
Solutions to Problems and Projects for Chapter 8

8.1. The number of bacteria in the culture is expressed by the function y(t) = y0e
µt where µ is

the growth constant and y0 is the initial number of bacteria in the culture. We are given that
y(4) = 4000, y(7) = 62,000 and y(8) = 154,000. The average rates of change in the number
over the time intervals [4, 7] and [7, 8] are 62,000−4000

3
≈ 19,333 and 154,000−62,000

1
= 92,000

bacteria per hour. Since 4000 = y0e
4µ and 62,000 = y0e

7µ, it follows that e3µ = e7µ

e4µ
=

62,000
4000

= 15.5. So 3µ = ln(e3µ) = ln 15.5. So µ ≈ 0.9136. Since y0 = 4000
e4µ
≈ 4000

e4(0.9136)
≈ 103.5.

Therefore y(t) ≈ 103.5e0.9136t. Checking this equation against what we already know, we get
y(7) ≈ 103.5e(0.9136)7 ≈ 61,990 and y(8) ≈ 103.5e(0.9136)8 ≈ 154,570.

8.2. i. We know that the equality µ = ln 2
d

relates the growth constant µ to the doubling time
d. Since the hour is the relevant unit of time later in the problem and 15 minutes = 0.25

hour, µ ≈ 0.693
0.25

= 2.772 and hence y(t) ≈ 20,000e2.772t.

ii. Setting 20,000e2.772t = 1,000,000,000 = 109, we get e2.772t = 50,000, hence 2.772t ≈
ln 50,000 and therefore, t ≈ ln 50,000

2.772
≈ 3.90 hours.

iii. Taking t = 6 in the formula derived in i), we get y(6) ≈ 20,000e(2.772)6 ≈ 3.34× 1011.

8.3. i. Since y0 = 10,500, y(t) = 10,500eµt, where µ is the growth constant. Setting 10,500eµ·2 =

23,000, we get e2µ = 23,000
10,500

≈ 2.1905, and hence 2µ ≈ ln 2.1905 ≈ 0.7841. So µ ≈ 0.3921

and hence y(t) ≈ 10,500e0.3921t.

ii. y(3) ≈ 10,500e(0.3921)3 ≈ 34,000.

iii. With 10,500e0.3921t = 130,000, we get e0.3921t = 130,000
10,500

≈ 12.3810. Therefore 0.3921t ≈
ln 12.3810 and hence t ≈ 6.42 hours.

8.4. We know that y0 = 5000 and that y′(2) = 10,000 cells per hour. Since y′(t) = µy(t) = µy0e
µt,

we get 10,000 = µ5000e2µ. Therefore 2
µ

= e2µ. So the µ that we are looking for is the x-
coordinate of the point of intersection of the graphs y = e2x and y = 2

x
as the hint suggested.
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Rough sketches of the two graphs are drawn in the figure above. It follows from the figure
that the x-coordinate x0 of the point of intersection satisfies 0.5 < x0 < 1. After some
experimenting, you will find that e2(0.6) = e1.2 ≈ 3.32 and 2

0.6
≈ 3.33, so that x0 is close to

(and a little greater than) 0.6. The graphing calculator

https://www.desmos.com/calculator

applied to f(x) = e2x− 2
x
tells us that this function is zero for x0 ≈ 0.6011, so that µ ≈ 0.6011

is a tight approximation of µ in the unit 1/hour.

8.5. We are given that y0 = 75,000 and that y′(1) = 24(150,000) ≈ cells per day. Since y′(t) =

µy(t) = µy0e
µt, we get 24(150,000) = µ75,000eµ, so that 48

µ
= eµ. The µ we are looking for

is the x-coordinate x0 of the point of intersection of the graphs y = ex and y = 48
x
. Since

e2 ≈ 7.39 and 48
2

= 24 and e3 ≈ 20.09 and 48
3

= 16, this x-coordinate satisfies 2 < x0 < 3. Since
e3 ≈ 20.09 and 48

3
= 16 are close, let’s try x0 = 2.9. Since e2.9 ≈ 18.17 and 48

2.9
≈ 16.55, these

values are closer than before. Repeating with x0 = 2.8, we get e2.8 ≈ 16.44 and 48
2.8
≈ 17.14.

Our numerical experiments have shown that x0 satisfies 2.8 < x0 < 2.9. The graphing
calculator already referred to tells us that ex − 48

x
has a zero very close to x0 = 2.8307. So

µ ≈ 2.8307 in the unit 1/day.

8.6. i. The decay constant is λ = ln 2
h
≈ 0.693

138
≈ 0.0050 in the unit 1/day.

ii. Since 1 milligram = 1
1000

gram, Avogadro’s number tells us that the sample consists of
about 30

1000
· 1
210

(6.02× 1023) ≈ 2.87× 1021 atoms.

iii. Taking y0 = 2.87 × 1021 and λ ≈ 0.0050 in the expression y(t) = y0e
−λt, we get y(t) ≈

(2.87× 1021)e−(0.005)t.

iv. Since 6 weeks have 42 days, the sample will have y(42) ≈ (2.87 × 1021)e−(0.005)42 ≈
(2.87× 1021)0.81 ≈ 2.33× 1021 polonium-210 atoms.

8.7. i. The half-life that corresponds to the decay constant 0.18 1/day is h = ln 2
0.18
≈ 0.693

0.18
= 3.85

days or 92.4 hours.

ii. Setting y0e−0.18t = 0.9y0, we get −0.18t = ln 0.9 and hence that t ≈ ln 0.9
−0.18 ≈ 0.585 days

or about 14 hours.

iii. With y0e−0.18t = 1
3
y0, we get −0.18t = ln 3−1 = − ln 3. So t = ln 3

0.18
≈ 6.1 days.

8.8. Let a representative measurement be taken at time t = 0. So y′(0) = −3.7×1010 atoms/second
and using Avogadro’s number y(0) ≈ 1

226
(6.2 × 1023) ≈ 2.66 × 1021 atoms. The relationship

y′(t) = −λy(t) with t = 0, implies that λ ≈ 3.7×1010
2.66×1021 ≈ 1.39 × 10−11 in the unit 1/second.

Therefore h = ln 2
λ
≈ 0.693

1.39
× 1011 ≈ 4.99× 1010 seconds. Since 1 year has (3600)(24)(365.25) ≈

3.156× 107 seconds, it follows that h ≈ 1580 years.

8.9. Given the information supplied, we’ll let the minute be our unit of time and let t = 0 at the
time of the 8:00 a.m. measurement. Using the equation y′(t) = −λy(t) = −λy0e−λt with
t = 0, we get −3200 = −λy0. Therefore y′(t) = −3200e−λt. The 5 p.m. measurement tells
us that −900 = −3200e−(9·60)λ = −3200e−540λ. Therefore −540λ = ln 900

3200
≈ −1.269, so that

λ ≈ 2.35 × 10−3 in the unit 1/minute. Because h = ln 2
λ
, we get h ≈ 0.693

2.35
× 10−3 minutes

2



or h ≈ (0.693
2.35
× 10−3)60 ≈ 0.0177 seconds. This corresponds most closely to the radioactive

isotope boron-13.

8.10. The average cost per unit is the function C(x)
x

of the production level x. If this is equal to a
constant, say, A, then C(x) = Ax. It follows that the marginal cost C ′(x) is also equal to A.

8.11. i. With a marginal cost of C ′(x) = 0.000012x2 − 0.002x + 2800, the cost function C(x) =

0.000004x3 − 0.001x2 + 2800x + C0, where C0 is the fixed cost. Since C(10,000) =

39,476,000 dollars (the value C(10,000) = 39,476 given in the problem is in error), we
get that

39,476,000 = 0.000004(10,000)3 − 0.001(10,000)2 + 2800(10,000) + C0,

so that C0 = 7,576,000 dollars.

ii. Since the revenue from the sale of x units is R(x) = px with p = 6652 dollars, the profit
from these sales is P (x) = R(x)− C(x) = 6652x− C(x) dollars.

iii. At the production level x that provides the maximal profit, P ′(x) = R′(x)− C ′(x) = 0.
Solving P ′(x) = 6652 − C ′(x) = −0.000012x2 + 0.002x + 3852 = 0 with the quadratic

formula, gives us x =
−0.002±

√
(0.002)2+(0.000048)(3852)

−0.000024 = −0.002±0.43
−0.000024 . Since x is positive, −0.43

is the only option and we get x = 0.432
0.000024

= 18,000 units as the production level that
yields the maximum profit. (Considering P (x) as an abstract function and observing
that P ′(0) = 3852 > 0 and P ′(x) < 0 for x very large, tells us that P has a maximum
at x = 18,000.) The average cost per unit at a production level of x = 18,000 units is
C(18,000)
18,000

= 0.000004(18,000)3−0.001(18,000)2+2800(18,000)+7,576,000
18,000

= 80,980,000
18,000

= 4499 dollars.

iv. Since P (18,000) = 6652(18,000) − C(18,000) = 119,736,000 − 80,980,000 = 38,756,000,
the maximum profit is 38,756,000 dollars.

8.12. Note that CF = a = 8 and BC = c = 10. Therefore EC = x = a
4c

(
a +
√
a2 + 8c2

)
=

8
4·10

(
8 +

√
82 + 8(102)

)
≈ 7.48. So EF 2 = 82 − x2 ≈ 82 − 7.482 ≈ 8.05 and EF ≈ 2.84.

Similarly, BF 2 = BE2 + EF 2 ≈ (10 − x)2 + 8.05 ≈ (10 − 7.48)2 + 8.05 ≈ 14.40, so that
BF ≈ 3.79. It follows that tan θ1 = EF

BE
≈ 2.84

10−7.48 ≈ 1.13, so that θ1 = tan−1 1.13 ≈ 48.49◦.
In the same way, tan θ2 = EF

x
≈ 2.84

7.48
≈ 0.38, and therefore, θ2 = tan−1 0.38 ≈ 20.81◦. (The

inverse trig functions will be discussed in Section 9.9.1. For now, regard tan−1 as the button
on a calculator that tells us for a given number tan θ what the corresponding angle θ is.)

8.13. Since W = 150 pounds, we know that T1 = W = 150 pounds. Since T2 cos θ2 = T1 cos θ1,
T2 = 150 cos θ1

cos θ2
≈ 150 cos 48.49◦

cos 20.81◦
≈ 106.35 pounds.

8.14. Recall that a < c. So if ∆BCF is isosceles, then either BF = c or BF = a. Suppose that
BF = c. It follows that c2 = BE2+EF 2 = (c−x)2+(a2−x2). So c2 = c2−2cx+x2+a2−x2,
hence 2cx = a2, and therefore x = a2

2c
. Since we know that x = a

4c

(
a +
√
a2 + 8c2

)
=

a2

4c
+ a

4c

√
a2 + 8c2, it follows that a

4c

√
a2 + 8c2 = a2

4c
. Therefore,

√
a2 + 8c2 = a, but this is

clearly impossible.

So if ∆BCF is isosceles, then BF = a. So the angles at B and C in Figure 8.3 are
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equal. This means that the triangles ∆BEF and ∆CEF are congruent. Hence c − x =

BE = EC = x, and therefore x = c
2
. Since x = a

4c
(a +

√
a2 + 8c2), it follows that c

2
=

a
4c

(a +
√
a2 + 8c2). By easy algebra, 2c2 − a2 = a

√
a2 + 8c2 and 2c2

a
− a =

√
a2 + 8c2. By

squaring both sides,4c4
a2
− 4c2 + a2 = a2 + 8c2. So 4c4

a2
= 12c2, hence c2

a2
= 3, so that finally

a = c√
3
. A second argument goes as follows. Since BF = a, the angles θ1 and θ2 are equal.

It follows from Section 8.2.2 that 2 tan θ1 = tan θ1 + tan θ2 = 1
cos θ1

. So 2 sin θ1
cos θ1

= 1
cos θ1

and
therefore, 2 sin θ1 = 1. So sin θ1 = 1

2
and hence θ2 = θ1 = 30◦. Applying the law of sines to

the triangle ∆BCF , shows that sin 120◦

c
= sin 30◦

a
and hence that a = c√

3
.

8.15. The assumption that the angle at F is a right angle and the Pythagorean theorem together
imply that BF 2+a2 = c2 and hence that (c−x)2+(a2−x2)+a2 = c2. So c2−2cx+2a2 = c2. So
2cx = 2a2 and x = a2

c
. Therefore, a2

c
= a

4c
(a+
√
a2 + 8c2). It follows that 4a = a+

√
a2 + 8c2,

hence 9a2 = a2 + 8c2, and therefore a = c. But this was ruled out early in the analysis of
L’Hospital’s pulley problem.

8.16. The pull T1 of cable CA at C has horizontal component T1 cosα and vertical component
T1 sinα. Similarly, the pull T2 of cable CB at C has horizontal component T2 cos β and
vertical component T2 sin β. The assumption that this weight-cable system is in equilibrium
tells us that the horizontal forces at C and the vertical forces at C are in balance. Therefore

T1 cosα = T2 cos β and T1 sinα + T2 sin β = W.

Since T2 = T1
cosα
cosβ

, we get T1 sinα+ T1
cosα
cosβ

sin β = W. It follows that T1
(

sinα+ cosα
cosβ

sin β
)

=

W . Hence T1 and T2 can be expressed in terms of α, β, and W as follows

T1 = W(
sinα+ cosα

cos β
sinβ
) and T2 = cosα

cosβ
W(

sinα+ cosα
cos β

sinβ
) .

8.17. Since sinα+ cosα
cosβ

sin β = sinα cosβ+cosα sinβ
cosβ

and cos β
(

sinα+ cosα
cosβ

sin β
)

= cos β sinα+cosα sin β,
we get by inserting the law of sines and a little algebra into the conclusion of Problem 8.16,
that

T1 =
W cos β

sin(α + β)
and T2 =

W cosα

sin(α + β)

as required. If the weight W is attached to a pulley wheel at C that is free to move along
the cable, then the tensions T1 and T2 in the cable segments AC and CB are free to adjust
until they are equal. Once T1 = T2 is achieved, the equality T1 cosα = T1 cos β tells us that
cosα = cos β. The graph of the cosine function (see Figure 4.24) and fact that the angles α
and β are both between 0◦ and 90◦ imply that α = β. So the triangle ∆ABC is isosceles and
AC = CB.

8.18. With W = 160 pounds, α = 10◦ and β = 5◦,

T1 =
W cos β

sin(α + β)
=

160 cos 5◦

sin 15◦
≈ 615.84 and T2 =

W cosα

sin(α + β)
=

160 cos 10◦

sin 15◦
≈ 608.80

both in pounds. With W = 200 pounds, α = 4◦ and β = 2◦,

T1 =
W cos β

sin(α + β)
=

200 cos 2◦

sin 6◦
≈ 1912.19 and T2 =

W cosα

sin(α + β)
=

200 cos 4◦

sin 6◦
≈ 1908.69
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in pounds. The message is that a modest weightW , when suspended as Figure 8.46 illustrates,
can generate great tensions in the cable that carries it, if the angles α and β that the cable
makes with the horizontal are small.

8.19. The figure below highlights the relevant geometry of the segment AC of the cable in the
situation the problem describes. Observe that tanα = 0.15

5
, so that α = tan−1

(
0.15
5

)
≈ 1.72◦.

5 mA

C

0.15 m

α

With β the analogous angle at the point B, tan β = 0.15
15

, so that β = tan−1
(
0.15
15

)
≈ 0.57◦. It

follows from one of the formulas of Problem 8.17 that the ratio of the tension T in the cable
segment AC to the weight W of the clown is

T

W
=

cos β

sin(α + β)
≈ cos 0.57◦

sin 2.29◦
≈ 25.

8.20. Let T be the tension in the string. Consider the right triangle formed by the string, the
vertical wall, and the horizontal segment from the center of the sphere to the wall. Using it,
we see that the horizontal and vertical components of T are T sinα and T cosα, respectively.

i. The vertical component T cosα of the tension counterbalances the weight of the sphere.
Since the weight of the sphere is (9.8)(12) = 117.6 newtons, T cosα = 117.6 and hence
T = 117.6

cosα
newtons.

ii. This force balances the horizontal component T sinα of the tension T . So is equal to
F = T sinα = 117.6

cosα
(sinα) = 117.6 tanα newtons.

iii. T = 117.6
cos 15◦

≈ 121.75N and F = 117.6 tan 15◦ ≈ 31.51N.

The fact that the diameter of the sphere is 20 cm plays no role in the solution.

8.21. The figures below show cross sections of the surface of the water and the submerged part of
the boat. The weight of the boat is denoted by W . The weight and volume of the bowling
ball are denoted by wb and vb, respectively. In figure (a) the bowling ball is on board and in
figure (b) it is shown overboard and under water. Let V1 be the volume added to the volume

W + w
b W 

(a)           (b)

of water in the lake in situation (a) and let V2 be the volume added to the lake in situation (b).
In each case, the added volume is equal to the volume of water displaced. We’ll use the units
pounds and cubic feet. Archimedes’s law of hydrostatics tells us that the buoyant force on the
boat (that balances its full weight) is equal to the weight of the water that the boat displaces.

5



Applied in case (a) this tells us that V1 · 62.5 = W + wb. So V1 = W+wb
62.5

. In case (b) it tells
us that V2 = W

62.5
+ vb. Because the ball is sinking, the buoyant force of 62.5vb pounds on the

bowling ball is less than its weight wb. So vb < wb
62.5

. Therefore V1 = W
62.5

+ wb
62.5

> W
62.5

+vb = V2.

It follows that more water is displaced in situation (a) than is situation (b) so that the water
level of the lake will drop after the ball is thrown overboard. So Marilyn had it right.

8.22. By Archimedes’s law, the weight of the basketball is equal to the weight of the water that
it displaces. To compute the weight of the water that is displaced, we need to compute the
volume of the water that is displaced. Let h be the vertical distance from the bottom of
the submersed part of the ball to the water surface. Notice that this volume is obtained by
rotating one revolution about the x axis the part of the circle of radius r centered at the origin

h

0 rr−h x

y

that lies over the interval [r − h, r]. See the two figures above. As in previous situations, the
units are pounds and feet. By the volume formula of Section 5.9 this is equal to∫ r

r−h
πf(x)2dx

with f(x) =
√
r2 − x2, the function whose graph is the top half of the circle. Observe that∫ r

r−h
π(r2 − x2) dx = π

∫ r

r−h
(r2 − x2) dx = π(r2x− x3

3
)
∣∣r
r−h

= π
(
r3 − r3

3
− (r2(r − h)− (r−h)3

3
)
)

= π
(
− r3

3
+ r2h+ 1

3
(r3 − 3r2h+ 3rh2 − h3)

)
= π

(
r2h− r2h+ rh2 − 1

3
h3
)

= π
(
rh2 − 1

3
h3
)
.

It follows that the weight of the volume of water that the ball displaces is

62.5π
(
rh2 − 1

3
h3) pounds.

Since this is equal to the weight of the basketball, we get that 62.5(πrh2 − π
3
h3) = 1.3 or,

equivalently, that πrh2 − π
3
h3 = 0.0208 . Inserting r = 0.39 and rounding off to three decimal

accuracy gives us
1.047h3 − 1.225h2 + 0.021 = 0.

We now let f(x) = 1.047x3 − 1.225x2 + 0.021 and apply Newton’s method (segment 7O of
the Problems and Projects section of Chapter 7) to find the h with f(h) = 0 that we need.
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Notice that f ′(x) = 3.141x2 − 2.450x. Let’s start with the guess c1 = 0.39, the radius of the
circle. With this c1 we get

c2 = 0.39− f(0.39)
f ′(0.39)

= 0.39− 0.103216
0.477754

= 0.173956.

Next,

c3 = 0.173956− f(0.173956)
f ′(0.173956)

= 0.173956− 0.010558
0.331143

= 0.142072, and

c4 = 0.142072− f(0.142072)
f ′(0.142072)

= 0.142072− 0.000724
0.284678

= 0.139530.

Plugging x = 0.139530 into f(x) gives us f(0.139530) = 0.000005 ≈ 0. Rounding off to the
two significant figures that parallels the data gives h = 0.14.

If you have any energy left, you can check that the convergence of Newton’s method in this
example follows the second case of Problem 7.91i.

The theory of the suspension bridge relies on the crucial assumption that the vertical load at
any point on the bridge is constant over the length of the bridge. In the theory of Section 8.3, w
is taken to be the maximum weight (dead load plus maximum live load) per foot that the bridge
needs to support distributed over the number of cables. This is the w relevant for determining the
greatest loads, tensions, and compressions that the structure is subject to. However, the analysis of
the bridge applies to any w so that w could be the weight per foot (distributed over the number of
cables) in the situation of zero live load, maximum live load, or anything in between. The theory
applies to any situation of a cable under constant vertical load (under the assumption that the cable
is completely flexible—there is no resistance to bending it—and inelastic—it does not get longer
when stretched).

8.23. The figure below shows the clothesline that has been described. The birds weigh a total of
50 · 14

16
= 43.75 pounds. So the vertical load on the clothesline is w = 43.75

30
≈ 1.458 pounds per

foot. Taking d = 15 feet to be half the distance between the two supporting poles and s = 0.5

feet, we get by applying two formulas from Section 8.3, that the maximum and minimum

BA

C

30 feet

tensions in the line are

Td = wd
√(

d
2s

)2
+ 1 ≈ (1.458)(15)

√
(15
1

)2 + 1 ≈ 328.78 pounds and

T0 = 1
2
wd2

s
≈ 1

2
(1.458)(152)

1
2

≈ 328.10 pounds.
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8.24. Our peace corps volunteer begins by thinking about the dead and live loads that the bridge
would have to support. He knows that 60 boards are needed for the footpath so that their
total weight would be 600 pounds. He also knows that the two heavy ropes that will carry the
bridge need to be secured several feet beyond the edge of the gorge so that they would each be
about 110 feet long. Knowing that the heavy rope that he used for his fitness workouts back
in the U.S. weighs close to 1 pound per foot, he estimated that the ropes would add about
220 pounds to the dead load of the bridge. Adding this to the weight of the 60 boards and an
estimated 4(60) = 240 pounds for the vertical cords that will hold them, he approximates the
dead load of the bridge to be 220+10(60)+4(60) = 1060 pounds. Given what he knows about
the carrying capacity that the bridge is to have, the peace corps volunteer gets the estimate
of w = 1060+3900

2·90 ≈ 4960
180
≈ 28 pounds/foot per heavy rope for the dead plus maximum live

load of the bridge. He estimates the sag of the span to be 10 feet. Knowing that half the

span is d = 90
2

= 45 feet, he can apply the formula Td = wd
√(

d
2s

)2
+ 1 to derive the estimate

Td = (28)(45)
√

(45
20

)2 + 1 ≈ 3100 pounds for the maximum tension that the heavy ropes
would be subjected to. Stipulating that these ropes would have a circular cross-section of
radius about 2 inches, our peace corps volunteer—with safety factor considerations in mind—
recommended that the ultimate strength of these ropes should exceed 3100

4π
≈ 250 pounds per

square inch by a factor of about two.

8.25. The information implies that w = 8680+4000
2

= 12,680
2

= 6340, d = 1400, and s = 280 with
respect to the units pounds and feet. The maximum tension on a main cable is Td =

wd
√(

d
2s

)2
+ 1 ≈ (6340)(1400)

√(
1400
560

)2
+ 1 ≈ 23,900,000 pounds. Since tanα = 2s

d
= 560

1400
=

0.4, we get α = tan−1 0.4 ≈ 21.80◦. The compression by one cable over the center span on
each tower is Td sinα ≈ (23,900,000) sin 21.80◦ ≈ 8,875,000 pounds.

8.26. We know that the dead load per cable is 20,170
2

= 10,085 pounds per foot and that the dead
plus live load per cable is 20,170+4000

2
= 20,170+4000

2
= 24,170

2
= 12,085 pounds per foot. From the

given, d = 2100, and s = 470. So under dead load only,

Td = wd
√(

d
2s

)2
+ 1 ≈ (10,085)(2100)

√(
2100
940

)2
+ 1 ≈ 51,800,000 pounds.

In the same way, for the dead plus live loads

Td = wd
√(

d
2s

)2
+ 1 ≈ (12,085)(2100)

√(
2100
940

)2
+ 1 ≈ 62,100,000 pounds.

The 54,000,000 and 64,100,000 pounds for the tensions listed in the statement of the prob-
lem refer to the values that predate the structural work on the Golden Gate that lightened
its deck.

8.27. Notice that w = 37,000+4800
4

= 10,450, d = 2130, and s = 385. Thus, Td = wd
√(

d
2s

)2
+ 1 ≈

6.55× 107 pounds. The angle α satisfies tanα = 2s
d
≈ 0.36, so that α ≈ tan−1 0.36 ≈ 19.88◦.

The compression produced by all four cables is 4Td sinα ≈ 8.91× 107 pounds.

8.28. Since d = 1990
2
≈ 995 m and s ≈ 201 m, we get that tanα = 2s

d
≈ 402

995
≈ 0.40, and hence

α ≈ tan−1 0.40 ≈ 22.0◦. The information given implies that the maximal tension Td satisfies
4Td sinα ≈ 980,000,000 newtons, and hence that
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Td ≈ 980,000,000
4 sin 22◦

≈ 654,000,000 newtons.

The formula Td = wd
√(

d
2s

)2
+ 1 implies that w ≈ 245,000 N/m.

8.29. Since θ(t) = t3

125
+ t

5
, it follows that the angular velocity and angular acceleration at any

time t are ω(t) = θ′(t) = 3
125
t2 + 1

5
and α(t) = θ′′(t) = 6

125
t, respectively. Note that θ(10) =

1000
125

+ 2 = 10 radians and that the average angular velocity from time t = 0 to time t = 10 is
θ(10)−θ(0)

10
= 1

10
((1000

125
+ 2)− 0) = 10

10
= 1 radian per second. At the instant t = 10, the angular

velocity is ω(10) = 300
125

+ 1
5

= 2.6 radians per second. The average acceleration from time t = 0

to time t = 10 is ω(10)−ω(0)
10

= 1
10

((300
125

+ 1
5
)− 1

5
) = 30

125
= 0.24 radians per second2. Finally, the

angular acceleration at t = 10 is α(t) = 60
125

= 0.48 radians per second2.

8.30. i. Refer to Figure 8.50b. The circle on which the graph of the function y = f1(x) lies has
radius r and center (− r

2
, 0). A look at the graph tells us the following. Since the segment

[− r
2
, r
2
] on the x-axis is a radius of the circle, the tangent to the circle at the point ( r

2
, 0)

is vertical. In addition, the slopes of the tangents to the graph of y = f1(x) are all
negative and the slope at the point (0, f1(0)) is the smallest of these negative numbers.
The equation of the circle is (x + r

2
)2 + y2 = r2 and hence y2 = r2 − (x2 + rx + ( r

2
)2).

Solving for y with y ≥ 0, we get y =
√

3
4
r2 − x2 − rx. So f1(x) = (3

4
r2 − x2 − rx)

1
2

with 0 ≤ x ≤ r
2
. It follows that f ′1(x) = 1

2
(3
4
r2 − x2 − rx)−

1
2 (−2x − r) =

−x− r
2

( 3
4
r2−x2−rx)

1
2
.

Taking x = 0 tells us that the slope of the tangent of the graph of y = f1(x) at the point
(0, f1(0)) = (0,

√
3
2
r) is −

r
2√
3

2
r

= −1√
3
. The assertion about the bounds on the derivative f ′1(x)

has now been verified.
Let’s consider the function y = f2(x) with domain [−r

2
, r
2
] next. Its graph lies on the

circle of radius r and center the point (0, f1(0)) = (0,
√
3
2
r). A look at Figure 8.50b tells

us that the graph of y = f2(x) has its smallest (negative) slope at x = −r
2

and its largest
slope at x = r

2
. The equation of the circle is x2 +(y−

√
3
2
r)2 = r2. So (y−

√
3
2
r)2 = r2−x2

and hence y −
√
3
2
r = ±

√
r2 − x2. The fact that y ≤ 0 for all y-coordinates of y = f2(x),

tells us that y =
√
3
2
r −
√
r2 − x2. So f2(x) =

√
3
2
r − (r2 − x2) 1

2 with −r
2
≤ x ≤ r

2
. Using

the chain rule, we get f ′2(x) = −1
2
(r2 − x2)− 1

2 (−2x) = x(r2 − x2)− 1
2 . So the slope of the

graph at the point (−r
2
, 0) is −r

2
(r2 − r2

4
)−

1
2 =

−r
2

( 3r
2

4
)
1
2

= −1√
3
and the slope of the graph at

the point ( r
2
, 0) is 1√

3
. This verifies the asserted bounds on f ′2(x). The remaining case of

the function f3(x) is very similar to that of f1(x).

ii. Observe that the slopes of the tangents to the graph of f1(x) decrease over its domain
[0, r

2
] because they get more and more negative for increasing x. (This conclusion is

confirmed by the fact—easily established—that f ′′1 (x) is negative.) The slopes of the
tangents to the graph of f2(x) increase over [−r

2
, r
2
] because for increasing x the slopes

become less negative and (after x = 0) more and more positive. (The fact that f ′′2 (x) is
positive confirms this.) For the graph of f3(x) over [−r

2
, 0], the slopes are positive but

decreasing for increasing x. These observations in combination with the inequalities of

9



(i) tell us that no two tangent lines to the curve of Figure 8.50b have the same slope.
Therefore no matter where the point P is chosen, the parallel line L′ cannot be tangent
to the curve but must go through one of the vertices. So the point P ′ is a vertex. Now
turn to Figure 8.51 and observe that since L′ touches the curve at only one point, this
vertex cannot be an endpoint of the arc on which P lies. It follows that P ′ is the center
of the circle of the arc on which P lies.

iii. It follows from part (ii) that P ′P is a radius of the circle on which P lies. Since L is
tangent to the circle at P , this radius is perpendicular to L. Note also that the distance
between P and P ′ is r.

8.31. Since A′B = A′C,BA = CA, and the angle ∠A′BA is equal to the angle at C, it follows that
the triangles ∆AA′B and ∆AA′C are congruent. It follows that ∠BA′A = ∠CA′A so that
both angles must be right angles, and also that ∠BAA′ = ∠CAA′ so that AA′ bisects ∠BAC.

8.32. Let’s denote by O the center of the figure depicted as rolling on the horizontal plane of Figure
8.52. Considering Figures 8.52 and 8.53a together tells us that the distance from O to this
plane is least when the triangle within the rolling figure is positioned as in Figure 8.53a and
greatest when this triangle is obtained from Figure 8.53a by a 180◦ rotation. To compute
the greatest distance from O to the horizontal plane, we need to compute the distance CM
of Figure 8.53a. Note that CM = AM = 2

3
AA′. (See the information provided for Problem

8.31.) By the Pythagorean theorem, (AA′)2 + (A′B)2 = (AA′)2 + 1 = (AB)2 = 22 and hence
that AA′ =

√
3. So CM = 2

3

√
3. When O is at its lowest point, its distance above the

horizontal plane is 2− 2
3

√
3.

The next several problems rely on results and formulas developed in Sections 8.4.1, 8.4.2,
and 8.4.3.

8.33. i. The magnitude of the force that drives the ice cube is mg sin β = 0.25(9.81) sin 15◦ ≈
0.625 N and that driving the ball is 5

7
mg sin β ≈ 5

7
(0.625) ≈ 0.453 N.

ii. The acceleration of the ice cube is g sin β = (9.81) sin 15◦ ≈ 2.539 m/s2 and that of the
ball is 5

7
g sin β = 5

7
(2.539) ≈ 1.814 m/s2.

iii. We’ll assume that the ball starts from rest at the top of the 5 m long plane. With h the
plane’s height, sin β = sin 15◦ = h

5
, so that h = 5 sin 15◦ ≈ 1.294 m. The ball’s velocity

at the bottom of the plane is v(tb) =
√

10
7
gh ≈

√
10
7

(9.81)(1.294) ≈ 4.258 m/s. Since
r = 0.06 meters is the radius of the ball, its angular velocity at the bottom of the plane
is w = v

r
≈ 4.258

0.06
≈ 70.967 radians/second. Since 1 revolution corresponds to 2π radians,

this is equivalent to 70.967
2π
≈ 11.295 revolutions per second.

iv. The time at which the rolling ball reaches the bottom of the plane is tb =
√

14h
5g

1
sinβ
≈√

14(1.294)
5(9.81)

1
sin 15◦

≈ 2.348 seconds. By using (ii), we get that after time t the velocity
of the ice cube (also assumed to start from rest at the top of the plane) is v(t) =

(g sin β)t = (9.81)(sin 15◦)t m/s and, in turn, that its distance from the top of the plane
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is p(t) = 1
2
(g sin β)t2 = 1

2
(9.81)(sin 15◦)t2 meters. Setting 1

2
(9.81)(sin 15◦)t2 = 5 and

solving for t, we get t =
√

2·5
9.81 sin 15◦

≈ 1.985 seconds for the time it takes for the ice cube
to reach the bottom.

v. At the instant t ≈ 1.985 seconds at which the ice cube reaches the bottom, the ball is
p(1.985) =

(
5g
14

sin β
)
1.9852 ≈ 3.573 meters down the plane. So the ice cube wins by

about 1.4 meters.

8.34. As before, let the ball start at the top of the inclined plane at time t = 0. Consider the rolling
ball at any time t thereafter and refer to Section 8.4.3.

i. Since v(t) =
(
5g
7

sin β
)
t and

√
p(t) =

√
5g
14

sin β t, we get v(t)√
p(t)

=
5g
7

sinβ√
5g
14

sinβ
so that v(t)

and
√
p(t) are proportional with

5g
7

sinβ√
5g
14

sinβ
= 5g

7

√
14
5g

√
sin β =

√
10g√
7

√
sin β the constant of

proportionality.

ii. Combining formulas, we get that p(t)−p(0)
t

= p(t)
t

=
(
5g
14

sin β
)
t = 1

2
v(t).

iii. Let h(t) be the amount of the vertical drop of the ball during its motion from t = 0 to
t. Note that sin β = h(t)

p(t)
and p(t) = (5g

14
sin β)t2, so that h(t) = p(t) sin β = (5g

14
sin2 β)t2.

So
√
h(t) =

√
5g
14

(sin β)t and hence (sin β)t =
√

14
5g

√
h(t). It follows that

v(t) = (5g
7

sin β)t = 5g
7

√
14
5g

√
h(t) =

√
52g2·14
72·5g

√
h(t) =

√
10g
7

√
h(t).

So v(t) depends only on h(t) (and the gravitational constant g).

iv. Up to now it was assumed that the ball starts from rest. We’ll now assume that it starts
from the top of the plane with an initial velocity of v0 and show that its velocity at the
bottom of the plane depends on v0 together with its vertical distance of fall. Starting with
the acceleration a = 5g

7
sin β of the ball, we see that its velocity is v(t) = (5g

7
sin β)t+ v0

and its position relative to the top of the plane is p(t) = (5g
14

sin β)t2 + v0t. Since sin β =
h(t)
p(t)

, it follows that h(t) = p(t)(sin β). So h(t) = 5g
14

(sin2 β)t2 + v0(sin β)t and hence
5g
14

(sin2 β)t2 + v0(sin β)t− h(t) = 0. By an application of the quadratic formula we get

(sin β)t =
−v0 ±

√
v20 + 4 · 5g

14
· h(t)

5g
7

.

Since sin β and t are both positive, the + option applies and it follows that (5g
7

sin β)t =√
v20 + 10g

7
h(t)− v0 . After inserting this into the earlier formula for v(t) we see that

v(t) = (5g
7

sin β)t+ v0 =
(√

v20 + 10g
7
h(t)− v0

)
+ v0 =

√
v20 + 10g

7
h(t).

The assertion made in part (iv) of the problem is a direct consequence of this formula.

8.35. Consider the ramps of Figures (a), (b), and (c). Figure (a) is the ramp on the left of Figure 8.55
and Figure (c) is the curving ramp on the right of Figure 8.55. The ramp (b) in the middle
is composed of a sequence of straight, slanting segments that are determined by parallel lines

11



chosen in such a way that the sequence of segments closely approximates the curving ramp (c).
Given this close approximation, it follows that a ball rolling down from rest on ramp (b) will
develop approximately the same speed at the bottom as the ball rolling down from rest on the
curving ramp (c). By dividing the curve (c) more and more finely, the approximation of ramp
(c) by ramp (b)—and hence the approximation of the two speeds at the bottom of the two
ramps—can be made as tight as one would like. Focusing on ramp (b), notice that each small
slanting segment and the two parallel lines that define it, determine a small inclined plane on
ramp (a). Since the parallel lines are horizontal, the heights of corresponding inclined planes

(a)           (b)           (c)

on (b) and (a) are the same. By applying part (iv) of Problem 8.34 to each pair of corre-
sponding small inclined planes from the top down, it follows that two balls starting from rest
at the top of ramps (b) and (a) will reach the respective bottoms with the same final speed.
We can now conclude that that if two balls start from the top of the ramps of Figures (a) and
(c) from rest, then they will reach the bottom of these ramps with the same final speed.

8.36. Regard the mirror to be an inclined plane as depicted in Figure 8.56 and let β be the angle of
inclination. Label the axis pointing across the rising mirror as x-axis and the one pointing up
in the direction of the rise as y-axis. As was done in Section 6.7 we’ll conceive of the motion
of the ball to occur in components along the x- and y-axes separately. Let the motion of
the ball start at time t = 0 and let the position of the ball be (x(t), y(t)) at any time t ≥ 0

into its motion. We know that the acceleration of the ball in the x-direction is x′′(t) = 0 and
Section 8.4.3 tells us that the acceleration due to gravity in the y-direction is y′′(t) = −5

7
g sin β.

As in Figure 6.22, let ϕ0 be the angle between the initial direction of the motion and the x-axis
and let y0 be the y-coordinate of starting point of the ball. (Notice that for the path of the
ball drawn in Figure 8.56, ϕ0 is close to 90◦ and y0 is close to 0.) Arguing exactly as in the
development of equation (6c) in Section 6.7, we get that

y(t) =
− 5

7
g sinβ

2v20 cos2 ϕ0
x(t)2 + (tanϕ0)x(t) + y0.

So the path of the ball is indeed parabolic.

8.37. Let the point of intersection P have coordinates (x0, y0) and notice that x20 + (y0 + r)2 = r2

and y0 = mx0. Therefore x20 + (mx0 + r)2 = r2 and (1 + m2)x20 + 2mrx0 = 0. It follows that
x0 = −2mr

1+m2 and y0 = −2m2r
1+m2 . The distance between P and O is√

(−2mr
1+m2 − 0)2 + (−2m

2r
1+m2 − 0)2 =

√
4m2r2

(1+m2)2
+ 4m4r2

(1+m2)2
=
√

4m2r2

(1+m2)2
(1 +m2) = 2mr√

1+m2 .

8.38. Note that the height of the inclined plane depicted in Figure 8.57b is h. By Section 8.4.3
the ball reaches the bottom of the inclined plane at time t =

√
14h
5g

1
sinβ

. Insert a coordinate
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system into Figure 8.57b, let P = (x0, y0) and let y = mx be the equation of the line on which
the segment OP lies. By using conclusions of Problem 8.37, we get h = −y0 = 2m2r

1+m2 and

sin β = h
OP

= 2m2r
1+m2 ·

√
1+m2

2mr
= m√

1+m2 . Therefore t =
√

14
5g

2m2r
1+m2 ·

√
1+m2

m
=
√

14·2r
5g

= 2
√

7r
5g
.

8.39. Place an xy-coordinate system into the vertical plane of Figure 8.58 in such a way that
the x-axis is horizontal and the given point O is the origin. Consider any inclined plane
in this vertical plane that slants downward from the fixed point O. Let a ball roll down it
from O starting at time t = 0. At a time t > 0 later let the position of the ball—more
precisely, the point of contact of the ball with the inclined plane—be P . The intersection of
the perpendicular bisector of the segment OP and the y-axis determine the center of a circle
on which both O and P lie. (Make use of Problem 1.9.) Let r be the radius of this circle and
note that the point (0,−r) on the negative y-axis is its center. By the conclusion of Problem
8.38, the elapsed time t and the radius r are related by the equality t = 2

√
7r
5g
. So t2 = 4 7r

5g
,

and hence r = 5g
28
t2. So the radius r of the circle that the position P of the ball determines

depends only on t (and the gravitational constant g). Let a second ball roll down some other
inclined plane simultaneously with the first starting at O at time t = 0. Observe it again in
position P ′ after the same time t > 0 as the first. The equality r = 5g

28
t2 tells us that the

circle that the perpendicular bisector of OP ′ determines has the same radius and hence the
same center as the first. So it is the same circle as the first. It follows that all the balls that
are released at the same time from the point O lie at any time t later on the circle of radius
r = 5g

28
t2 and center (0,−r).

8.40. By Table 8.1 the indices of refraction of air and crown glass are nA = 1.00029 and nB = 1.52,
respectively. By Snell’s law and Figure 8.30, we get that nA sin 30◦ = nB sin β where α = 30◦

is the angle of incidence and β is the angle of refraction. Since sin 30◦ = 1
2
, it follows that

sin β = 1
2
(1.00029

1.52
) ≈ 0.33. So β ≈ sin−1(0.33) ≈ 19.26◦.

8.41. The figure below is a blown-up version of Figure 8.59. The two lower angles of reflection α′

and β′ are the angles of reflection from the reflective silver coating. Therefore α′ = β′. The
equal upper pair of angles α′ = β′ are the angles of refraction corresponding to the angles of
incidence α and β, respectively. It follows from Snell’s law that nA sinα = nB sinα′ where nA

α β

α

` `

β

α

` `

β

and nB are the indices of refraction of air and the glass of the plate, respectively. By Snell’s
law once more, nA sin β = nB sin β′. Since α′ = β′, we see that nA sinα = nA sin β. So
sinα = sin β. Since the angles α and β are both acute, α = β.
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8.42. The first term of the aspheric lens equation x = y2

R
[
1+

√
1−(1−k) y2

R2

] is put into the form y2 =

2Rx− (1− k)x2 as follows. Since

y2 = xR
[
1 +

√
1− (1− k) y

2

R2

]
= xR + xR

√
1− (1− k) y

2

R2 ,

we get y2 − xR = xR
√

1− (1− k) y
2

R2 . After squaring both sides,

y4 − 2xRy2 + x2R2 = x2R2
(
1− (1− k) y

2

R2

)
= x2R2 − x2R2(1− k) y

2

R2 .

So y4 − 2xRy2 = −x2R2(1− k) y
2

R2 and hence y2 − 2xR = −x2(1− k).

i. Suppose that k = 0. So the equation reduces to x2 − 2xR + y2 = 0. By completing the
square, we get (x−R)2 + y2 = R2 and this is the required circle.

ii. Suppose that k 6= 0 and that (x, y) satisfies both y2 = 2Rx−(1−k)x2 and (x−R)2+y2 =

R2. So R2 − (x−R)2 = 2Rx− (1− k)x2. After multiplying things out,

R2 − x2 + 2Rx−R2 = 2Rx− x2 + kx2,

so that kx2 = 0. It follows that x = 0 and since y2 − 2xR = −x2(1− k) that y = 0.

iii. Take k > 0. To show that the graph of y2 = 2Rx − (1 − k)x2 lies completely outside
the circle (x − R)2 + y2 = R2 except for the point (0, 0), we’ll take any point (x0, y0)

satisfying y20 = 2Rx0 − (1 − k)x20 and compute the distance from (x0, y0) to the center
(R, 0) of the circle. This distance is√

(x0 −R)2 + y20 =
√

(x0 −R)2 + 2Rx0 − (1− k)x20 =
√
R2 + kx20.

Since k > 0, the distance
√
R2 + kx20 is greater than R unless x0 = 0. It follows that

point (x0, y0) lies outside the circle, unless x0 = 0 and hence y0 = 0. Notice that the
point (0, 0) lies on the circle.

iv. If k < 0, then the same argument shows again that the distance between the point (x0, y0)

and the center (R, 0) of the circle is
√
R2 + kx20. Since k < 0, the distance

√
R2 + kx20

is now less than R, so that the graph of y2 = 2Rx− (1− k)x2 lies completely inside the
circle (x−R)2 + y2 = R2 except for the point (0, 0). It lies on the circle.

8.43. This problem deals with the equation y2 = 2Rx− (1− k)x2 and its graph. This is a parabola,
an ellipse, or a hyperbola as follows:

i. In the case k = 1, the graph of y2 = 2Rx is the parabola with focal point (R
2
, 0) and

directrix x = −R
2
. To see this, derive the equation of the parabola with focus (R

2
, 0) and

directrix x = −R
2
from first principles. This is illustrated in Section 4.3. Confirm that

the resulting equation is y2 = 2Rx.

ii. Suppose that k 6= 1. Write the equation (1−k)x2−2Rx+y2 = 0. After dividing through
by 1− k, x2 − 2R

1−kx+ y2

1−k = 0. By completing the square,

x2 − 2R
1−kx+ ( R

1−k )2 + y2

1−k = ( R
1−k )2 and hence (x− R

1−k )2 + y2

1−k = ( R
1−k )2.
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After dividing through by ( R
1−k )2, we get

(x− R
1−k )2

R2

(1−k)2
+

y2

R2

1−k

= 1.

iii. For k < 0, the graph is the ellipse with focal points
(

R
1−k ,±

√
−kR
1−k

)
and eccentricity

ε =
√
−k
1−k . This can be seen as follows. Since k < 0, it follows that 1 − k > 0. So we

can write 1− k as (
√

1− k )2. Therefore,

(x− R
1−k )2

R2

(1−k)2
+

y2

R2

1−k

= 1

becomes the ellipse
(x− R

1−k )2(
R

1−k

)2 +
y2(
R√
1−k

)2 = 1.

Now let b = R
1−k and a = R√

1−k . Since 1 − k > 1, we have that 1 − k >
√

1− k, so that
a > b. So a is the semimajor axis and b is the semiminor axis of the ellipse. Observe that
this ellipse is obtained from the standard “vertical” ellipse x2

b2
+ y2

a2
= 1 of Problem 4.67

and Figure 4.36 by shifting it b = R
1−k units to the right. (See Section 4.2 for a discussion

of shifts.) The focal points of x2

b2
+ y2

a2
= 1 are the points (0,±c) on the y axis, where

c =
√
a2 − b2 =

√
R2

1−k −
R2

(1−k)2 =
√

R2(1−k)−R2

(1−k)2 = R
√
−k

1−k . So the focal points of this

standard vertical ellipse are
(
0,±R

√
−k

1−k

)
. Shifting things b = R

1−k units to the right tells
us that the focal points of the shifted ellipse we are considering are

(
R

1−k ,±
R
√
−k

1−k

)
. The

eccentricity is ε = c
a

=
R
√
−k

1−k
R√
1−k

= R
√
−k

1−k ·
√
1−k
R

=
√
−k
1−k .

iv. For k = 0, the equation reduces to y2 + x2 − 2Rx = 0. So (x− R)2 − R2 + y2 = 0, and
hence (x−R)2 + y2 = R2. So the graph is the circle of radius R and center (R, 0).

v. For 0 < k < 1, the graph is the ellipse with focal points
(

R
1±
√
k
, 0
)
and eccentricity

ε =
√
k. To see this, go back to the equality derived in (ii). Since 0 < k < 1, we get

−1 < −k < 0 (by multiplying through by −1) and hence by adding 1, 0 < 1 − k < 1.
Therefore as in the solution of (iii),

(x− R
1−k )2(

R
1−k

)2 +
y2(
R√
1−k

)2 = 1,

again an ellipse. Since 1 − k < 1, we see that
√

1− k > 1 − k. Now let a = R
1−k and

b = R√
1−k . Notice that a > b, so that a is the semimajor axis and b the semiminor

axis. This ellipse is obtained by taking the standard “horizontal” ellipse x2

a2
+ y2

b2
= 1 of

Section 4.4 and shifting it a = R
1−k units to the right. (See Section 4.2 for a discussion of

shifts.) The focal points of the standard ellipse are the points (±c, 0) where c =
√
a2 − b2.
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It follows that the focal points of the shifted ellipse are (a± c, 0). Since c =
√
a2 − b2 =√

R2

(1−k)2 −
R2

1−k =
√

R2−R2(1−k)
(1−k)2 =

√
R2k

(1−k)2 = R
(1−k)

√
k, the focal points of the shifted

ellipse are

(a± c, 0) =
(

R
1−k ±

R
√
k

1−k , 0
)

=
(R(1±

√
k)

1−k , 0
)
.

Finally, rewrite 1− k as 1− (
√
k)2 = (1 +

√
k)(1−

√
k) to see that the focal points are(

R
1±
√
k
, 0
)
. That ε = c

a
=
√
k is easy to see.

vi. For k > 1, the graph is the hyperbola with focal points
(

R
1±
√
k
, 0
)
and eccentricity ε =

√
k.

To see this, go back to the equality derived in (ii) once more. Since k > 1, notice that
k − 1 > 0 and the equality of (ii) can be written as

(x+ R
k−1)2

R2

(k−1)2
− y2

R2

k−1

= 1

and, since k − 1 = (
√
k − 1 )2, as

(x+ R
k−1)2

R2

(k−1)2
− y2

R2

(
√
k−1)2

= 1.

Now let a = R
k−1 and b = R√

k−1 and observe that what we are dealing with is the standard

hyperbola x2

a2
− y2

b2
= 1 discussed in Section 4.5, shifted a = R

k−1 units to the left. This

standard hyperbola has focal points (±c, 0), where c =
√
a2 + b2 =

√
R2

(k−1)2 + R2

k−1 =√
R2+R2(k−1)

(k−1)2 = R
√
k

k−1 . So the shifted hyperbola has focal points

(−a± c, 0) =
(
− R

k−1 ±
R
√
k

k−1 , 0
)

=
(−R±R√k

k−1 , 0
)

=
(R(−1±

√
k)

√
k
2−1

, 0
)

=
( R(±

√
k−1)

(
√
k+1)(

√
k−1) , 0

)
.

With the + in place, this is the point
(

R
1+
√
k
, 0
)
and with the − in place it is the point( −R√

k−1 , 0
)

=
(

R
1−
√
k
, 0
)
. So the focal points are

(
R

1±
√
k
, 0
)
. The eccentricity of the hyperbola

is ε = c
a

=
√
k.

In reference to the particular lens depicted in Figure 8.60 some cases of Problems 8.42
and 8.43 are relevant but others are not. The circle (x− R)2 + y2 = R2 is relevant as a
kind of a base curve for the lens. Cases (iii) and (iv) of Problem 8.42 tell us that a graph
with k > 0 is a relevant outer boundary of the lens but that a graph with k < 0 is not
(as this curve falls inside the basic circle). Turning to the more specific Problem 8.43,
we see that case (iii) is not relevant (because k < 0), but that cases (i), (v), and (vi)
are relevant (because k > 0). With regard to case (v), the shift of the hyperbola to the
left by a units, puts the leftmost point of its right branch at the origin as called for by
Figure 8.60. But the left branch is irrelevant as it ends up to the left of the y-axis.

8.44. The formula ρ = 58.37 tan zapp seconds for the difference ρ = ztrue − zapp and a calculator
tells us that for the angles zapp equal to 20◦, 40◦, 60◦, and 80◦ respectively, the values for ρ are
21.24, 48.98, 101.10, and 331.03 seconds. The table tells us for zapp equal to 20◦, 40◦, 60◦, and
80◦, that the corresponding values for ρ are 21, 49, 101, and 319 seconds.
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