health. In: Reidmiller DR, Avery CW, Easterling DR, et al., eds. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment. Volume 2. US Global Change Research Program; 2018:572–603. Accessed April 2, 2019. https://nca2018.globalchange.gov/chapter/14
- **489.** The World Bank. Climate Change, Disaster Risk, and the Urban Poor: Cities Building Resilience for a Changing World. 2012:1–322. Accessed September 11, 2019. https://openknowledge.worldbank.org/handle/10986/6018
- **490.** Gunnell K, Mulligan M, Francis RA, Hole DG. Evaluating natural infrastructure for flood management within the watersheds of selected global cities. Science of the Total Environment. 2019;670:411–424. https://doi.org/10.1016/j.scitotenv.2019.03.212
- 491. Jiménez Cisneros BE, Oki T, Arnell NW, et al. Freshwater Resources. In: Field CB, Barros VR, Dokken DJ, et al., eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2014:229–269. Accessed September 11, 2019. https://archive.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap3_FINAL.pdf
- **492.** Collins AL, Anthony SG. Assessing the likelihood of catchments across England and Wales meeting "good ecological status" due to sediment contributions from agricultural sources. Environmental Science and Policy. 2008;11(2): 163–170. https://doi.org/10.1016/j.envsci.2007.07.008
- 493. Field CB, Barros VR, Mach KJ, et al. Technical Summary. In: Field CB, Barros VR, Dokken DJ, et al., eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2014:35–94. Accessed September 11, 2019. https://archive.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-TS_FINAL.pd

- **494.** Zevenbergen C, van Herk S, Escarameia M, et al. Assessing quick wins to protect critical urban infrastructure from floods: A case study in Bangkok, Thailand. Journal of Flood Risk Management. 2018;11(S1):S17–S27. https://doi.org/10.1111/jfr3.12173
- **495.** US Department of Agriculture. Mapping Food Deserts in the United States. Amber Waves. Published 2011. Accessed September 11, 2019. https://www.ers.usda.gov/amber-waves/2011/december/data-feature-mapping-food-deserts-in -the-us/
- **496.** Texas General Land Office. Local Buyout and Acquisition. Published 2018. Accessed September 12, 2019. https://recovery.texas.gov/grant-administration/grant-implementation/buyouts-and-acquisitions/index.html
- **497.** Harris County Flood Control District. Home Buyout Program Benefits and Accomplishments. Hurricane Harvey. Published August 28, 2019. Accessed September 12, 2019. https://www.hcfcd.org/hurricane-harvey/home-buyout -program/benefits-accomplishments/
- 498. The Trust for Public Land. 2019 City Park Facts. Accessed September 12, 2019. https://www.tpl.org/2019-city-park-facts
- **499.** Hanson S, Nicholls R, Ranger N, et al. A global ranking of port cities with high exposure to climate extremes. Climatic Change. 2011;104(1):89–111. Accessed September 4, 2019. https://doi.org/10.1007/s10584-010-9977-4
- **500.** Hansen B. Weathering the storm: The Galveston seawall and grade raising. Civil Engineering. 2007;77(4):32–34. https://doi.org/10.1061/ciegag.0000797
- **501.** Soz SA, Kryspin-Watson J, Stanton-Geddes Z. The Role of Green Infrastructure Solutions in Urban Flood Risk Management. World Bank Group; 2016:1–18. Accessed September 11, 2019. https://openknowledge.worldbank.org/handle/10986/25112
- **502.** EPA Office of Wetlands, Oceans and Watersheds. Green Infrastructure Case Studies: Municipal Policies for Managing Stormwater with Green Infrastructure. US Environmental Protection Agency; 2010:1–76. Accessed September 12, 2019. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100FTEM.txt
- **503.** Meira Da Rosa A. Infraestructura Verde Para Una Región Sedienta. El País. https://elpais.com/elpais/2018/03/11 /planeta_futuro/1520806608_551595.html. Published March 13, 2018. Accessed September 12, 2019.
- **504.** US Federal Highway Administration. INVEST: Infrastructure Voluntary Evaluation Sustainability Tool. Accessed September 12, 2019. https://www.sustainablehighways.org
- 505. Abunnasr Y, Hamin EM. The Green Infrastructure Transect: An Organizational Framework for Mainstreaming Adaptation Planning Policies. In: Otto-Zimmermann K, ed. Resilient Cities 2: Cities and Adaptation to Climate Change-Proceedings of the Global Forum 2011. Local Sustainability. Springer; 2012:205–217. Accessed September 11, 2019. https://www.researchgate.net/publication/273128845_The_Green_Infrastructure_Transect_An_Organizational _Framework_for_Mainstreaming_Adaptation_Planning_Policies
- 506. Park S, Takeda S, Kaga H, Masuda N. Study on water and greenery networks in the "Green Master Plan and Master Plan for Parks and Open Spaces" of Kobe City. Urban and Regional Planning Review. 2016;3:203–221. https://doi.org/10.14398/urpr.3.203
- **507.** Meeks BN. Gretna Mayor Defends Bridge Blockade. NBC News. http://www.nbcnews.com/id/9427111/ns/us_news -katrina_the_long_road_back/t/gretna-mayor-defends-bridge-blockade/#.XXqcsSV7lTY. Published September 22, 2005. Accessed September 12, 2019.
- **508.** de Bruijn KM, Maran C, Zygnerski M, et al. Flood resilience of critical infrastructure: Approach and method applied to Fort Lauderdale, Florida. Water. 2019;11(517):1–21. https://doi.org/10.3390/w11030517
- 509. Kaisar EI, Scarlatos PD. Preparedness and Catastrophic Event Management for the Washington, D.C. Metropolitan Area. US Department of Transportation, Federal Transit Administration; 2010:1–98. Accessed September 6, 2019. https://www.transit.dot.gov/research-innovation/preparedness-and-catastrophic-event-management-washington-dc-metropolitan-area
- 510. Woltjer, J., & Al, N. (2007). Integrating Water Management and Spatial Planning: Strategies Based on the Dutch Experience. Journal of the American Planning Association, 73(2), 211–222. Accessed June 23, 2024. https://doi.org/10.1080/01944360708976154

- 511. Proverbs D, Lamond J. Flood Resilient Construction and Adaptation of Buildings. In: Oxford Research Encyclopedia. Natural Hazard Science. Oxford University Press; 2017. Accessed September 26, 2019. https://oxfordre.com/natural hazardscience/view/10.1093/acrefore/9780199389407.001.0001/acrefore-9780199389407-e-111?rskey=1zla33&result=5
- 512. New York City Mayor's Office of Recovery and Resiliency. NYC Climate Resiliency Design Guidelines, Version 3.0. 2019:1–66. Accessed September 12, 2019. http://www1.nyc.gov/assets/orr/pdf/NYC_Climate_Resiliency_Design _Guidelines_v3-0.pdf
- 513. Federal Emergency Management Agency (FEMA). Homeowner's Guide to Retrofitting: Six Ways to Protect Your Home from Flooding, 3rd Edition. 2014:1–212. Accessed September 26, 2019. https://www.fema.gov/sites/default/files/2020-07/fema_nfip_homeowners-guide-retrofitting_2014.pdf
- **514.** Federal Emergency Management Agency (FEMA). Floodproofing Non-Residential Buildings. 2013:1–184. Accessed September 26, 2019. https://www.fema.gov/sites/default/files/2020-07/fema_p-936_floodproofing_non-residential _buildings_110618pdf.pdf
- **515.** Klijn F, Merz B, Penning-Rowsell EC, Kundzewicz ZW. Preface: Climate change proof flood risk management. Mitigation and Adaptation Strategies for Global Change. 2015;20(6):837–843. https://doi.org/10.1007/s11027-015-9663-y
- 516. World Bank Group, Global Facility for Disaster Reduction and Recovery, Swiss Confederation State Secretariat for Economic Affairs, Austrian Federal Ministry of Finance, European Commission, Spanish Agency for International Development Cooperation. Resilience Enhancement Track. City Resilience Program. Accessed September 5, 2019. https://www.gfdrr.org/en/crp
- 517. Strahl J, Bebrin M, Paris E, Jones D. Beyond the Buzzwords: Making the Specific Case for Community Resilience Microgrids. In: 2016 ACEEE Summer Study on Energy Efficiency in Buildings: From Components to Systems, From Buildings to Communities. American Council for an Energy-Efficent Economy; 2016:1–13. Accessed September 6, 2019. https://aceee.org/files/proceedings/2016/data/papers/11_110.pdf
- **518.** Gies E. Microgrids Keep These Cities Running When the Power Goes Out. Inside Climate News. Published December 4, 2017. Accessed September 6, 2019. https://insideclimatenews.org/news/04122017/microgrid-emergency-power -backup-renewable-energy-cities-electric-grid
- 519. Lindberg KB, Dyrendahl T, Doorman G, et al. Large Scale Introduction of Zero Energy Buildings in the Nordic Power System. In: Proceedings, 2016 13th International Conference on the European Energy Market (EEM), Porto. Institute of Electrical and Electronic Engineers; 2016:1–6. https://doi.org/10.1109/EEM.2016.7521303
- **520.** Chubaka CE, Whiley H, Edwards JW, Ross KE. A review of roof harvested rainwater in Australia. Journal of Environmental and Public Health. 2018:6471324. https://doi.org/10.1155/2018/6471324
- **521.** National Conference of State Legislatures. State Rainwater Harvesting Laws and Legislation. Environment and Natural Resources. Published February 28, 2018. http://www.ncsl.org/research/environment-and-natural-resources/rainwater-harvesting.aspx (page removed)
- **522.** Campisano A, Butler D, Ward S, et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research. 2017;115:195–209. https://doi.org/10.1016/j.watres.2017.02.056
- **523.** Richards BS, Shen J, Schäfer AI. Water–energy nexus perspectives in the context of photovoltaic-powered decentralized water treatment systems: A Tanzanian case study. Energy Technology. 2017;5:1112–1123. https://doi.org/10.1002/ente.201600728
- **524.** Roy S, Edwards MA. Preventing another lead (Pb) in drinking water crisis: Lessons from the Washington D.C. and Flint MI contamination events. Current Opinion in Environmental Science and Health. 2019;7:34–44. https://doi.org/10.1016/j.coesh.2018.10.002
- **525.** Chirisa I, Bandauko E, Matamanda A, Mandisvika G. Decentralized domestic wastewater systems in developing countries: The case study of Harare (Zimbabwe). Applied Water Science. 2017;7(3):1069–1078. https://doi.org/10.1007/s13201-016-0377-4
- **526.** De Gisi S, Petta L, Wendland C. History and technology of Terra Preta sanitation. Sustainability. 2014;6:1328–1345. https://doi.org/10.3390/su6031328

- **527.** Gunady M, Shishkina N, Tan H, Rodriguez C. A Review of on-site wastewater treatment systems in Western Australia from 1997 to 2011. Journal of Environmental and Public Health. 2015:716957. https://doi.org/10.1155/2015/716957
- **528.** Chen J, Liu Y, Gitau MW, Engel BA, Flanagan DC, Harbor JM. Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Science of The Total Environment. 2019;665:69–79. https://doi.org/10.1016/j.scitotenv.2019.01.416
- **529.** Abrahams JC, Coupe SJ, Sañudo-Fontaneda LA, Schmutz U. The Brookside Farm Wetland Ecosystem Treatment (WET) System: A low-energy methodology for sewage purification, biomass production (yield), flood resilience and biodiversity enhancement. Sustainability. 2017;(9):47. https://doi.org/10.3390/su9010147
- **530.** Masi F, Rizzo A, Bresciani R, Conte G. Constructed wetlands for combined sewer overflow treatment: Ecosystem services at Gorla Maggiore, Italy. Ecological Engineering. 2017;(98):427–438. https://doi.org/10.1016/j.ecoleng.2016.03.043
- **531.** Zhang DQ, Jinadasa K, Gersberg RM, Liu Y, Ng WJ. Application of constructed wetlands for wastewater treatment in developing countries—A review of recent developments (2000–2013). Journal of Environmental Management. 2014;141:116–131. https://doi.org/10.1016/j.jenvman.2014.03.015
- **532.** Capodaglio AG. Integrated, decentralized wastewater management for resource recovery in rural and peri-urban areas. Resources. 2017;6(2):22. https://doi.org/10.3390/resources6020022
- 533. Green Builder Staff. Architectural Nexus celebrates "Living Building" in Sacramento. Green Builder Media. Published September 6, 2018. Accessed September 18, 2019.https://www.greenbuildermedia.com/eco-landscaping -blog/architectural-nexus-celebrates-living-building-in-sacramento (page removed)
- **534.** Gittleman M. Estimating Stormwater Runoff for Community Gardens in New York City. CUNY Academic Works; 2015:1–96. Accessed September 18, 2019. http://academicworks.cuny.edu/hc_sas_etds/2
- **535.** Cruijsen A. Design Opportunities for Flash Flood Reduction by Improving the Quality of the Living Environment: A Hoboken City Case Study of Environmental Driven Urban Water Management. Delft University of Technology; 2015:1–158. Accessed September 18, 2019. http://resolver.tudelft.nl/uuid:f433a5 ce-8249-4976-a43f-a741b4ce2bf9
- **536.** Padgham J, Jabbour J, Dietrich K. Managing change and building resilience: A multi-stressor analysis of urban and peri-urban agriculture in Africa and Asia. Urban Climate. 2015;12:183–204. https://doi.org/10.1016/j.uclim.2015.04.003
- **537.** Smith K, Lawrence G, MacMahon A, Muller J, Brady M. The resilience of long and short food chains: A case study of flooding in Queensland, Australia. Agriculture and Human Values. 2016;33:45–60. https://doi.org/10.1007/s10460-015-9603-1
- **538.** Peek L, Stough LM. Children with disabilities in the context of disaster: A social vulnerability perspective. Child Development. 2010;81(4):1260–1270. https://doi.org/10.1111/j.1467–8624.2010.01466.x.
- **539.** Brandenburg M, Watkins S, Brandenburg K, Schieche C. Operation Child-ID: Reunifying children with their legal guardians after Hurricane Katrina. Disasters. 2007;31(3):277–287. https://doi.org/10.1111/j.1467-7717.2007.01009.x
- 540. Thomas DSK, Phillips BD, Lovekamp WE, Fothergill A, eds. Social Vulnerability to Disasters. 2nd ed. CRC Press; 2013.
- **541.** Bell JE, Herring SC, Jantarasami L, et al. Ch. 4: Impacts of Extreme Events on Human Health. In: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:99–128. https://doi.org/10.7930/J0BZ63ZV
- **542.** Tong VT, Zotti ME, Hsia J. Impact of the Red River catastrophic flood on women giving birth in North Dakota, 1994–2000. Maternal and Child Health Journal. 2011;15(3):281–288. https://doi.org/10.1007/s10995-010-0576-9
- **543.** Xiong X, Harville EW, Buekens P, Mattison DR, Elkind-Hirsch K, Pridjian G. Exposure to Hurricane Katrina, post-traumatic stress disorder and birth outcomes. American Journal of the Medical Sciences. 2008;336(2):111–115. https://doi.org/10.1097/MAJ.0b013e318180f21c
- **544.** Laditka SB, Laditka JN, Xirasagar S, Cornman CB, Davis CB, Richter JVE. Providing shelter to nursing home evacuees in disasters: Lessons from Hurricane Katrina. American Journal of Public Health. 2008;98:1288–1293. https://doi.org/10.1097/DMP.0b013e3181b66ae4
- **545.** Battle DE. Persons with communication disabilities in natural disasters, war, and/or conflict. Communication Disorders Quarterly. 2015;36:231–240. https://doi.org/http://cdq.sagepub.com/content/36/4/231.short

- **546.** Andrulis D, Siddiqui N, Gantner J. Preparing racially and ethnically diverse communities for public health emergencies. Health Affairs. 2007;26(6):1269–1279. https://doi.org/10.1377/hlthaff.26.5.1269
- 547. Lippmann AL. Disaster preparedness in vulnerable communities. International Law and Policy Review. 2011;1:69-96.
- 548. Taylor IL. Hurricane Katrina's impact on tulane's teaching hospitals. Transactions of the American Clinical and Climatological Association. 2007;118:69–78. Accessed August 30, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1863583/
- **549.** US Environmental Protection Agency. National Ambient Air Quality Standards Table. https://www.epa.gov/criteria -air-pollutants/naaqs-table
- **550.** World Health Organization Europe. Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide, Sulfur Dioxide. World Health Organization; 2006. Accessed October 10, 2019. https://www.who.int/publications/i/item/WHO-SDE-PHE-OEH-06.02
- **551.** US Environmental Protection Agency. Regulations for Onroad Vehicles and Engines. Regulations for Emissions from Vehicles and Engines. Accessed October 11, 2019. https://www.epa.gov/regulations-emissions-vehicles-and-engines /regulations-onroad-vehicles-and-engines
- **552.** US Department of Energy Office of Energy Efficiency and Renewable Energy. Saving Energy and Money with Building Energy Codes in the United States.; 2016:1–2. Accessed October 11, 2019. https://www.energy.gov/sites/prod/files/2014/05/f15/saving_with_building_energy_codes.pdf
- **553.** National Conference of State Legislatures. State Renewable Portfolio Standards and Goals. Published 2017. Accessed October 11, 2019. http://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx
- **554.** Sengupta S, Popovich N. More Than 60 Countries Say They'll Zero Out Carbon Emissions. The Catch? They're Not the Big Emitters. New York Times. https://www.nytimes.com/interactive/2019/09/25/climate/un-net-zero-emissions.html. Published September 25, 2019. Accessed October 11, 2019.
- 555. List of Car-Free Places. Wikipedia. Accessed October 11, 2019. https://en.wikipedia.org/wiki/List_of_car-free_places
- **556.** Foletta N. Case Study: Houten, Utrecht, The Netherlands. In: Europe's Vibrant New Low Car(Bon) Communities. Institute for Transportation and Development Policy (ITDP); 2011:46–59. Accessed October 11, 2019. https://itdpdotorg.wpengine.com/wp-content/uploads/2014/07/15.-092611_ITDP_NED_Desktop_Print.pdf
- 557. Soltani A, Sharifi E. A case study of sustainable urban planning principles in Curitiba (Brazil) and their Applicability in Shiraz (Iran). International Journal of Development and Sustainability. 2012;1(2):120–134. Accessed October 11, 2019. https://isdsnet.com/ijds-v1n2-6.pdf
- **558.** US Environmental Protection Agency. Overview of the Clean Air Act and Air Pollution. Accessed October 10, 2019. https://www.epa.gov/clean-air-act-overview
- **559.** US Environmental Protection Agency. Summary Nonattainment Area Population Exposure Report. In: Green Book.; 2019. Accessed October 10, 2019. https://www3.epa.gov/airquality/greenbook/popexp.html
- **560.** Reid CE, Gamble JL. Aeroallergens, allergic disease, and climate change: Impacts and adaptation. EcoHealth. 2009;6(3):458–470. https://doi.org/10.1007/s10393-009-0261-x
- **561.** Kinney PL. Climate change, air quality, and human health. American Journal of Preventive Medicine. 2008;35(5): 459–467. https://doi.org/10.1016/j.amepre.2008.08.025
- **562.** Rogers CA, Wayne PM, Macklin EA, et al. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environmental Health Perspectives. 2006;114(6):865–869. https://doi.org/10.1289/ehp.8549
- **563.** Ziska LH, Caulfield FA. Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: Implications for public health. Australian Journal of Plant Physiology. 2000;27:893–898. https://doi.org/10.1071/PP00032
- 564. Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG. Cities as harbingers of climate change: Common ragweed, urbanization, and public health. Journal of Allergy and Clinical Immunology. 2003;111(2):290–295. https://doi.org/10.1067/mai.2003.53

- **565.** World Allergy Organization. WAO White Book on Allergy. 2013. Accessed October 10, 2019. https://www.immunomix .com/pdf/WAO-White-Book-on-Allergy.pdf
- **566.** Arbes Jr SJ, Gergen PJ, Elliott L, Zeldin DC. Prevalences of positive skin test responses to 10 common allergens in the US population: Results from the Third National Health and Nutrition Examination Survey. Journal of Allergy and Clinical Immunology. 2005;116(2):377–383. https://doi.org/10.1016/j.jaci.2005.05.017
- **567.** Salo PM, Arbes Jr SJ, Jaramillo R, et al. Prevalence of allergic sensitization in the United States: Results from the National Health and Nutrition Examination Survey (NHANES) 2005–2006. Journal of Allergy and Clinical Immunology. 2014;134(2):350–359. https://doi.org/10.1016/j.jaci.2013.12.1071
- **568.** Sicard P, Serra R, Rossello P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environmental Research. 2016;149:122–144. https://doi.org/10.1016/j.envres.2016.05.014
- 569. Crinnion W, Pizzorno J. Particulate matter is a surprisingly common contributor to disease. Integrative Medicine: A Clinician's Journal. 2017;16(4):8–12. Accessed October 11, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415634/
- **570.** Pasquier A, André M. Considering criteria related to spatial variabilities for the assessment of air pollution from traffic. Transportation Research Procedia. 2017;25:3354–3369. https://doi.org/10.1016/j.trpro.2017.05.210
- **571.** World Health Organization Europe. Review of Evidence on Health Aspects of Air Pollution REVIHAAP Project. 2013:1–309. Accessed October 11, 2019. https://iris.who.int/bitstream/handle/10665/341712/WHO-EURO-2013-4101-43860-61757-eng.pdf
- **572.** California Office of Environmental Health Hazard Assessment. Health Effects of Diesel Exhaust. 2001. Accessed October 11, 2019. https://oehha.ca.gov/air/health-effects-diesel-exhaust
- 573. Blackwell DL, Lucas JW, Clarke TC. Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2012. National Center for Health Statistics; 2014:1–171. Accessed October 11, 2019. https://www.cdc.gov/nchs/data/series/sr_10/sr10_260.pdf
- 574. Bloom B, Jones LI, Freeman G. Summary Health Statistics for U.S. Children: National Health Interview Survey, 2012. National Center for Health Statistics; 2013:1–81. Accessed October 11, 2019. https://www.cdc.gov/nchs/data/series/sr_10/sr10_258.pdf
- 575. Zahran HS, Bailey CM, Damon SA, Garbe PL, Breysse PN. Vital signs: Asthma in children: United States, 2001–2016. Morbidity and Mortality Weekly Report (MMWR). 2018;67(5):149–155. https://doi.org/10.15585/mmwr.mm6705e1
- **576.** Sacks JD, Stanek LW, Luben T, et al. Particulate matter-induced health effects: Who is susceptible? Environmental Health Perspectives. 2011;119(4):446–454. https://doi.org/10.1289/ehp.1002255
- 577. Scortichini M, De Sario M, de'Donato FK, Davoli M, Michelozzi P, Stafoggia M. Short-term effects of heat on mortality and effect modification by air pollution in 25 Italian cities. International Journal of Environmental Research and Public Health. 2018;15(8):1771. https://doi.org/10.3390/ijerph15081771
- **578.** Luber G, McGeehin M. Climate change and extreme heat events. American Journal of Preventive Medicine. 2008; 35(5):429–435. https://doi.org/10.1016/j.amepre.2008.08.021
- **579.** US Environmental Protection Agency. Global Greenhouse Gas Emissions Data. Greenhouse Gas Emissions. Accessed October 10, 2019. https://www.epa.gov/ghgemissions/global-greenhouse-gas-overview
- **580.** US Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2017. 2019:1–675. Accessed October 10, 2019. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
- **581.** Medina-Ramón M, Schwartz J. Temperature, temperature extremes, and mortality: A study of acclimatisation and effect modification in 50 US cities. Occupational and Environmental Medicine. 2007;64:827–833. https://doi.org/10.1136/oem.2007.033175
- **582.** Gelfand E. Pediatric asthma: A different disease. Proceedings of the American Thoracic Society. 2009;6(3):278–282. https://doi.org/10.1513/pats.200808-090RM
- **583.** Akinbami LJ, Moorman JE, Bailey C, et al. Trends in Asthma Prevalence, Health Care Use, and Mortality in the United States, 2001–2010. NCHS Data Brief. 2012;94:1–8. http://www.cdc.gov/nchs/products/databriefs/db94.htm

- **584.** Peel JL, Metzger KB, Klein M, Flanders WD, Mulholland JA, Tolbert PE. Ambient air pollution and cardiovascular emergency department visits in potentially sensitive groups. American Journal of Epidemiology. 2007;165(6):625–633. https://doi.org/10.1093/aje/kwk051
- **585.** Chen C, Liu C, Chen R, et al. Ambient air pollution and daily hospital admissions for mental disorders in Shanghai, China. Science of The Total Environment. 2018;613–614:324–330. https://doi.org/10.1016/j.scitotenv.2017.09.098
- **586.** Pun VC, Manjourides J, Suh H. Association of ambient air pollution with depressive and anxiety symptoms in older adults: Results from the NSHAP study. Environmental Health Perspectives. 2017;125(3):342–348. https://doi.org/10.1289/EHP494
- 587. Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environmental Health Perspectives. 2016;124:1547–1553. https://doi.org/10.1289/EHP192
- **588.** Crocker D, Brown C, Moolenaar R, et al. Racial and ethnic disparities in asthma medication usage and health-care utilization. Chest. 2009;136(4):1063–1071. https://doi.org/10.1378/chest.09-0013
- **589.** Schmier J, Ebi KL. The Impact of climate change and aeroallergens on children's health. Allergy and Asthma Proceedings. 2009;30(3):229–237. https://doi.org/10.2500/aap.2009.30.3229
- **590.** Mikati I, Benson AF, Luben TJ, Sacks JD, Richmond-Bryant J. Disparities in distribution of particulate matter emission sources by race and poverty status. American Journal of Public Health. 2018;108(4):480–485. https://doi.org/10.2105/AJPH.2017.304297
- **591.** Bell ML, Dominici F. Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities. American Journal of Epidemiology. 2008;167(8):986–997. https://doi.org/10.1093/aje/kwm396
- **592.** Centre for Research on the Epidemiology of Disasters. EM-DAT: The International Disaster Database. Accessed October 29, 2019. https://www.emdat.be/
- **593.** World Meteorological Organization. Characteristics of Tropical Cyclones. Accessed June 23, 2024. https://wmo.int/content/characteristics-of-tropical-cyclones
- 594. World Meteorological Organization. Tropical Cyclone. Accessed June 23, 2024. https://wmo.int/topics/tropical-cyclone
- **595.** US National Oceanic and Atmospheric Administration. Severe Storms. Published April 11, 2016. Accessed October 29, 2019. https://www.noaa.gov/explainers/severe-storms
- 596. Doocy S, Dick A, Daniels A, Kirsch TD. The human impact of tropical cyclones: A historical review of events 1980–2009 and systematic literature review. PLOS Currents Disasters. 2013;5:ecurrents.dis.2664354a5571512063ed29d25ffbce74. https://doi.org/10.1371/currents.dis.2664354a5571512063ed29d25ffbce74
- **597.** Department of Regional Development and Environment, Organization of American States. Disasters, Planning, and Development: Managing Natural Hazards to Reduce Loss. Organization of American States; 1990:1–141. Accessed November 4, 2019. https://www.oas.org/dsd/publications/Unit/oea54e/oea54e.pdf
- **598.** Rappaport EN. Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bulletin of the American Meteorological Society. 2014;95(3):341–346. https://doi.org/10.1175/BAMS-D-12-00074.1
- 599. Coates L, Haynes K, Radford D, et al. An Analysis of Human Fatalities from Cyclones, Earthquakes and Severe Storms in Australia. Report for the Bushfire and Natural Hazard Cooperative Research Centre. 2017:1–70. Accessed November 5, 2019. https://www.bnhcrc.com.au/sites/default/files/managed/downloads/cyclone_earthquake_and _storm_-fatalities_report_28-12-2016.pdf
- 600. Noe R, Schnall AH, Wolkin AF, et al. Disaster-related injuries and illnesses treated by American Red Cross Disaster Health Services during Hurricanes Gustav and Ike. Southern Medical Journal. 2013;106(1):102–108. https://doi.org/10.1097/SMJ.0b013e31827c9e1f
- **601.** Chang MP, Simkin DJ, Lourdes de Lara M, Kirsch TD. Characterizing hospital admissions to a tertiary care hospital after Typhoon Haiyan. Disaster Medicine and Public Health Preparedness. 2016;10(2):240–247. https://doi.org/10.1017/dmp.2015.165

- **602.** US Centers for Disease Control and Prevention. Surveillance for illness and injury after Hurricane Katrina—New Orleans, Louisiana, September 8–25, 2005. Morbidity and Mortality Weekly Report (MMWR). 2005;54(40):1018–1021. Accessed November 6, 2019. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5440a4.htm#tab1
- 603. US Centers for Disease Control and Prevention. Injury and illness surveillance in hospitals and acute-care facilities after Hurricanes Katrina and Rita—New Orleans Area, Louisiana, September 25 October 15, 2005. Morbidity and Mortality Weekly Report (MMWR). 2006;55(02):35–38. Accessed November 6, 2019. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5502a4.htm
- **604.** D'Amato G, Liccardi G, Frenguelli G. Thunderstorm-asthma and pollen allergy. Allergy. 2007;62:11–16. https://doi.org/10.1111/j.1398-9995.2006.01271.x
- 605. US Centers for Disease Control and Prevention. Health Concerns associated with mold in water-damaged homes after Hurricanes Katrina and Rita—New Orleans area, Louisiana, October 2005. Morbidity and Mortality Weekly Report (MMWR). 2006;55(02):41–44. Accessed November 7, 2019. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5502a6.htm
- **606.** Marks GB, Colquhoun JR, Girgis ST, et al. Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax. 2001;56(6):468–471. https://doi.org/10.1136/thorax.56.6.468
- **607.** Bartholdson S, von Schreeb J. Natural disasters and injuries: What does a surgeon need to know? Current Trauma Reports. 2018;4(2):103–108. https://doi.org/10.1007/s40719-018-0125-3
- **608.** Rotheray KR, Aitken P, Goggins WB, Rainer TH, Graham CA. Epidemiology of injuries due to tropical cyclones in Hong Kong: A retrospective observational study. Injury. 2012;43(12):2055–2059. https://doi.org/10.1016/j.injury.2011.10.033
- **609.** Schnall A, Law R, Heinzerling A, et al. Characterization of carbon monoxide exposure during Hurricane Sandy and subsequent Nor'easter. Disaster Medicine and Public Health Preparedness. 2017;11(5):562–567. https://doi.org/10.1017/dmp.2016.203
- **610.** Shultz JM, Kossin JP, Galea S. The need to integrate climate science into public health preparedness for hurricanes and tropical cyclones. Journal of the American Medical Association. 2018;320(16):1637–1638. https://doi.org/10.1001/jama.2018.16006
- **611.** US Centers for Disease Control and Prevention. Norovirus Outbreak Among Evacuees from Hurricane Katrina—Houston, Texas, September 2005. Morbidity and Mortality Weekly Report (MMWR). 2005;54(40):1016–1018. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5440a3.htm
- **612.** Zheng J, Han W, Jiang B, Ma W, Zhang Y. Infectious diseases and tropical cyclones in Southeast China. International Journal of Environmental Research and Public Health. 2017;14(5):494. https://doi.org/10.3390/ijerph14050494
- 613. Panda S, Pati KK, Bhattacharya MK, Koley H, Pahari S, Nair GB. Rapid situation and response assessment of diarrhoea outbreak in a coastal district following tropical cyclone AILA in India. Indian Journal of Medical Research. 2011;133(4): 395–400. Accessed November 5, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103172/
- **614.** Kim S, Shin Y, Kim H, Pak H, Ha J. Impacts of typhoon and heavy rain disasters on mortality and infectious diarrhea hospitalization in South Korea. International Journal of Environmental Health Research. 2012;23(5):365–376. https://doi.org/10.1080/09603123.2012.733940
- 615. US Centers for Disease Control and Prevention. Infectious disease and dermatologic conditions in evacuees and rescue workers after Hurricane Katrina—Multiple states, August–September, 2005. Morbidity and Mortality Weekly Report (MMWR). 2005;54(38):961–964. Accessed November 5, 2019. https://www.ncbi.nlm.nih.gov/pubmed/16195696
- **616.** Pan American Health Organization. Impact of Hurricane Mitch on Central America. Epidemiological Bulletin. 1998;19(4):1–12. Accessed November 6, 2019. https://www3.paho.org/english/sha/epibul_95-98/be984mitch.htm
- **617.** Kwasinski A, Andrade F, Castro-Sitiriche MJ, O'Neill-Carrillo E. Hurricane Maria effects on Puerto Rico electric power infrastructure. IEEE Power and Energy Technology Systems Journal. 2019;6(1):85–94. https://doi.org/10.1109/JPETS.2019.2900293
- **618.** Román MO, Stokes EC, Shrestha R, et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLOS ONE. 2019;14(6):e0218883. https://doi.org/10.1371/journal.pone.0218883

- 619. Autoridad de Energía Eléctrica de Puerto Rico. Hoy se energizó el último sector con 2 clientes en el Bo. Real Anón, Sector Raíces en Ponce. Con esto, completamos el restablecimiento de servicio por el Huracán María. Si hay algún cliente que necesite asistencia se puede comunicar al 787-521-4444. CC6. Published online August 14, 2018. https://twitter.com/aeeonline/status/1029489267628756992
- **620.** Shultz JM, Kossin JP, Shepherd M, et al. Risks, Health consequences, and response challenges for small-island-based populations: Observations From the 2017 Atlantic hurricane season. Disaster Medicine and Public Health Preparedness. 2019;13(1):5–17. https://doi.org/10.1017/dmp.2018.28
- **621.** Beatty ME, Phelps S, Rohner C, Weisfuse I. Blackout of 2003: Public health effects and emergency response. Public Health Reports. 2006;121(1):36–44. https://doi.org/10.1177/003335490612100109
- **622.** Marx MA, Rodriguez CV, Greenko J, et al. Diarrheal illness detected through syndromic surveillance after a massive power outage: New York City, August 2003. American Journal of Public Health. 2006;96(3):547–553. https://doi.org/10.2105/AJPH.2004.061358
- **623.** McGuirk M, Shuford S, Peterson TC, Pisano P. Weather and climate change implications for surface transportation in the USA. WMO Bulletin. 2009;58(2):84–93. Accessed November 6, 2019. https://www.researchgate.net/profile /Paul_Pisano/publication/265580755_Title_Weather_and_climate_change_implications_for_surface_transportation _in_the_USA/links/545a105e0cf26d5090ad4a38.pdf
- 624. Handmer J, Honda Y, Kundzewicz ZW, et al. Changes in impacts of climate extremes: human systems and ecosystems. In: Field CB, Barros V, Stocker TF, et al., eds. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press; 2012:231–290. Accessed November 6, 2019. https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf
- **625.** Lemonick DM. Epidemics after natural disasters. American Journal of Clinical Medicine. 2011;8(3):144–152. Accessed November 8, 2019. https://www.aapsus.org/wp-content/uploads/ajcmsix.pdf
- **626.** Obradovich N, Migliorini R, Paulus MP, Rahwan I. Empirical evidence of mental health risks posed by climate change. Proceedings of the National Academy of Sciences USA. 2018;115(43):10953–10958. https://doi.org/10.1073/pnas.1801528115
- **627.** Kar N, Krishnaraaj R, Rameshraj K. Long-term mental health outcomes following the 2004 Asian tsunami disaster. Disaster Health. 2014;2(1):35–45. https://doi.org/10.4161/dh.24705
- **628.** Lew EO, Wetli CV. Mortality from Hurricane Andrew. Journal of Forensic Sciences. 1996;41(3):449–452. Accessed November 6, 2019. https://pdfs.semanticscholar.org/bcf5/ff7cfcd2ed5d43561034ee2b9354a91e870f.pdf
- **629.** Larrance R, Anastario M, Lawry L. Health status among internally displaced persons in Louisiana and Mississippi travel trailer parks. Annals of Emergency Medicine. 2007;49(5):590–601.e12. https://doi.org/10.1016/j. annemergmed.2006.12.004
- 630. Collins M, Sutherland M, Bouwer L, et al. Extremes, abrupt changes and managing risks. In: Pörtner HO, Roberts DC, Masson-Delmotte V, et al., eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. United Nations; 2019. Accessed October 9, 2019. https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/08_SROCC_Ch06_FINAL.pdf
- **631.** Pescaroli G, Alexander D. Understanding compound, interconnected, interacting, and cascading risks: A holistic framework. Risk Analysis. 2018;38(11):2245–2257. https://doi.org/10.1111/risa.13128
- **632.** Pascal M, Lagarrigue R, Laaidi K, Boulanger G, Denys S. Have health inequities, the COVID-19 pandemic and climate change led to the deadliest heatwave in France since 2003? Public Health. 2021;194:143–145. https://doi.org/10.1016/j.puhe.2021.02.012
- **633.** Hsiang S, Kopp R, Jina A, et al. Estimating economic damage from climate change in the United States. Science. 2017;356(6345):1362–1369. https://doi.org/10.1126/science.aal4369
- 634. Rhein M, Rintoul SR, Aoki S, et al. Observations: Ocean. In: Stocker TF, Qin D, Plattner GK, et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2013:255–315. Accessed June 23. 2024. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter03_FINAL.pdf

- **635.** Levitus S, Antonov JI, Boyer TP, et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters. 2012;39:LI0603. https://doi.org/10.1029/2012GL051106
- 636. Bindoff NL, Cheung WWL, Kairo JG, et al. Changing ocean, marine ecosystems, and dependent communities. In: Pörtner HO, Roberts DC, Masson-Delmotte V, et al., eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. United Nations; 2019. Accessed October 9, 2019. https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/07_SROCC_Ch05_FINAL.pdf
- **637.** Holland G, Bruyère CL. Recent intense hurricane response to global climate change. Climate Dynamics. 2014;42 (3–4):617–627. https://doi.org/10.1007/s00382-013-1713-0
- **638.** Strobl E. The economic growth impact of natural disasters in developing coutnries: Evidence from hurricane strikes in the Central American and Caribbean regions. Journal of Development Economics. 2012;97(1):130–141. https://doi.org/10.1016/j.jdeveco.2010.12.002
- **639.** Dorian T, Ward B, Chen YL. Tropical Cyclone Amos (2016) forecasting challenges: A model's perspective. Tropical Cyclone Research and Review. 2018;7(3):172–178. https://doi.org/10.6057/2018TCRR03.03
- **640.** Magnusson L, Bidlot JR, Bonavita M, et al. ECMWF Activities for improved hurricane forecasts. Bulletin of the American Meteorological Society. 2019;100:445–458. https://doi.org/10.1175/BAMS-D-18-0044.1
- 641. Oppenheimer M, Glavovic B, Hinkel J, et al. Sea level rise and implications for low lying islands, coasts and communities. In: Pörtner HO, Roberts DC, Masson-Delmotte V, et al., eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. United Nations; 2019. Accessed October 9, 2019 https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/06_SROCC_Ch04_FINAL.pdf
- **642.** Lin N, Emanuel K, Oppenheimer M, Vanmarcke E. Physically based assessment of hurricane surge threat under climate change. Nature Climate Change. 2012;2:462–467. https://doi.org/10.1038/nclimate1389
- 643. Garner AJ, Mann ME, Emanuel KA, et al. Impact of climate change on New York City's coastal flood hazard: Increasing flood heights from the preindustrial to 2300 ce. Proceedings of the National Academy of Sciences USA. 2017;114(45): 11861–11866. https://doi.org/10.1073/pnas.1703568114
- **644.** Sweet W, Zervas C, Gill S, Park J. Hurricane Sandy Inundation probabilities today and tomorrow. Bulletin of the American Meteorological Society. 2013;94(9):S17–S20. https://doi.org/10.1175/BAMS-D-13-00085.1
- **645.** McNally T, Bonavita M, Thépaut JN. The role of satellite data in the forecasting of Hurricane Sandy. Monthly Weather Review. 2014;142:634–646. https://doi.org/10.1175/MWR-D-13-00170.1
- **646.** Trenberth KE, Fasullo JT, Shepherd TG. Attribution of climate extreme events. Nature Climate Change. 2015;5: 725–730. https://doi.org/10.1038/nclimate2657
- **647.** Kossin JP. A global slowdown of tropical-cyclone translation speed. Nature. 2018;558:104–107. https://doi.org/10.1038/s41586-018-0158-3
- 648. Deng D, Davidson NE, Hu L, Tory KJ, Hankinson MCN, Gao S. Potential vorticity perspective of vortex structure changes of Tropical Cyclone Bilis (2006) during a heavy rain event following landfall. Monthly Weather Review. 2017;145:1875–1895. https://doi.org/10.1175/MWR-D-16-0276.1
- **649.** Little CM, Horton RM, Kopp RE, Oppenheimer M, Vecchi GA, Villarini G. Joint projections of US East Coast sea level and storm surge. Nature Climate Change. 2015;5:1114–1120. https://doi.org/10.1038/nclimate2801
- **650.** Brooks H. Severe thunderstorms and climate change. Atmospheric Research. 2013;123:129–138. https://doi.org/10.1016/j.atmosres.2012.04.002
- **651.** Allen JT. Climate change and severe thunderstorms. In: Oxford Research Encyclopedia. Climate Science. Oxford University Press; 2018. Accessed October 31, 2019. https://oxfordre.com/climatescience/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-62
- **652.** World Health Organization Europe. Hospital Readiness Checklist, Interim Version. 2020:1–37. Accessed June 23, 2024. https://apps.who.int/iris/bitstream/handle/10665/337039/WHO-2019-nCov-hospital_readiness_checklist_tool -2020.2-eng.xlsx
- **653.** Medecins Sans Frontières. Our Response to the Coronavirus COVID-19 Pandemic. Published 2022. Accessed June 23, 2024. https://www.msf.org/covid-19-depth

- 654. Cardona OD, van Aalst MK, Birkmann J, et al. Determinants of Risk: Exposure and Vulnerability. In: Field CB, Barros V, Stocker TF, et al., eds. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press; 2012:65–108. Accessed November 8, 2019. https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf
- 655. Gamble JL, Balbus J, Berger M, et al. Ch. 9: Populations of concern. In: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. US Global Change Research Program; 2016:247–286. https://doi.org/10.7930/J0Q81B0T
- **656.** Brunkard J, Namulanda G, Ratard R. Hurricane Katrina Deaths, Louisiana, 2005. Disaster Medicine and Public Health Preparedness. 2008;2:215–223. https://doi.org/10.1097/DMP.0b013e31818aaf55
- **657.** Aitken P, Franklin RC, Lawlor J, et al. Emergency department presentations following Tropical Cyclone Yasi. PLOS ONE. 2015;10(6):e0131196. https://doi.org/10.1371/journal.pone.0131196
- 658. Issa A, Ramadugu K, Mulay P, et al. Deaths related to Hurricane Irma—Florida, Georgia, and North Carolina, September 4 October 10, 2017. Morbidity and Mortality Weekly Report (MMWR). 2018;67(30):829–832. https://doi.org/10.15585/mmwr.mm6730a5
- **659.** Agency for Healthcare Research and Quality. 2018 National Healthcare Quality and Disparities Report. US Department of Health and Human Services; 2019:1–202. Accessed November 8, 2019. https://www.ahrq.gov/research/findings/nhqrdr/nhqdr18/index.html
- **660.** Manduca R. Income inequality and the persistence of racial economic disparities. Sociological Science. 2018;5: 182–205. https://doi.org/10.15195/v5.a8
- **661.** Fothergill A, Peek LA. Poverty and disasters in the United States: A review of recent sociological findings. Natural Hazards. 2004;32(1):89–110. https://doi.org/10.1023/B:NHAZ.0000026792.76181.d9
- **662.** Finch C, Emrich CT, Cutter SL. Disaster disparities and differential recovery in New Orleans. Population and Environment. 2010;31(4):179–202. https://doi.org/10.1007/s11111-009-0099-8
- **663.** Lloyd SJ, Kovats RS, Chalabi Z, Brown S, Nicholls RJ. Modelling the influences of climate change-associated sea-level rise and socioeconomic development on future storm surge mortality. Climatic Change. 2016;134(3):441–455. https://doi.org/10.1007/s10584-015-1376-4.
- 664. US Substance Abuse and Mental Health Services Administration. Current Statistics on the Prevalence and Characteristics of People Experience Homelessness in the United States. US Department of Health and Human Services; 2011:1–22. Accessed June 23, 2024. https://www.homelesshub.ca/sites/default/files/attachments/hrc_factsheet.pdf
- **665.** Isaac ML, Larson EB. Medical conditions with neuropsychiatric manifestations. Medical Clinics of North America. 2014;98(5):1193–1208. https://doi.org/10.1016/j.mcna.2014.06.012
- **666.** Murray KO, Resnick M, Miller V. Depression after infection with West Nile virus. Emerging Infectious Diseases. 2007;13(3):479–481. https://doi.org/10.3201/eid1303.060602
- 667. Osofsky HJ, Osofsky JD, Arey J, Kronenberg ME, Hansel T, Many M. Hurricane Katrina's first responders: The struggle to protect and serve in the aftermath of the disaster. Disaster Medicine and Public Health Preparedness. 2011;5(S2): S214–S219. https://doi.org/10.1001/dmp.2011.53
- 668. Brearley M, Trewin A. Monitoring the well-being of AusMAT members deployed to Fiji following Tropical Cyclone (TC) Winston. Prehospital and Disaster Medicine. 2017;32(Suppl 1):s111–s112. https://doi.org/10.1017/S1049023 X1700320X
- 669. Benedek DM, Fullerton C, Ursano RJ. First responders: Mental health consequences of natural and human-made disasters for public health and public safety workers. Annual Review of Public Health. 2007;28(1):55–68. https://doi.org/10.1146/annurev.publhealth.28.021406.144037
- 670. Rusiecki J, Thomas D, Chen L, Funk R, McKibben J, Dayton M. Disaster-related exposures and health effects among U.S. Coast Guard responders to Hurricanes Katrina and Rita: A cross-sectional study. Journal of Occupational and Environmental Medicine. 2014;56(8):820–833. https://doi.org/10.1097/JOM.0000000000000188

- **671.** World Health Organization. Vector-borne Diseases. Published October 2017. Accessed November 12, 2019. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
- **672.** Institute of Medicine. Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections. The National Academies Press; 2008. Accessed June 23, 2024. http://www.nap.edu/catalog/11950.html
- **673.** US Centers for Disease Control and Prevention. Nationally Notifiable Infectious Diseases and Conditions. Accessed November 13, 2019. https://wwwn.cdc.gov/nndss/
- **674.** Sykes RA, Makiello P. An estimate of Lyme borreliosis incidence in Western Europe. Journal of Public Health. 2017;39(1):74–81. https://doi.org/10.1093/pubmed/fdw017
- **675.** Hinckley AF, Connally NP, Meek JI, et al. Lyme disease testing by large commercial laboratories in the United States. Clinical Infectious Diseases. 2014;59(5):676–681. https://doi.org/10.1093/cid/ciu397
- 676. Nelson CA, Saha S, Kugeler KJ, et al. Incidence of clinician-diagnosed Lyme disease, United States, 2005–2010. Emerging Infectious Diseases. 2015;21(9):1625–1631. https://doi.org/10.3201/eid2109.150417
- 677. Schiffman EK, McLaughlin C, Ray JAE, et al. Underreporting of Lyme and other tick-borne diseases in residents of a high-incidence county, Minnesota, 2009. Zoonoses and Public Health. 2016;65:230–237. https://doi.org/10.1111/zph.12291
- 678. Kurtenbach K, Hanincová K, Tsao JI, Margos G, Fish D, Ogden NH. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology. 2006;4:660–669. https://doi.org/10.1038/nrmicro1475
- **679.** Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379(9814):461–473. https://doi.org/10.1016/S0140-6736(11)60103-7
- **680.** US Centers for Disease Control and Prevention. Why is CDC Concerned About Lyme Disease? Lyme Disease. Published 2017. Accessed December 5, 2019. https://www.cdc.gov/lyme/why-is-cdc-concerned-about-lyme-disease.html
- **681.** Stone BL, Tourand Y, Brissette CA. Brave New Worlds: The expanding universe of Lyme disease. Vector Borne and Zoonotic Diseases. 2017;17(9):619–629. https://doi.org/10.1089/vbz.2017.2127
- **682.** LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Functional Ecology. 2015;29:889–901. https://doi.org/10.1111/1365-2435.12487
- **683.** European Centre for Disease Prevention and Control. Publications and Data. Accessed November 14, 2019. https://www.ecdc.europa.eu/en/publications-data
- 684. McDonald E, Martin SW, Landry K, et al. West Nile virus and other domestic nationally notifiable arboviral diseases—United States, 2018. Morbidity and Mortality Weekly Report (MMWR). 2019;68(31):673–678. https://doi.org/10.15585/mmwr.mm6831a1external.icon
- 685. Gossner CM, Marrama L, Carson M, et al. West Nile virus surveillance in europe: moving towards an integrated animal-human-vector approach. Euro Surveillance. 2017;22(18):30526. https://doi.org/10.2807/1560-7917. ES.2017.22.18.30526
- 686. US Centers for Disease Control and Prevention. West Nile virus activity—Eastern United States, 2001. Morbidity and Mortality Weekly Report (MMWR). 2001;50(29):617–619. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5029a1.htm
- **687.** Shaman J, Day JF, Komar N. Hydrologic conditions describe West Nile virus risk in Colorado. International Journal of Environmental Research and Public Health. 2010;7(2):494–508. https://doi.org/10.3390/ijerph7020494
- **688.** Gardner AM, Hamer GL, Hines AM, Newman CM, Walker ED, Ruiz MO. Weather variability affects abundance of larval Culex (Diptera: Culicidae) in storm water catch basins in suburban Chicago. Journal of Medical Entomology. 2012;49(2):270–276. https://doi.org/10.1603/ME11073
- **689.** World Health Organization. World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals. 2019:1–132. Accessed November 13, 2019. https://iris.who.int/bitstream/handle/10665/324835/9789241565707 -eng.pdf?sequence=9
- **690.** United Nations. Sustainable Development Goal 3: Progress and Info in 2019. United Nations; 2019. Accessed November 14, 2019. https://sustainabledevelopment.un.org/sdg3

- **691.** Béguin A, Hales S, Rocklöv J, Åström C, Louis VR, Sauerborn R. The opposing effects of climate change and socioeconomic development on the global distribution of malaria. Global Environmental Change. 2011;21(4):1209–1214. https://doi.org/10.1016/j.gloenvcha.2011.06.001
- **692.** US Centers for Disease Control and Prevention. About Malaria, Biology, Lifecycle. Malaria. Published 2019. Accessed November 16, 2019. https://www.cdc.gov/malaria/about/biology/index.html
- **693.** World Health Organization. Dengue and Severe Dengue. Published 2019. Accessed November 14, 2019. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
- **694.** Pan American Health Organization. Dengue. Accessed November 14, 2019. http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en.html
- **695.** World Health Organization. Zika Epidemiology Update. 2019:1–14. Accessed November 16, 2019. https://cdn.who.int/media/docs/default-source/documents/emergencies/zika/zika-epidemiology-update-july-2019.pdf?sfvrsn=14a1b3a7_2
- 696. Pan American Health Organization. Zika. Accessed November 14, 2019. https://www.paho.org/en/topics/zika
- **697.** Kay BH, Ryan PA, Russell BM, Holt JS, Lyons SA, Foley PN. The importance of subterranean mosquito habitat to arbovirus vector control strategies in North Queensland, Australia. Journal of Medical Entomology. 2000;37(6): 846–853. https://doi.org/10.1603/0022-2585-37.6.846
- **698.** National Academies of Sciences, Engineering, and Medicine. Global Health Impacts of Vector-Borne Diseases. 2016:1–396. Accessed November 14, 2019. https://doi.org/10.17226/21792
- **699.** US National Institute of Allergy and Infectious Diseases. Lyme Disease. Diseases and Conditions. Published 2018. Accessed December 4, 2019. https://www.niaid.nih.gov/diseases-conditions/lyme-disease
- **700.** Milner RM, Mavin S, Ho-Yen DO. Lyme borreliosis in Scotland during two peak periods. Journal of the Royal College of Physicians of Edinburgh. 2009;39(3):196–199. Accessed December 12, 2019. https://www.rcpe.ac.uk/college/journal/lyme-borreliosis-scotland-during-two-peak-periods#text
- **701.** Moreno-Madriñán MJ, Turell M. History of mosquitoborne diseases in the United States and implications for new pathogens. Emerging Infectious Diseases. 2018;24(5):821–826. https://doi.org/10.3201/eid2405.171609
- **702.** US National Institute of Allergy and Infectious Diseases. West Nile Virus. Diseases and Conditions. Published 2015. Accessed December 4, 2019. https://www.niaid.nih.gov/diseases-conditions/west-nile-virus
- **703.** Petersen LR, Hayes EB. West Nile virus in the Americas. Medical Clinics of North America. 2008;92(6):1307–1322. https://doi.org/10.1016/j.mcna.2008.07.004
- **704.** Belova A, Mills D, Hall R, et al. Impacts of Increasing temperature on the future incidence of West Nile neuroinvasive disease in the United States. American Journal of Climate Change. 2017;6(1):166–216. https://doi.org/10.4236/ajcc.2017.61010
- **705.** US Centers for Disease Control and Prevention. About Malaria, Disease. Malaria. Published 2019. Accessed November 16, 2019. https://www.cdc.gov/malaria/about/disease.html
- **706.** US Centers for Disease Control and Prevention. About Malaria, Diagnosis and Treatment in the United States. Malaria. Published 2019. Accessed November 16, 2019. https://www.cdc.gov/malaria/diagnosis_treatment/index.html
- **707.** US Centers for Disease Control and Prevention. Dengue. Published 2019. Accessed December 4, 2019. https://www.cdc.gov/dengue/
- **708.** US National Institute of Allergy and Infectious Diseases. Dengue Fever. Diseases and Conditions. Published 2016. Accessed December 4, 2019. https://www.niaid.nih.gov/diseases-conditions/dengue-fever
- **709.** US Centers for Disease Control and Prevention. Zika Virus. Published 2019. Accessed December 4, 2019. https://www.cdc.gov/zika/
- **710.** Zhou SS, Huang F, Wang JJ, Zhang SS, Su YP, Tang LH. Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Malaria Journal. 2010;9:337. https://doi.org/10.1186/1475-2875-9-337
- 711. Ebi KL, Nealon J. Dengue in a changing climate. Environmental Research. 2016;151:115–123. https://doi.org/10.1016/j.envres.2016.07.026

- **712.** Kilpatrick AM, Meola MA, Moudy RM, Kramer LD. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLOS Pathogens. 2008;4(6):e1000092. https://doi.org/10.1371/journal.ppat.1000092
- **713.** Dodson BL, Kramer LD, Rasgon JL. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasites & Vectors. 2012;5:199. https://doi.org/10.1186/1756-3305-5-199
- **714.** Hartley DM, Barker CM, Le Menach A, Niu T, Gaff HD, Reisen WK. Effects of temperature on emergence and seasonality of West Nile virus in California. American Journal of Tropical Medicine and Hygiene. 2012;86(5):884–894. https://doi.org/10.4269/ajtmh.2012.11-0342
- **715.** Marinho RA, Beserra EB, Bezerra-Gusmão MA, de S Porto V, Olinda RA, dos Santos CAC. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. Journal of Vector Ecology. 2016;41(1):1–10. https://doi.org/10.1111/jvec.12187
- **716.** Rohani A, Wong YC, Zamre I, Lee HL, Zurainee MN. The effect of extrinsic incubation temperature on development of dengue serotype 2 and 4 viruses in Aedes aegypti (L.). Southeast Asian Journal of Tropical Medicine and Public Health. 2009;40(5):942–950. Accessed December 4, 2019. https://www.ncbi.nlm.nih.gov/pubmed/19842378
- 717. Liu-Helmersson J, Brännström Å, Sewe MO, Semenza JC, Rocklöv J. Estimating past, present, and future trends in the global distribution and abundance of the arbovirus vector Aedes aegypti under climate change scenarios. Frontiers in Public Health. 2019;7:148. https://doi.org/10.3389/fpubh.2019.00148
- **718.** Paz S, Malkinson D, Green MS, et al. Permissive summer temperatures of the 2010 European West Nile fever upsurge. PLOS ONE. 2013;8(2):e56398. https://doi.org/10.1371/journal.pone.0056398
- **719.** Morin CW, Comrie AC. Regional and seasonal response of a West Nile virus vector to climate change. Proceedings of the National Academy of Sciences USA. 2013;110(39):15620–15625. https://doi.org/10.1073/pnas.1307135110
- **720.** Monaghan AJ, Sampson KM, Steinhoff DF, et al. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Climatic Change. 2018;146(3–4):487–500. https://doi.org/10.1007/s10584-016-1679-0
- **721.** Bacon RM, Kugeler KJ, Mead PS. Surveillance for Lyme disease—United States, 1992–2006. Morbidity and Mortality Weekly Report (MMWR). 2008;57(SS10):1–9. Accessed December 10, 2019. https://www.cdc.gov/MMWR/PREVIEW/MMWRHTML/ss5710a1.htm
- **722.** Sonenshine DE. Range Expansion of tick disease vectors in North America: Implications for spread of tick-borne disease. International Journal of Environmental Research and Public Health. 2018;15(3):478. https://doi.org/10.3390/ijerph15030478
- 723. Gasmi S, Ogden NH, Leighton PA, Lindsay LR, Thivierg K. Analysis of the human population bitten by Ixodes scapularis Ticks in Quebec, Canada: Increasing risk of Lyme disease. Ticks and Tick-borne Diseases. 2016;7(6):1075–1081. https://doi.org/10.1016/j.ttbdis.2016.09.006
- **724.** Monaghan AJ, Moore SM, Sampson KM, Beard CB, Eisen RJ. Climate change influences on the annual onset of Lyme disease in the United States. Ticks and Tick-borne Diseases. 2015;6(5):615–622. https://doi.org/10.1016/j.ttbdis .2015.05.005
- **725.** Ogden NH, Lindsay LR, Beauchamp G, et al. Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. Journal of Medical Entomology. 2004;41(4): 622–633. https://doi.org/10.1603/0022-2585–41.4.622
- **726.** Stevenson B, Schwan TG, Rosa PA. Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infection and Immunity. 1995;63(11):4535–4539. Accessed December 6, 2019. https://iai.asm.org/content/iai/63/11/4535.full.pdf
- 727. Soverow JE, Wellenius GA, Fisman DN, Mittleman MA. Infectious disease in a warming world: How weather influenced West Nile virus in the United States (2001–2005). Environmental Health Perspectives. 2009;117(7):1049–1052. https://doi.org/10.1289/ehp.0800487
- **728.** Koenraadt CJM, Harrington LC. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology. 2008;45(1):28–35. https://doi.org/10.1093/jmedent/45.1.28

- **729.** Landesman W, Allan B, Langerhans R, Knight T, Chase J. Inter-annual associations between precipitation and human incidence of West Nile virus in the United States. Vector-Borne and Zoonotic Diseases. 2007;7(3):337–343. https://doi.org/10.1089/vbz.2006.0590
- **730.** Shaman J, Day JF, Stieglitz M. Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida. Journal of Medical Entomology. 2005;42(2):134–141. https://doi.org/10.1093/jmedent/42.2.134
- **731.** Linthicum KJ, Anyamba A, Killenbeck B, et al. Association of temperature and historical dynamics of malaria in the Republic of Korea, including reemergence in 1993. Military Medicine. 2014;179(7):806–814. https://doi.org/10.7205/MILMED-D-13-00545
- **731.** Beebe NW, Cooper RD, Mottram P, Sweeney AW. Australia's dengue risk driven by human adaptation to climate change. PLOS Neglected Tropical Diseases. 2009;3(5):e429. https://doi.org/10.1371/journal.pntd.0000429
- **732.** Padmanabha H, Soto E, Mosquera M, Lord CC, Lounibos LP. Ecological links between water storage behaviors and Aedes aegypti production: Implications for dengue vector control in variable climates. EcoHealth. 2010;7(1):78–90. https://doi.org/10.1007/s10393-010-0301-6
- **734.** Ogden NH, Bouchard C, Kurtenbach K, et al. Active and passive surveillance and phylogenetic analysis of Borrelia burgdorferi elucidate the process of Lyme disease risk emergence in Canada. Environmental Health Perspectives. 2010;118(7):909–914. https://doi.org/10.1289/ehp.0901766
- 735. Ogden NH, St-Onge L, Barker IK, et al. Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change. International Journal of Health Geographics. 2008;7:24. https://doi.org/10.1186/1476-072X-7-24
- **736.** Pörtner HO, Roberts DC, Masson-Delmotte V, et al., eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. United Nations; 2019. Accessed October 9, 2019. https://www.ipcc.ch/srocc/
- 737. Hsieh YH, Chen CWS. Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Tropical Medicine and International Health. 2009;14(6):628–638. https://doi.org/10.1111/j.1365-3156.2009.02277.x
- 738. Lai LW. Influence of environmental conditions on asynchronous outbreaks of dengue disease and increasing vector population in Kaohsiung, Taiwan. International Journal of Environmental Health Research. 2011;21(2):133–146. https://doi.org/10.1080/09603123.2010.515670
- **739.** Shea KM. Global climate change and children's health. American Academy of Pediatrics. 2007;120(5):e1359–e1367. https://doi.org/10.1542/peds.2007-2646
- **740.** LaBeaud AD, Glinka A, Kippes C, King CH. School-based health promotion for mosquito-borne disease prevention in children. Journal of Pediatics. 2009;155(4):590–592. https://doi.org/10.1016/j.jpeds.2009.03.009
- 741. Shadick NA, Zibit MJ, Nardone E, DeMaria, Jr A, Iannaccone CK, Cui J. A School-based intervention to increase Lyme disease preventive measures among elementary school-aged children. Vector-Borne and Zoonotic Diseases. 2016;16(8):507–515. https://doi.org/10.1089/vbz.2016.1942
- **742.** Lovera D, Martinez de Cuellar C, Araya S, et al. Clinical characteristics and risk factors of dengue shock syndrome in children. Pediatric Infectious Disease Journal. 2016;35(12):1294–1299. https://doi.org/10.1097/INF.000000000001308
- **743.** Stanaway JD, Shepard DS, Undurraga EA, et al. The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. Lancet Infectious Diseases. 2016;16(6):712–723. https://doi.org/10.1016/S1473-3099(16)00026-8
- 744. Mostashari F, Bunning ML, Kitsutani PT, et al. Epidemic West Nile encephalitis, New York, 1999: Results of a house-hold-based seroepidemiological survey. Lancet. 2001;358(9278):261–264. https://doi.org/10.1016/S0140-6736(01) 05480-0
- **745.** García-Rivera EJ, Rigau-Pérez JG. Dengue severity in the elderly in Puerto Rico. Revista Panamericana de Salud Pública. 2003;13(6):362–368.
- **746.** Rowe EK, Leo YS, Wong JGX, et al. Challenges in dengue fever in the elderly: Atypical presentation and risk of severe dengue and hospital-acquired infection. PLOS Neglected Tropical Diseases. 2014;8(4):e2777. https://doi.org/10.1371/journal.pntd.0002777

- **747.** Diagne N, Rogier C, Sokhna CS, et al. Increased susceptibility to malaria during the early postpartum period. New England Journal of Medicine. 2000;343:598–603. https://doi.org/10.1056/NEJM200008313430901
- **748.** O'Leary D, Kuhn S, Kniss KL, et al. Birth outcomes following West Nile virus infection of pregnant women in the United States: 2003–2004. Pediatrics. 2006;117:e537. https://doi.org/10.1542/peds.2005–2024
- **749.** Patel RR, Liang SY, Koolwal P, Kuhlmann FM. Travel advice for the immunocompromised traveler: Prophylaxis, vaccination, and other preventive measures. Therapeutics and Clinical Risk Management. 2015;11:217–228. https://doi.org/10.2147/TCRM.S52008
- **750.** Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2015;370:20130552. https://doi.org/10.1098/rstb.2013.0552
- 751. Miguel E, Fournet F, Yerbanga S, et al. Optimizing public health strategies in low-income countries: Epidemiology, ecology and evolution for the control of malaria. In: Roche B, Broutin H, Simard F, eds. Ecology and Evolution of Infectious Diseases: Pathogen Control and Public Health Management in Low-Income Countries. Oxford University Press; 2018:253–268. Accessed December 5, 2019. https://global.oup.com/academic/product/ecology-and-evolution-of-infectious-disease-9780198789840?cc=us&lang=en&
- **752.** Bardosh KL, Ryan SJ, Ebi K, Welburn S, Singer B. Addressing vulnerability, building resilience: Community-based adaptation to vector-borne diseases in the context of global change. Infectious Diseases of Poverty. 2017;6:166. https://doi.org/10.1186/s40249-017-0375-2
- **753.** Ratnapradipa D, McDaniel JT, Barger A. Social vulnerability and Lyme disease incidence: A regional analysis of the United States 2000–2014. Epidemiology Biostatistics and Public Health. 2017;14(2):e12158. https://doi.org/10.2427/12158
- **754.** Zhang X, Meltzer MI, Peña CA, Hopkins AB, Wroth L, Fix AD. Economic impact of Lyme disease. Emerging Infectious Diseases. 2006;12(4):653–660. https://doi.org/10.3201/eid1204.050602
- **755.** Suaya JA, Shepard DS, Siqueira JB, et al. Cost of dengue cases in eight countries in the Americas and Asia: A prospective study. American Journal of Tropical Medicine and Hygiene. 2009;80(5):846–855. https://doi.org/10.4269/ajtmh.2009.80.846
- 756. LaDeau SL, Leisnham PT, Biehler D, Bodner D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. International Journal of Environmental Research and Public Health. 2013;10(4):1505–1526. https://doi.org/10.3390/ijerph10041505
- **757.** Hurtado LA, Cáceres L, Chaves LF, Calzada JE. When climate change couples social neglect: Malaria dynamics in Panamá. Emerging Microbes and Infections. 2014;3(1):1–11. https://doi.org/10.1038/emi.2014.27
- **758.** Sundararajan R, Kalkonde Y, Gokhale C, Greenough PG, Bang A. Barriers to malaria control among marginalized tribal communities: A qualitative study. PLOS ONE. 2013;8(12):e81966. https://doi.org/10.1371/journal.pone.0081966
- **759.** Wangroongsarb P, Satimai W, Khamsiriwatchara A, et al. Respondent-driven sampling on the Thailand–Cambodia Border. II. Knowledge, perception, practice and treatment-seeking behaviour of migrants in malaria endemic zones. Malaria Journal. 2011;10:117. https://doi.org/10.1186/1475-2875-10-117
- **760.** Smith C, Whittaker M. Malaria elimination without stigmatization: A note of caution about the use of terminology in elimination settings. Malaria Journal. 2014;13:377. https://doi.org/10.1186/1475-2875-13-377
- **761.** Reiter P, Lathrop S, Bunning M, et al. Texas lifestyle limits transmission of dengue virus. Emerging Infectious Diseases. 2003;9(1):86–89. https://doi.org/10.3201/eid0901.020220
- **762.** Bultó PLO, Rodríguez AP, Valencia AR, Vega NL, Gonzalez MD, Carrera AP. Assessment of human health vulnerability to climate variability and change in Cuba. Environmental Health Perspectives. 2006;114:1942–1949. https://doi.org/10.1289/ehp.8434
- 763. Mavin S, Hopkins PC, MacLennan A, Joss AWL, Ho-Yen DO. Urban and rural risks of Lyme disease in the Scottish Highlands. Scottish Medical Journal. 2009;54(2):24–26. Accessed December 11, 2019. https://doi.org/10.1258/rsmsmj.54.2.24

- **764.** Bown GS, Schulze TL, Hayne C, Parkin WE. A focus of Lyme disease in Monmouth County, New Jersey. American Journal of Epidemiology. 1984;120(3):387–394. https://doi.org/10.1093/oxfordjournals.aje.a113903
- **765.** Odolini S, Parola P, Gkrania-Klotsas E, et al. Travel-related imported infections in Europe: EuroTravNet 2009. Clinical Microbiology and Infection. 2012;18:468–474. https://doi.org/10.1111/j.1469-0691.2011.03596.x
- **766.** Trout A, Baracco G, Rodriguez M, et al. Locally acquired dengue—Key West, Florida, 2009–2010. Morbidity and Mortality Weekly Report (MMWR). 2010;59(19):577–581. http://www.ncbi.nlm.nih.gov/pubmed/20489680
- **767.** Guharoy R, Gilroy SA, Noviasky JA, Ference J. West Nile Virus infection. American Journal of Health-System Pharmacy. 2004;61(12):1235–1241. https://doi.org/10.1093/ajhp/61.12.1235
- **768.** Beckerman B, Jerrett M, Brook JR, Verma DK, Arain MA, Finkelstein MM. Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. Atmospheric Environment. 2008;42(2):275–290. http://dx.doi.org/10.1016/j.atmosenv.2007.09.042,

Chapter 3. Architectural Epidemiology at Each Phase of the Project Delivery Process

- 1. Chapter 1: Project Design Phases. In: University of California Facilities Manual. Volume 3. Accessed May 30, 2020. https://www.ucop.edu/facilities-manual/manual/volume-3/index.html
- 2. Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L. Neighborhood microclimates and vulnerability to heat stress. *Social Science & Medicine*. 2006;63(11):2847–2863. https://doi.org/10.1016/j.socscimed.2006.07.030
- 3. Luber G, McGeehin M. Climate change and extreme heat events. *American Journal of Preventative Medicine*. 2008;35(5): 429–435. https://doi.org/10.1016/j.amepre.2008.08.021
- **4.** Kelly C, Cheadle A, eds. Building thriving communities through comprehensive community health initiatives: Evaluations from 10 years of Kaiser Permanente's Community Health Initiative to promote healthy eating and active living. *American Journal of Preventative Medicine*. 2018;54(5, Supplement 2):S105–S186. Accessed June 4, 2020. https://www.ajpmonline.org/issue/S0749-3797(18)X0002-6
- **5.** Frost MC, Kuo ES, Harner LT, Landau KR, Baldassar K. Increase in physical activity sustained 1 year after playground intervention. *American Journal of Preventative Medicine*. 2018;54(5, Supplement 2):S124–S129. https://doi.org/10.1016/j.amepre.2018.01.006
- **6.** Kaiser Permanente. Community Health Website. Accessed December 8, 2023. https://about.kaiserpermanente.org/commitments-and-impact/healthy-communities
- 7. Shi Y, Lau KKL, Ng E. Developing street-level PM2.5 and PM10 land use regression models in high-density Hong Kong with urban morphological factors. *Environmental Science & Technology*. 2016;50(15):8178–8187. https://doi.org/10.1021/acs.est.6b01807
- **8.** Barratt B, Lee M, Wong P, et al. A dynamic three-dimensional air pollution exposure model for Hong Kong. *Research Reports: Health Effects Institute*. 2018;194:1–65. Accessed June 16, 2020. https://pubmed.ncbi.nlm.nih.gov/31883241/
- 9. Wong PPY, Lai PC, Allen R, et al. Vertical monitoring of traffic-related air pollution (TRAP) in urban street canyons of Hong Kong. *Science of the Total Environment*. 2019;670:696–703. https://doi.org/10.1016/j.scitotenv.2019.03.224
- 10. Guo Y, Chang SS, Sha F, Yip PSF. Poverty concentration in an affluent city: Geographic variation and correlates of neighborhood poverty rates in Hong Kong. PLOS ONE. 2018;13(2):e0190566. https://doi.org/10.1371/journal.pone.0190566
- **11.** Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA. Climate variability and change in the United States: Potential impacts on water- and foodborne diseases caused by microbiologic agents. *Environmental Health Perspectives*. 2001;109 (Suppl; May):211–221. https://doi.org/10.1289/ehp.01109s2211
- **12.** Patz J a, Vavrus SJ, Uejio CK, McLellan SL. Climate change and waterborne disease risk in the Great Lakes region of the U.S. *American Journal of Preventative Medicine*. 2008;35(5):451–458. https://doi.org/10.1016/j.amepre.2008.08.026

- **13.** Collier S a, Stockman LJ, Hicks L a, Garrison LE, Zhou FJ, Beach MJ. Direct healthcare costs of selected diseases primarily or partially transmitted by water. *Epidemiology & Infection*. 2012;140(11):2003–2013. https://doi.org/10.1017/S0950268811002858
- **14.** United Nations. SDG Indicators Database. United Nations Sustainable Development Goals. Accessed August 29, 2019. https://unstats.un.org/sdgs/indicators/database/
- **15.** Curriero FC, Patz J a, Rose JB, Lele S. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. *American Journal of Public Health*. 2001;91(8):1194–1199. https://doi.org/10.2105/AJPH.91.8.1194
- **16.** *City of Chicago Green Stormwater Infrastructure Strategy*. 2014:1–44. Accessed June 5, 2020. https://www.chicago.gov/content/dam/city/progs/env/ChicagoGreenStormwaterInfrastructureStrategy.pdf
- 17. Gibbert JT. Sanitation Options for Sustainable Housing: A Decision Making Tool. *Out-of-the-Box 2018 Conference Proceedings, 24–25 Oct 2018, Pretoria, South Africa.* 2018:131-143. Accessed June 16, 2024. https://discovery.ucl.ac.uk/id/eprint/10111016/1/Out-Of-The%20Box%202018%20Conference%20Proceedings%20-%20Bennett.pdf
- **18.** Statistics South Africa. *Sustainable Development Goals: Indicator Baseline Report 2017—South Africa.*; 2017:1–217. Accessed June 17, 2020. http://www.statssa.gov.za/MDG/SDG_Baseline_Report_2017.pdf
- 19. Frank LD, Sallis JF, Conway TL, Chapman JE, Saelens BE, Bachman W. Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. *Journal of the American Planning Association*. 2006;72(1):75–87. https://doi.org/10.1080/01944360608976725
- **20.** Simons E, Curtin-Brosnan J, Buckley T, Breysse P, Eggleston PA. Indoor environmental differences between inner city and suburban homes of children with asthma. *Journal of Urban Health*. 2007;84(4):577–590. https://doi.org/10.1007/s11524-007-9205-3
- 21. The New York Independent System Operator, Inc. 2018 Load and Capacity Data: "Gold Book." 2018:1–107. Accessed June 6, 2020. https://www.nyiso.com/documents/20142/2226333/2018-Load-Capacity-Data-Report-Gold-Book.pdf /7014d670-2896-e729-0992-be44eb935cc2
- **22.** New York City Department of Environmental Protection. Wastewater Treatment System. Accessed June 6, 2020. https://www1.nyc.gov/site/dep/water/wastewater-treatment-plants.page
- 23. New York City Economic Development Corporation. Hunts Point Peninsula. Accessed June 6, 2020. https://edc.nyc/project/hunts-point-peninsula
- **24.** Transform Don't Trash NYC. *Trashing New York's Neighborhoods*. 2019:1–12. Accessed June 6, 2020. https://alignny.org/wp-content/uploads/2019/10/trashing-new-yorks-neighborhoods.pdf
- 25. Hinterland K, Naidoo M, King L, et al. Bronx Community District 1: Mott Haven and Melrose. Community Health Profiles 2018. 2018;13(59):1–20. Accessed June 9, 2020. https://a816-health.nyc.gov/hdi/profiles/
- **26.** Hinterland K, Naidoo M, King L, et al. Bronx Community District 2: Hunts Point and Longwood. Community Health Profiles 2018. 2018;14(59):1–20. Accessed June 9, 2020. https://a816-health.nyc.gov/hdi/profiles/
- **27.** Serlin C. Developer raises the bar in the Bronx. *Architect*. Published March 12, 2013. Accessed June 9, 2020. https://www.architectmagazine.com/technology/developer-raises-the-bar-in-the-bronx_o
- 28. GreenHome NYC. The Eltona. Accessed June 9, 2020. https://greenhomenyc.org/building/the-eltona/
- 29. MAP's Melrose Commons earns LEED-ND Stage II silver certification. *New York Real Estate Journal*. Published April 26, 2010. Accessed June 9, 2020. https://nyrej.com/map-s-melrose-commons-earns-leed-nd-stage-ii-silver-cert
- 30. The Peninsula. Published 2016. Accessed June 9, 2020. https://www.thepeninsulabx.com/about.html
- **31.** New York City Economic Development Corporation. *Hunts Point: A Shared Vision*. 2020:1–6. Accessed June 9, 2020. https://edc.nyc/sites/default/files/2020-03/HuntsPoint_SharedVision_Feb2020_1.pdf
- **32.** City Officials and Development Partners Break Ground on Phase One of the Peninsula, a 100% Affordable Mixed-Use Development in the Bronx. Office of the Bronx Borough President; 2019. Accessed June 9, 2020. http://bronxboropres.nyc.gov/2019/11/06/bronx-bp-ruben-diaz-jr-the-peninsula-spofford-affordable-housing/
- 33. Gillett Square. About Gillett Square. Accessed June 18, 2020. http://www.gillettsquare.org.uk/about

- **34.** Froy F, Davis H, Dhanani A. Can the Organisation of Commercial Space in Cities Encourage Creativity and "Self-Generating" Economic Growth: A Return to Jane Jacob's Ideas. *Proceedings of the 11th International Space Syntax Symposium*, Lisbon, Portugal, 3–7 July 2017; Number 62. Accessed June 18, 2020. https://www.spacesyntax.net/wp-content/uploads/symposia/SSS11.zip
- **35.** Hart A. A neighborhood renewal project in Dalston, Hackney: Towards a new form of partnership for inner city regeneration. *Journal of Retail & Leisure Property*. 2003;3(3):237–245. https://doi.org/10.1057/palgrave.rlp.5090179
- **36.** Hackney Co-operative Developments. Bradbury Works is Open for Business! Accessed December 6, 2023. https://hced.co.uk/premises/future-property-developments
- **37.** Bianchi M. How communities can regenerate urban contexts: The case study of Hackney Co-Operative Development. *Euricse Working Paper No 87*. 2016;16. https://doi.org/10.2139/ssrn.2850996
- **38.** [Y/N] Studio and Hackney Co-operative Developments. *Bradbury Works*. 2022. Accessed December 6, 2023. https://files.cargocollective.com/c111924/YN005_BradburyWorks_PressReleaseDoc_Print_Spreads_email.pdf
- **39.** Krieger J, Rabkin J, Sharify D, Song L. High Point walking for health: Creating built and social environments that support walking in a public housing community. *American Journal of Public Health*. 2009;99(Suppl 3):S593–S599. https://doi.org/10.2105/AJPH.2009.164384
- **40.** Abel TD, White J. Skewed riskscapes and gentrified inequities: Environmental exposure disparities in Seattle, Washington. *American Journal of Public Health*. 2011;101 Suppl:S246–54. https://doi.org/10.2105/AJPH.2011.300174
- 41. Drexler M. The people's epidemiologists. Harvard Magazine. 2006;108(4):25-33.
- **42.** Seattle Housing Authority. High Point Redevelopment. Accessed December 8, 2023. http://www.seattlehousing.org/redevelopment/high-point/
- **43.** Takaro TK, Krieger J, Song L, Sharify D, Beaudet N. The Breathe-Easy home: The impact of asthma-friendly home construction on clinical outcomes and trigger exposure. *American Journal of Public Health*. 2011;101(1):55–62. https://doi.org/10.2105/AJPH.2010.300008
- **44.** Barnett EC. Once one of Seattle's highest crime areas, High Point has transformed into a thriving, diverse community. *Seattle Magazine*. Published September 2017. Accessed June 4, 2020. https://www.seattlemag.com/news-and-features/once-one-seattles-highest-crime-areas-high-point-has-transformed-thriving-diverse
- **45.** Carriquiry AN, Sauri D, March H. Community involvement in the implementation of sustainable urban drainage systems (SUDSs): The case of Bon Pastor, Barcelona. *Sustainability*. 2020;12(2):510. https://doi.org/10.3390/su12020510
- **46.** Guenther R, Vittori G. *Sustainable Healthcare Architecture*. John Wiley & Sons, Ltd.; 2008. Accessed June 3, 2020. https://www.amazon.com/Sustainable-Healthcare-Architecture-Robin-Guenther/dp/0471784044/ref=sr_1_1?dchild =1&keywords=9780471784043&linkCode=qs&qid=1591215148&s=books&sr=1-1
- 47. Green Guide for Health Care, Version 2.2. 2007:287.
- **48.** US Green Building Council. *LEED Reference Guide for Green Building Design and Construction—Healthcare Supplement: For the Design, Construction and Major Renovation of Healthcare Facility Projects.* 2011;2011:354.
- **49.** Kaiser Permanente. Our Commitment to the Environment. Accessed June 16, 2024. https://www.kaiserpermanente jobs.org/environmental-stewardship-goals
- **50.** NHS Digital. Estates Returns Information Collection, England, 2017–18. Published 2018. Accessed June 20, 2020. https://digital.nhs.uk/data-and-information/publications/statistical/estates-returns-information-collection/summary-page-and-dataset-for-eric-2017-18
- 51. National Health Service Sustainable Development Unit. Sustainable Development Strategy for the Health and Social Care System 2014–2020. Accessed June 20, 2020. https://www.sduhealth.org.uk/policy-strategy/engagement-resources .aspx (page removed)
- **52.** MASS Design Group. MASS Design Group Celebrates the Opening of the Family Health Center on Virginia in North Texas, Its Inaugural US Healthcare Project. Published 2021. Accessed June 16, 2024. https://massdesigngroup.org/mass-celebrates-family-health-center

- 53. Keegan E. The Family Health Center on Virginia makes healthcare accessible. *Architect*. Published January 28, 2021. Accessed June 16, 2024. https://www.architectmagazine.com/design/interior-design/the-family-health-center-on-virginia-makes-healthcare-accessible_o
- **54.** Tang F. Community health care. *Texas Architect*. Published December 2021. Accessed June 16, 2024. https://magazine.texasarchitects.org/2021/11/01/community-health-care/
- **55.** DiNardo A. Community investment: Family Health Center on Virginia. *Healthcare Design*. Published online May 25, 2021. Accessed June 16, 2024. https://healthcaredesignmagazine.com/projects/community-involvement-family -health-center-on-virginia/
- 56. North Texas Family Health Foundation, About. Accessed December 8, 2023. https://www.ntxfhf.org/who-we-are
- 57. Harris CM, ed. Dictionary of Architecture and Construction. 2nd Edition. McGraw-Hill, Inc.; 1993.
- **58.** Salkin PE, Ko P. The effective use of health impact assessment in land-use decision making. *Zoning Practice*. 2011;(10):2–7. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1937412
- **59.** Heller J, Gordon M, Bhatia R. *Jack London Gateway Rapid Health Impact Assessment: A Case Study*. Human Impact Partners; 2007:1–13. Accessed October 4, 2021. https://humanimpact.org/wp-content/uploads/2017/09/CA-Jack-London -Case-Study-1.pdf
- **60.** Ross CL, Elliott ML, Rushing MM, et al. Aerotropolis Atlanta Brownfield Redevelopment: Health Impact Assessment. Center for Quality Growth and Regional Development at the Georgia Institute of Technology. Produced for Health Impact Project, an initiative of The Pew Charitable Trusts and the Robert Wood Johnson Foundation; December 2011:1–291. Accessed June 16, 2024. http://hdl.handle.net/1853/44669
- 61. National Institute of Building Sciences. Part 1: Overview, Principles, and Methodologies. In: *United States National Building Information Modeling Standard: Transforming the Building Supply Chain Through Open and Interoperable Information Exchanges*. Version 1. 2007:1–183. https://buildinginformationmanagement.wordpress.com/wp-content/uploads/2011/06/nbimsv1_p1.pdf
- **62.** McGraw-Hill Construction. Green BIM: How Building Information Modeling Is Contributing to Green Design and Construction. 2010:1–56.
- **63.** Gallaher MP, O'Connor AC, Dettbarn, Jr. JL, Gilday LT. *Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry*. US Department of Commerce, Technology Administration, National Institute of Standards and Technology; 2004:1–210. https://doi.org/10.6028/NIST.GCR.04-867
- **64.** Maguire DJ. An overview and definition of GIS. In: Maguire DJ, Goodchild MF, Rhind DW, eds. *Geographical Information Systems: Principles and Applications*. Wiley; 1991:9–20.
- **65.** Chung K, Yang DH, Bell R. Health and GIS: toward spatial statistical analyses. *Journal of Medical Systems*. 2004;28(4):349–360. https://doi.org/10.1023/B:JOMS.0000032850.04124.33
- **66.** Elliott P, Wartenberg D. Spatial Epidemiology: Current approaches and future challenges. *Environmental Health Perspectives*. 2004;112(9):998–1006. https://doi.org/10.1289/ehp.6735
- **67.** US Green Building Council. Autodesk Apps for LEED Automation. Accessed June 1, 2020. https://www.usgbc.org/resources/autodesk-apps-leed-automation
- 68. Han Y, Motamedi A, Yabuki N, Fukuda T. Green building design support system based on BIM and LEED. In: *Proceedings, ICCBEI CCACHE 2017, Taipei, Taiwan, 19–21 April.* 2017:41–44. Accessed June 1, 2020. https://www.researchgate.net/profile/Tomohiro_Fukuda2/publication/317170398_Green_Building_Design_Support_System_Based_on_BIM_and_LEED/links/5928b154aca27295a80587c6/Green-Building-Design-Support-System-Based-on-BIM-and-LEED.pdf
- **69.** Ayman R, Alwan Z, McIntyre L. BIM for sustainable project delivery: Review paper and future development areas. *Architectural Science Review*. 2020;63(1):15–33. https://doi.org/10.1080/00038628.2019.1669525
- 70. O'Donnell JT, Maile T, Rose C, et al. *Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM*. US. Department of Energy, Berkeley National Laboratory. 2013;LBNL-6033E:1–26. Accessed June 14, 2024. https://www.researchgate.net/publication/264310873_Transforming_BIM_to_BEM_Generation_of _Building_Geometry_for_the_NASA_Ames_Sustainability_Base_BIM

- 71. Bergonzoni G, Capelli M, Drudi G, Viani S, Conserva F. Building Information Modeling (BIM) for LEED IEQ Category Prerequisites and Credits Calculations. In: eWork and eBusiness in Architectural Engineering and Construction ECPPM 2016, Limassol, Cyprus, 7–9 September. Published 2016. https://doi.org/:10.1201/9781315386904
- 72. Wu W, Issa RRA. Feasibility of integrating building information modeling and LEED® certification process. In: Tizani W, ed. *Proceedings of the International Conference on Computing in Civil and Building Engineering*. Nottingham University Press; 2010. Accessed January 18, 2019. http://www.engineering.nottingham.ac.uk/icccbe/proceedings/pdf/pf81.pdf
- 73. Regulation of Solar Energy Devices. Texas Property Code. Title 11. Restrictive Covenants. Chapter 202. Construction and Enforcement of Restrictive Covenants. Section 202.010; 2011. Accessed December 8, 2023. http://www.statutes.legis.state.tx.us/Docs/PR/htm/PR.202.htm#202.010
- 74. Living Building Pilot Program. Seattle, Washington Municipal Code. Title 23: Land Use Code. Subtitle III: Land Use Regulations. Chapter 23.40: Compliance with Regulations Required-Exceptions. Section 23.40.060; 2023. Accessed December 8, 2023. https://library.municode.com/wa/seattle/codes/municipal_code?nodeId=TIT23LAUSCO_SUBTITLE_IIILAUSRE_CH23.40COREREXC_23.40.060LIBUPIPR
- **75.** Composting Toilets at the Six-Story Bullitt Center. Building Innovations Database; April 12, 2018. Accessed December 8, 2023. https://www.buildinginnovations.org/case_study/composting-toilets-at-the-six-story-bullitt-center/
- **76.** Solar Canopy at The Bullitt Center. Building Innovations Database; April 7, 2018. Accessed December 8, 2023. https://www.buildinginnovations.org/case_study/solar-canopy-at-the-bullitt-center/
- 77. Public Sewer Service. King County Code. Title 13: Water and Sewer Systems. Chapter 13.24 Water and Sewer Comprehensive Plans. Section 13.24.035; 2023. Accessed December 8, 2023. https://aqua.kingcounty.gov/council/clerk/code/16_Title_13.pdf
- 78. Land Use Code. 2013. Seattle, Washington Municipal Code. Title 23: Land Use Code. Subtitle III: Land Use Regulations. Chapter 23.40: Compliance with Regulations Required-Exceptions; 2023. Accessed December 8, 2023. https://library.municode.com/wa/seattle/codes/municipal_code?nodeId=TIT23LAUSCO_SUBTITLE_IIILAUSRE_CH23.40COREREXC
- **79.** Kohli, V. (2006). The New St. Anthony's School: Creating Learning Environments in the Nilgiri Hills of Southern India. Master's thesis, Architectural Association, School of Architecture, London, UK.
- **80.** Hong Kong Green Building Council. Technological and Higher Education Institute of Hong Kong (Chai Wan Campus). BEAM Plus Online Exhibition. Accessed June 22, 2020. http://greenbuilding.hkgbc.org.hk/projects/view/28
- 81. Ronald Lu & Partners. New Campus for the Technological and Higher Education Institute (THEi). *Architect*. Published February 26, 2015. Accessed June 22, 2020. https://www.architectmagazine.com/project-gallery/new-campus-for-the-technological-and-higher-education-institute-thei-6653
- 82. City of Cincinnati Health Department. *Health Impact Assessment of the Demolition of a Lead Painted Bridge Adjacent to a Residential Area*. 2013:1–24. Accessed December 8, 2023. https://www.cincinnati-oh.gov/sites/health/assets/File/Waldvogel%20%25286th%20Street%2529%20Final%20Draft%20Document.pdf
- 83. Huang L, Krigsvoll G, Johansen F, Liu Y, Zhang X. Carbon emission of global construction sector. *Renewable and Sustainable Energy Reviews*. 2018;81(2):1906–1916. https://doi.org/10.1016/j.rser.2017.06.001
- 84. Government of Canada. Air Pollutant Emissions, By Sector. Environmental Indicators. Published 2017. Accessed June 23, 2020. https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html
- **85.** Ren X. *Monitoring, Visualization and Assessment of Air Pollutant Emissions on Construction Sites.* Concordia University; 2018:1–104. Accessed June 23, 2020. https://spectrum.library.concordia.ca/984918/1/Ren_PhD_S2019.pdf
- 86. MacNaughton P, Spengler J, Vallarino J, Santanam S, Satish U, Allen J. Environmental perceptions and health before and after relocation to a green building. *Building & Environment*. 2016;104:138–144. https://doi.org/10.1016/j.buildenv.2016.05.011
- 87. Villa SB, Garrefa F, Stevenson F, et al. *Method of Analysis of the Resilience and Adaptability in Social Housing Development Through Post-Occupancy Evaluation and Co-Production. Final Research Report.* Federal University of Uberlândia and University of Sheffield; 2017:1–402. Accessed June 23, 2020. Available at: http://eprints.whiterose.ac.uk/132497/1/FULL %20FINAL%20REPORT%20JUNE_2017.pdf

Chapter 4. Applying Architectural Epidemiology to Different Contract and Financing Structures

- 1. Thomas L, Lester H. Chapter 27: Project delivery systems: architecture/engineering/construction industry trends and their ramifications. In: Kanaani M, Kopec D, eds. *The Routledge Companion for Architecture Design and Practice: Established and Emerging Trends*. Routledge; 2015:429–434. Accessed May 27, 2020. https://www.researchgate.net/publication/273456795_Project_Delivery_Systems_ArchitectureEngineeringConstruction_Industry_Trends_and_Their_Ramifications
- 2. McGraw Hill Construction. *Project Delivery Systems: How They Impact Efficiency and Profitability in the Buildings Sector*. 2014. Accessed June 3, 2020. https://dbia.org/wp-content/uploads/2018/05/Research-Project-Delivery-Systems -SmartMarket.pdf
- **3.** KPMG International. *Climbing the Curve: 2015 Global Construction Project Owner's Survey.* 2015. Accessed June 3, 2020. https://assets.kpmg/content/dam/kpmg/pdf/2015/04/2015-global-construction-survey.pdf
- **4.** American Institute of Architects National, American Institute of Architects California Council. *Integrated Project Delivery: A Guide*. Version 1. 2007:1–62. Accessed June 17, 2024. https://info.aia.org/SiteObjects/files/IPD_Guide_2007.pdf
- 5. Whole Building Design Guide Aesthetics Subcommittee. Engage the Integrated Design Process. Whole Building Design Guide. Published 2012. Accessed June 17, 2024. http://www.wbdg.org/design/engage_process.php
- 6. Sorensen D, Brittin J, Frerichs L, Trowbridge M, Huang TTK. Moving Schools Forward: A Design Recipe for Health: Buckingham County Primary and Secondary School, Dillwyn, VA. American Institute of Architects; 2014:1–9. Accessed June 17, 2024. https://wemoveschoolsforward.com/wp-content/uploads/2017/05/Buckingham_AIA_Moving_Schools _Forward.pdf
- 7. VDMO Architects. Buckingham County Primary and Elementary Schools. Accessed June 17, 2024. https://www.vmdo.com/buckingham-county-primary-and-elementary-schools.html
- 8. National Collaborative for Childhood Obesity Research, National Academy of Environmental Design. *Green Health: Building Sustainable Schools for Healthy Kids.* 2012:1–29. Accessed June 17, 2024. https://nccor.org/downloads/green-health-report_2012-06-04_complete.pdf
- 9. Brittin J, Frerichs L, Sirard JR, et al. Impacts of active school design on school-time sedentary behavior and physical activity: A pilot natural experiment. *PLoS ONE*. 2017;12(12):e0189236 https://doi.org/10.1371/journal.pone.0189236
- **10.** Macomber J, Allen JG, Jones E. A Tower for the People: 425 Park Avenue. Harvard Business School; 2020:1–22. Accessed June 25, 2020. https://www.hbs.edu/faculty/Pages/item.aspx?num=57814
- **11.** REW. L&L Creating New York's Healthiest Building at 425 Park. *Real Estate Weekly*. Published online March 25, 2015. Accessed June 26, 2020. https://rew-online.com/ll-creating-new-yorks-healthiest-building-at-425-park/
- 12. New Santa Monica City Hall East Building Meets Living Building Challenge. Published online October 5, 2020. https://spectrumnews1.com/ca/la-west/environment/2020/10/02/new-santa-monica-city-hall-east-building-meets -living-building-challenge#
- **13.** Lomholt I. Santa Monica City Services Building in California. *e-architect*. Published March 12, 2020. Accessed June 17, 2024. https://www.e-architect.com/america/santa-monica-city-services-building-in-california-usa
- **14.** Stamp E. This Is One of America's Greenest City Hall Buildings. *Architectural Digest*. Published online August 27, 2020. Accessed June 17, 2024. https://www.architecturaldigest.com/story/one-americas-greenest-city-hall-buildings
- **15.** Harvard University. Science and Engineering Complex: Institutional Master Plan Notification Form/Notice of Project Change. 2015:1–96. Accessed June 29, 2020. http://www.bostonplans.org/getattachment/1f648ef5-faef-4d55-b3f1-b61c55f9896c
- **16.** Stimson. Harvard Science & Engineering Complex, Allston, MA. Accessed June 29, 2020. https://www.stimsonstudio.com/harvard-allston-science-and-engineering-complex
- 17. Harvard University. *Interim Report: Harvard University's Campus in Allston*. 2019:1–96. Accessed June 29, 2020. https://eeaonline.eea.state.ma.us/EEA/emepa/mepadocs/2020/010820em/nps/npc/14069%20Harvard%20University %20Interim%20Update%20Report.pdf

- 18. Wong G. Climate Action and Adaptation Plan: A 2030 Community Plan to Reduce Carbon Emissions and Become Climate Resilient. City of Santa Monica; 2019:1–63. https://www.smgov.net/uploadedFiles/Departments/OSE/Climate/CAAP _SantaMonica.PDF
- **19.** Public Health Alliance of Southern California, Virginia Commonwealth University's Center on Society and Health. California Healthy Places Index. Accessed December 30, 2021. https://map.healthyplacesindex.org
- **20.** California Department of Public Health Climate Change and Health Equity Section -- CalBRACE Project. CCHVIz. Accessed December 30, 2021. https://skylab.cdph.ca.gov/CCHVIz/
- **21.** US Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Accessed April 25, 2019. http://ephtracking.cdc.gov/
- **22.** Durrant C. Efficient Energy System to Power Harvard's Allston Campus. The Harvard Gazette; 2018. Published February 28, 2018. Accessed June 17, 2024. https://news.harvard.edu/gazette/story/newsplus/highly-efficient -energy-system-to-power-harvards-allston-campus/
- 23. World Green Building Council. Building the Business Case: Health, Wellbeing and Productivity in Green Offices. 2016: 1–49. Accessed June 30, 2020. https://worldgbc.org/wp-content/uploads/2022/03/WGBC_BtBC_Dec2016_Digital _Low-MAY24_0.pdf
- **24.** Walrecht A, Moll F. *True Value Case Study: Vondellaan 47*. KPMG Sustainability; 2016:1–4. Accessed June 30, 2020. https://www.deltadevelopment.eu/content/upload/projecten/Heerema/TV%20case%20study_Vondellaan%2047.pdf (page removed)
- 25. Delta Development Group. Heerema Marine Contractors: From Redevelopment to Sustainable Icon. Accessed June 30, 2020. https://www.deltadevelopment.eu/en/project-development/projectdevelopment/heerema/ (page removed)
- **26.** Urban Land Institute. Vancouver Convention Centre West. In: *Awards for Excellence: 2010 Winning Projects.* 2010: 92–95. Accessed June 24, 2020. https://casestudies.uli.org/wp-content/uploads/2016/06/Vancouver-Convention -Centre-West.pdf
- **27.** Anning H. Case Study: Bond University Mirvac School of Sustainable Development Building, Gold Coast, Australia. *Journal of Green Building*. 2009;4(4):39–54. https://doi.org/10.3992/jgb.4.4.39
- 28. Khoshbakht M, Gou Z, Dupre K, Best R. Occupant satisfaction and comfort in green buildings: A longitudinal occupant survey in a green building in the subtropical climate in Australia. In: Rajagopalan P, Andamon MM, eds. *Engaging Architectural Science: Meeting the Challenges of Higher Density, Proceedings. 52nd International Conference of the Architectural Science Association (ANZASCA) 28 Nov 1 Dec 2018.* Architectural Science Association and RMIT University; 2018:371–381. Accessed June 30, 2020. https://www.researchgate.net/publication/330554671_Occupant _Satisfaction_and_Comfort_in_Green_Buildings_A_Longitudinal_Occupant_Survey_in_a_Green_Building_in_the _Subtropical_Climate_in_Australia
- 29. Standard Life Investments Koopt Nieuw Hoofdkantoor van Heerema Marine Contractors Leiden. *Vastgoed Journaal*. Accessed June 30, 2020. https://vastgoedjournaal.nl/news/16657/57/Standard-Life-Investments-koopt-nieuw-hoofdkantoor-van-Heerema-Marine-Contractors-Leiden. Published December 24, 2014
- **30.** Penner D. Vancouver Convention Centre Expansion Racks up \$2.4 Billion Impact Versus \$883 Million Start. *Vancouver Sun*. Published April 3, 2019. Accessed June 25, 2020. https://vancouversun.com/news/local-news/vancouver-convention-centre-expansion-racks-up-2-4-billion-in-impact-versus-883-million-start
- **31.** Vancouver Convention Centre. Vancouver Convention Centre Awarded Healthy Venue Accreditation by the World Obesity Federation. Published 2016. Accessed June 25, 2020. https://www.vancouverconventioncentre.com/news/vancouver-convention-centre-awarded-healthy-venue-accreditation-by-the-world-obesity-federation
- 32. Frisco Station Health + Wellness District. Accessed December 29, 2023. https://www.friscostation.com/health-wellness/
- **33.** City of Frisco, TX FY 2023 Draft Annual Budget, pp. 114 and 346. Accessed December 29, 2023. https://www.friscotexas.gov/DocumentCenter/View/27832/Draft-Budget-FY23-PDF
- 34. Cambridge Inc. Accessed December 29, 2023. https://www.cambridgeinc.com

- **35.** McCormick K. *The Business Case for Healthy Buildings: Insights from Early Adopters*. Urban Land Institute Center for Sustainability and Economic Performance; 2018:1–23. Accessed June 26, 2020. https://americas.uli.org/the-business-case-for-healthy-buildings-insights-for-early-adopters-report/
- **36.** Worden K. Building Health Leadership Award Presented to Four Recipients at Greenbuild Atlanta. Greenbuild. Published November 20, 2019. Accessed June 26, 2020. https://www.usgbc.org/articles/building-health-leadership -award-presented-four-recipients-greenbuild-atlanta
- 37. Laski J. Doing Right by Planet and People: The Business Case for Health and Wellbeing in Green Building. World Green Building Council; 2018. Accessed June 17, 2024. https://worldgbc.org/article/doing-right-by-planet-and-people-the-business-case-for-health-and-wellbeing-in-green-building/
- **38.** Floth Sustainable Building Consultants. 69 Robertson Street, Fortitude Valley. Accessed December 29, 2023. https://www.floth.com.au/project/69-robertson-street/
- **39.** HKRI Taikoo Hui Achieves LEED Green Building Certification. *PR Newswire*. Published online May 30, 2019. https://en.prnasia.com/releases/apac/hkri-taikoo-hui-achieves-leed-green-building-certification-247618.shtml
- 40. Swire Properties. Annual Report 2020. https://ir.swireproperties.com/en/ir/reports/ar2020.pdf
- **41.** WELL Certified. The New JLL Shanghai Office Revolution—Worth It or Not? Published August 26, 2018. Accessed June 17, 2024. https://resources.wellcertified.com/articles/the-new-jll-shanghai-office-revolution-worth-it-or-not-/
- **42.** Jones Lang LaSalle. Project Spotlight, JLL Shanghai Office. Accessed June 17, 2024. https://www.joneslanglasalle.com.cn/en/campaign/designandbuild/projects/jll-shanghai-office
- **43.** WELL Certified. JLL Shanghai Office at HKRI Taikoo Hui. Published August 28, 2018. Accessed June 17, 2024. https://resources.wellcertified.com/articles/jll-shanghai-office-at-hkri-taikoo-hui/
- 44. AECOM. HKRI Tai Koo Hui: Shanghai, China. https://aecom.com/projects/hkri-tai-koo-hui/
- **45.** Public-Private Partnerships Working Group. *Guide to Legal Issues Involved in Public-Private Partnerships at the Federal Level*. Administrative Conference of the United States; 2018:1–15. Accessed June 2, 2020. https://www.acus.gov/sites/default/files/documents/Guide%20to%20Legal%20Issues%20Involved%20in%20Public-Private%20Partnerships%20at%20the%20Federal%20Level%20FINAL%2012%206%202018.pdf
- **46.** Ochtera RD, Siemer CJ, Levine LT. Supporting community-based healthy eating and active living efforts in sustaining beyond the funding cycle. *American Journal of Preventative Medicine*. 2018;54(5, Supplement 2):S133–S138. https://doi.org/10.1016/j.amepre.2017.12.019
- **47.** Mueller Master Development Agreement Between the City of Austin and Catellus Development Corporation. 2004. Accessed August 18, 2020. http://www.austintexas.gov/page/mueller-master-development-agreement
- **48.** Guenther R, Vittori G. *Sustainable Healthcare Architecture*. 2nd Edition. John Wiley & Sons, Ltd.; 2013. Accessed July 2, 2020. https://www.wiley.com/en-us/Sustainable+Healthcare+Architecture%2C+2nd+Edition-p-9781118086827
- **49.** Dell Children's. Dell Children's Medical Center of Central Texas an Award Winner. News. Published May 24, 2006. Accessed August 18, 2020. https://www.dellchildrens.net/news/2006/05/26/dell-childrens-medical-center-of-central -texas-an-award-winner/ (page removed)
- **50.** HUD User Office of Policy Development and Research. Austin, Texas: Realizing a Sustainably Planned Community in Mueller Redevelopment. Accessed August 18, 2020. https://www.huduser.gov/portal/casestudies/study-1152016-1.html
- **51.** City of Austin. *Dell Children's Medical Center of Central Texas*. Accessed August 18, 2020. https://www.austintexas.gov/sites/default/files/files/Sustainability/Green_Roof/Dell_Childrens_Hospital_Case_Study.pdf
- **52.** World Economic Forum. New Karolinska Hospital. In: *Shaping the Future of Construction: Lessons from Leading Innovators and Disruptors*. Industry Agenda; 2017:19–24. Accessed July 2, 2020. http://www3.weforum.org/docs/WEF_Future_of_Construction_Softlaunch_Report_Jan2017.pdf
- **53.** Region Stockholm. Green Bonds. Om Region Stockholm. Accessed July 2, 2020. https://www.regionstockholm.se/en/investor-relations/green-bonds/
- **54.** Austin Area Sustainability Indicators. Climate and Community Resilience. Accessed December 30, 2021. http://www.austinindicators.org/project/climate-and-community-resilience/

- **55.** City of Austin. *Pedestrian Safety Action Plan*. 2018:1–98. Accessed June 17, 2024. https://www.austintexas.gov/sites/default/files/files/Transportation/Pedestrian_Safety_Action_Plan_1-11-18.pdf
- **56.** City of Austin Demographer. *Austin-Round Rock MSA*, 2015: Poverty Rates by Census Tract. Accessed December 30, 2021. https://www.austintexas.gov/sites/default/files/files/Planning/Demographics/MSA_ACS_2015_tracts_Poverty.pdf
- **57.** Calise TV, DeJong W, Heren T, Wingerter C, Kohl III HW. What "moves" the populations most likely to be physically inactive: Women and older adults? Evidence from Mueller, a mixed-use neighborhood in Austin, Texas. *Journal of Physical Activity and Health*. 2018;15(12):888–894. https://doi.org/10.1123/jpah.2017-0322
- **58.** Kramer A, Lassar T, Federman M, Hammerschmidt S. *Building for Wellness: The Business Case*. Urban Land Institute; 2014. Accessed August 18, 2020. https://uli.org/wp-content/uploads/ULI-Documents/Building-for-Wellness-The -Business-Case.pdf
- **59.** City of Denton, Texas. Denton Census Tract Planning Database. Published 2019. Accessed June 17, 2024. https://data-dentoncounty.hub.arcgis.com/datasets/census-tract-planning-database-2019/
- **60.** Huang TT-K, Sorenson D, Davis S, Frerichs L, Brittin J, Celentano J, et al. Healthy Eating Design Guidelines for School Architecture. *Preventing Chronic Disease* 2013;10:120084. http://dx.doi.org/10.5888/pcd10.120084

Chapter 5. Looking Ahead to the Future of Architectural Epidemiology

- **1.** United Nations. Paris Agreement. 2015. Accessed August 7, 2020. https://unfccc.int/process/conferences/pastconferences/paris-climate-change-conference-november-2015/paris-agreement
- Global Alliance for Buildings and Construction, International Energy Agency, United Nations Environment Programme. 2019 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector.; 2019. Accessed August 9, 2020. https://wedocs.unep.org/bitstream/handle/20.500.11822/30950/2019GSR.pdf
- 3. Frumkin H. Guest editorial: Health, equity, and the built environment. *Environmental Health Perspectives*. 2005;113(5): A290–A291. https://doi.org/10.1289/ehp.113-a290
- 4. America Is All In. Accessed December 29, 2023. https://www.americaisallin.com/
- 5. Bachir M, Hackett M. Decarbonization of Real Estate: End-to-End Business Transformation. Deloitte Responsible Business Blog. Published October 5, 2020. https://www2.deloitte.com/global/en/blog/responsible-business-blog/2020/decarbonization-of-real-estate.html
- 6. Botchwey N, Dannenberg AL, and Frumkin H, eds. *Making Healthy Places: Designing and Building for Well-Being, Equity, and Sustainability*. Second Edition. Island Press; 2022. https://islandpress.org/books/making-healthy-places-second-edition
- 7. Guidotti TL. Health and Sustainability: An Introduction. Oxford University Press; 2015.
- 8. Kopec D. Health, Sustainability and the Built Environment. Fairchild Books; 2008.
- 9. Kopec D, ed. Health and Well-Being for Interior Architecture. Routledge; 2017.
- 10. Guenther R, Vittori G. Sustainable Healthcare Architecture. 2nd Ed. John Wiley & Sons, Ltd.
- 11. Open Knowledge Foundation. US City Open Data Census. Accessed April 28, 2020. http://us-cities.survey.okfn.org
- 12. US Centers for Disease Control and Prevention. PLACES: Local Data for Better Health. https://www.cdc.gov/places/
- **13.** US Centers for Disease Control and Prevention. National Environmental Public Health Tracking Network. Accessed April 25, 2019. http://ephtracking.cdc.gov/
- 14. Tong Z, Chen Y, Malkawi A, Adamkiewicz G, Spengler JD. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. *Environment International*. 2016;89–90:138–146. https://doi.org/10.1016/j.envint.2016.01.016

Technical Appendices to Chapter 2

- **1.** Baum F, MacDougall C, Smith D. Participatory action research. *Journal of Epidemiology and Community Health*. 2006;80(10):854–857. https://doi.org/10.1136/jech.2004.028662
- 2. Minkler M. Using participatory action research to build healthy communities. *Public Health Reports*. 2000;115:191–197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1308710/pdf/pubhealthrep00022-0089.pdf
- 3. Center for Excellence in Assisted Living University of North Carolina Collaborative. *A Manual for Community-Based Participatory Research*. 2013:1–113. https://www.shepscenter.unc.edu/wp-content/uploads/2013/05/CEAL-UNC -Manual-for-Community-Based-Participatory-Research-1.pdf
- **4.** Holkup PA, Tripp-Reimer T, Salois EM, Clarann W. Community-based participatory research: An approach to intervention research with a Native American community. *Advances in Nursing Science*. 2004;27(3):162–175. https://doi.org/10.1097/00012272-200407000-00002
- 5. US Census Bureau. American Community Survey. Accessed April 30, 2020. https://www.census.gov/programs-surveys/acs
- 6. Duncan DT, Sharifi M, Melly SJ, et al. Characteristics of walkable built environments and BMI z-scores in children: Evidence from a large electronic health record database. *Environmental Health Perspectives*. 2014;122(12):1359–1365. https://doi.org/10.1289/ehp.1307704
- 7. Prudent N, Houghton A, Luber G. Assessing climate change and health vulnerability at the local level: Travis County, Texas. *Disasters*. 2016;40(4):740–752. https://doi.org/10.1111/disa.12177
- 8. US Centers for Disease Control and Prevention. *Cartographic Guidelines for Public Health.*; 2012:1–34. https://www.cdc.gov/dhdsp/maps/gisx/resources/cartographic_guidelines.pdf
- 9. Houghton A, Castillo-Salgado C. Analysis of correlations between neighborhood-level vulnerability to climate change and protective green building design strategies: A spatial and ecological analysis. *Building and Environment*. 2020;168: 106523. https://doi.org/10.1016/j.buildenv.2019.106523
- **10.** Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Medicine*. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097
- **11.** Tugwell P, Welch VA, Karunananthan S, et al. When to replicate systematic reviews of interventions: Consensus checklist. *British Medical Journal*. 2020;370:m2864. https://doi.org/10.1136/bmj.m2864
- **12.** Fisk WJ, Eliseeva EA, Mendell MJ. Association of residential dampness and mold with respiratory tract infections and bronchitis: A meta-analysis. *Environmental Health*. 2010;9:72. https://doi.org/10.1186/1476-069X-9-72
- 13. Minnesota Department of Health Climate and Health Program, Saint Paul-Ramsey County Public Health. An Assessment of Heat Vulnerability in Ramsey County. 2019:1–13. Accessed May 10, 2020. https://maps.umn.edu/climatehealthtool/heat_app/Heat%20Vulnerability%20Assessment%20Report_Final_11202019.docx
- **14.** Minnesota Department of Health. Minnesota Public Health Data Access Portal. https://apps.health.state.mn.us/mndata/
- **15.** Houghton A. *Central Corridor Workshop: Using Health Data as a Design Tool.* Prepared for the Minnesota Pollution Control Agency; 2014:1–38. Accessed May 10, 2020. http://biositu.com/documents/MPCA-Central%20Corridor%20Workshop-Using%20Health%20Data%20as%20a%20Design%20Tool-2014.pdf
- **16.** Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *British Medical Journal*. 2021;372:n71. http://dx.doi.org/10.1136/bmj.n71