
Solutions to Problems and Projects for Chapter 10

10.1. Consider the three forces acting at the point A. The slanting push of magnitude P ,

the horizontal pull H from left to right by the tie beam, and the upward push that

balances 1
2

of the load L. (The other half of the load L is balanced by the corresponding

upward push at B.) These three forces are in equilibrium. By the force diagram of

Figure 10.37,

sinα =
L
2

P
and tanα =

L
2

H
.

The expressions for P and H follow directly from this.

10.2. Figure 10.38 tells us that sin 70◦ = b
r
, so that b = r sin 70◦ ≈ (15.2)(0.94) ≈ 14.3 m.

By the Pythagorean theorem r2 = b2 +(r−a)2. Therefore a2−2ra+ b2 = 0 and by the

quadratic formula, a = 2r±
√
4r2−4b2
2

= r ±
√
r2 − b2. Since a < r, a = r −

√
r2 − b2 ≈

15.2−
√

15.22 − 14.32 ≈ 10 m.

10.3. i. Since b = 14.3 m, a = 10−3.1 = 6.9 m, and r2 = b2 +(r−a)2 by the Pythagorean

theorem, we get 2ar = a2 + b2 and hence r = a2+b2

2a
= 6.92+14.32

13.8
≈ 18.3 m. Since

sin θ
2

= b
r
≈ 14.3

18.3
≈ 0.78, it follows by the push of the inverse sine button of a

calculator that θ
2
≈ 51.4◦ and hence that θ ≈ 103◦.

ii. We first turn to estimate the volume of the shell of the original dome. With the

estimates r ≈ 18.3 m, R ≈ 19.1 m, and θ ≈ 103◦ in hand, return to Section 10.1.1

and Figure 10.3. Check, using Figure 10.3, that a = r cos θ
2
≈ 18.3 cos 51.4◦ ≈ 11.4

m. (A word of caution is in order. The a of Figure 10.3 needed now and the a

of Figure 10.38 mean different things.) Inserting the above values for r, R, and a

into the volume formula

V = π
[
2
3
R3 −R2a+ 1

3
a3
]
− π

[
2
3
r3 − r2a+ 1

3
a3
]

= π
[
2
3
(R3 − r3)− (R2 − r2)a

]
.

derived in Section 10.1.1, we get

V ≈ π
[
2
3
(19.13 − 18.33)− (19.12 − 18.32)11.4

]
≈ 686.44 m3

for the volume of the shell of the original dome. Given that the density of the

original shell is assumed to be 1760 kg/m3, we get that the mass m of the original

shell is

m ≈ 686.44× 1760 ≈ 1,208,134 ≈ 1,200,000 kg.

iii. The weight of the original shell is W = mg ≈ (1,208,134)(9.81) ≈ 11,851,795 N.

So the weight per rib is 11,851,795
40

≈ 296,295 ≈ 296,000 N. Consider Figure 10.4 but

replace the angle 70◦ by the angle 51.4◦ from part (i). This provides the estimates

P ≈ 296,295
sin 51.4◦

≈ 379,000 N and H ≈ 296,295
tan 51.4◦

≈ 237,000 N



for the magnitudes of these forces for the original dome.

What we can conclude by way of comparisons is this. The original dome

was about 15% lighter than the current dome. But the fact that it was flatter

meant that the slanting push of each rib was slightly greater than the slanting

push of each rib of the current dome (379,000 N to 375,000 N). This difference

is much more pronounced in the context of the lateral forces against the base of

the dome. The lateral force of 237,000 N per rib against the base of the original

dome was much greater than the 128,000 N per rib against the base of the current

dome. There is little doubt that this significant reduction of the outward thrust

of the shell against the base of the dome did much to increase the stability of the

structure of the Hagia Sophia overall.

10.4. Figure 10.8 tells us that the shell is thinnest at the oculus. The shell’s thickness there

is equal to
√
R2 − a2 − (

√
r2 − a2 + c). Inserting the data R = 28.1, r = 21.6, a = 4.1

and c = 5.2 all in meters, we get that this thickness is approximately 1.39 m. For the

maximal thickness of the shell we’ll consider several possibilities. They are labeled

1 2 and 3 in the figure below. For 1 we get
√
R2 − b2 − (

√
r2 − b2 + c). Using

the earlier data as well as b = 19.4 m we get 5.63 m for this vertical thickness. For the

slanting thickness 2 we get R −
√
b2 + d2. Since d = 14.9 m we get 3.64 m for the

a b

y =    R  – x2 2

x

y

C

y =    r  – x  + c2          2

y = d

O

√

√

s

1

2

3

slanting thickness 2 . As to the horizontal thickness 3 of the shell, note that it is

simply s− b. Since s = 23.8 m, is 23.8− 19.4 = 4.4 m.
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10.5. Figures (a) and (b) below refine Figures 10.39a and 10.39b, respectively. We will

consider the volumes Va and Vb given by the integrals

Va = π

∫ √R2−a2

d

(
(R2 − y2)− a2

)
dy and Vb = π

∫ √r2−a2+c
d

(
r2 − (y − c)2 − a2

)
dy

that theses figures give rise to and show that the difference Va − Vb represents the

volume of the shell of the Pantheon.

Start with Figure (a). Focus on the horizontal strip of thickness dy. It starts at the

point (a, y) and ends at the point (x, y). Its length is x−a and x. Solving x2 +y2 = R2

for x we get x =
√
R2 − y2. Revolving this horizontal strip one complete turn around

a b
x

y

d

Osa x

y

y

O

(a)       (b)

y =    R  – x2 2√
y =    r  – x   + c 2 2√

y

x

d

x

C = (0, c)

dy
dy

R  – a 2 2√

the y-axis, we get a volume element that is the difference between two discs of thickness

dy one of radius x =
√
R2 − y2 and the other of radius a. It follows that this element

has volume

π(
√
R2 − y2)2 dy − πa2 dy = π

(
(R2 − y2)− a2

)
dy .

Summing all these volumes up between y = d and
√
R2 − a2 gives us integral (Va) on

the one hand, and on the other the volume obtained by revolving one complete turn

around the y-axis the region under the graph of y =
√
R2 − x2, over the line y = d,

and to the right of the line x = a. Doing the same thing with Figure (b) tells us that

the integral (Vb) above is equal to the volume obtained by revolving the region under

the graph of y =
√
r2 − x2 + c, over the line y = d, and to the right of the line x = a

one complete turn around the y-axis. The difference (Va)− (Vb) between the integrals

and the volumes is the volume of the shell of the dome of the Pantheon.

Now to the evaluation of the integrals. The antiderivatives are easy so that
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Va = π
(
(R2− a2)y− y3

3

)∣∣∣√R2−a2

d
= π

[(
(R2− a2) 3

2 − 1
3
(R2− a2) 3

2

)
−
(
(R2− a2)d− d3

3

)]
= π

(
2
3
(R2 − a2) 3

2 − (R2 − a2)d+ d3

3

)
for the first integral, and

Vb = π
(
(r2 − a2)y − 1

3
(y − c)3

)∣∣∣√r2−a2+c
d

= π
[(

(r2 − a2) 3
2 + (r2 − a2)c− 1

3
(r2 − a2) 3

2

)
−
(
(r2 − a2)d− 1

3
(d− c)3

)]
= π

(
2
3
(r2 − a2) 3

2 + (r2 − a2)c
)
− (r2 − a2)d+ 1

3
(d− c)3

)
for the second.

The solution above gives the same value for the volume of the shell of the Pantheon as

the solution in Section 10.1.2. When finding the numerical values, however, roundup

procedures will provide somewhat different results. In particular, after substituting

the data from 10.1.2 into the expressions for Va and Vb we get Va ≈ 12,284 m3 and

Vb ≈ 7227 m3 so that Va − Vb ≈ 12,284 − 7227 ≈ 5057 m3. This is a little different

than the approximation achieved in Section 10.1.2.

This “horizontal strategy” for determining the weight of the dome of the Pantheon

together with more precise data about the location of the boundaries between the strata

of concrete of different weights as illustrated by Figure 10.6, provides an approach for

a much more accurate estimate of the weight of the shell of the dome than that of the

inequality toward the end of Section 10.1.2.

10.6. The figure below on the right depicts the situation that the problem describes.

10.25

BA

20 feet

10

α

C

c

T T

26 lbs

C

i. Let the distance from the point C to the horizontal AB be c. Refer to the

figure and notice that c2 = 10.252 − 102 = 105.0625 − 100 = 5.0625, so that

c =
√

5.0625 = 2.25 feet.

ii. The diagram on the left tells us that sinα = c
10.25

= 2.25
10.25

. Let T be the tension in

the line. The symmetry of the situation and the force diagram on the right tells

us that 2T sinα = 26 pounds. It follows that

T = (13)(10.25)
2.25

≈ 59.22 pounds.

4



10.7. Place an xy-coordinate system into the plane of Figure 10.40 so that the x-axis is

parallel the line AB and C is at the origin. Let y = f(x) be a function that has the

clothesline as its graph. Since the weight of the socks is distributed evenly along the

x-axis, the discussion of Section 8.3 applies with d = 10, w = 26
20

= 1.3 pounds/foot,

and with an as yet undetermined sag s. It follows that f(x) = s
d2
x2 with 0 ≤ x ≤ d.

x10

y

s y = f (x)

C

i. Since f ′(x) = 2s
d2
x, this is the length formula of Section 10.2 applied to the situation

of the clothesline.

ii. We will use what we know to determine the sag s. It is a consequence of the

conclusion of Problem 10.6i that s < 2.25 feet. Therefore s
2d
< 2.25

20
= 1.125 < 1

8
.

It follows that the approximation

L ≈ d+ 2
3
s
d
s− 2

5

(
s
d

)3
s = d+ 2

3

(
s
d

)2
d− 2

5

(
s
d

)4
d

developed in Section 10.2 holds. As demonstrated there, this approximation is

tight, so that we will take it to be an equality. Since the clothesline is 20.5 feet

long, L = 10.25 feet, so that

10.25 = d+ 2
3

(
s
d

)2
d− 2

5
( s
d
)4d.

Since d = 10, we get 10.25
10

= 1 + 2
3
( s
10

)2 − 2
5
( s
10

)4 and therefore that

2
5
( s
10

)4− 2
3
( s
10

)2 + 1
40

= 2
5
( s
10

)4− 2
3
( s
10

)2 +1.025−1 = 2
5
( s
10

)4− 2
3
( s
10

)2 + 10.25
10
−1 = 0.

With z = ( s
10

)2 we see that 2
5
z2 − 2

3
z + 1

40
= 0, and after multiplying through by

120, that

48z2 − 80z + 3 = 0.

By the quadratic formula

z =
80±
√

802−4(48)(3)
96

= 80±
√
82·102−82·32
8·12 = 80±8

√
102−32

8·12 = 10±
√
91

12
.

Since z = ( s
10

)2, we get s
10

=
√

10±
√
91

12
and s = 10

√
10±
√
91

12
. With the + option,

this is approximately equal to s ≈ 12.764. Since s < 2.25, this is too large. With

the − option we get our result s ≈ 1.959 feet.

iii. We now have all we need to apply the formulas

Td = wd
√(

d
2s

)2
+ 1 and T0 = 1

2
wd2

s
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for the maximal tension Td and the minimal T0 tension in the clothesline. (Refer

to Section 8.3.) Feeding w = 1.3, d = 10, and s = 1.96 into the formulas, we get

Td ≈ 35.62 pounds and T0 ≈ 33.16 pounds.

10.8. The diagram below depicts some of the more important circles of the upper part of the

hexagonal array that the problem descibes. This includes the circle at the center of

the array (in grey) and an indication of the k circles on the horizontal diameter to the

left and right of the circle at the center. The k circles on the upper part of one of the

60◦ diameters are indicated as well. These k circles tell us that the process described

in the problem stops after k steps. Going up, each horizontal row of circles has one

k

k

k

k+1

horizontal

diameter
6
0

d
ia
m
e
te
r

o
2k+1

2k

fewer circle than the one below it. It follows that after k steps the highest horizontal

row of the array has (2k + 1)− k = k + 1 circles in it (as the diagram indicates). The

horizontal rows above the horizontal diameter form a trapezoid. It that has 2k circles

in its bottom row of circles. In each successive row above this, there is one fewer circle.

So there are 2k − 1 circles in the row above the bottom row, 2k − 2 circles in the

row above that, and so on. Finally in the top row there are k + 1 circles. The circles

below the horizontal diagonal form a trapezoid as well. There are k + 1 circles in its

bottom row, one additional circle in each successive row going up, until the top row

of the bottom trapezoid with its 2k circles is reached. The sum of the 2k circles of

the bottom row of the upper trapezoid plus the k + 1 circles of the bottom row of the

lower trapezoid is 2k+ (k+ 1) = 3k+ 1 circles. Going up and adding the circles of the

next two rows of the two trapezoids we get (2k− 1) + (k+ 2) = 3k+ 1. Continuing the

pattern and adding the circles of the two corresponding rows, we get 3k+ 1 each time.

The last and kth step is the addition (k + 1) + 2k = 3k + 1 of the number of circles in

the highest rows of the two trapezoids. It follows that the number of circles above and

below the horizontal diagonal of the hexagonal array is k(3k+ 1) = 3k2 + k. Therefore

the total number of circles in the hexagonal array is (3k2 +k)+(2k+1) = 3k2 +3k+1.
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The next three problems make use of the formula

L = d
2

√
1 +

(
2s
d

)2
+ d2

4s
ln
(
2s
d

+
√

1 +
(
2s
d

)2 )
for one-half of the length L of the cable of a suspension bridge as well as the approximation

L ≈ d+ 2
3
s
d
s− 2

5

(
s
d

)3
s

both developed in Section 10.2.

10.9. The relevant data for the new Tacoma Narrows Bridge include its center span of 2800

feet and the sag in the main cable over the center span of about 280 feet. So we get

d = 1400, s = 280, the value

L = 1400
2

√
1 +

(
2·280
1400

)2
+ 14002

4·280 ln
(
2·280
1400

+
√

1 +
(
2·280
1400

)2 ) ≈ 1436.48 feet

and the approximation L ≈ 1400 + 2
3

280
1400

280− 2
5

(
280
1400

)3
280 ≈ 1436.44 feet. So the

approximation is tight. The length of the cable over the center span is 2872.96 feet.

10.10. What we need to know about the Verrazano Narrows Bridge is that its center span is

4260 feet and the sag in each of the main cables is 385 feet. So d = 2130 and s = 385.

The value for L is

L = 2130
2

√
1 +

(
2·385
2130

)2
+ 21302

4·385 ln
(
2·385
2130

+
√

1 +
(
2·385
2130

)2 ) ≈ 2175.52 feet.

and the approximation is L ≈ 2130 + 2
3

385
2130

385− 2
5

(
385
2130

)3
385 ≈ 2175.48 feet.

10.11. A rough approximation for the ultimate strength can be gotten by noting that the cross-

sectional area of a main cable is πr2 ≈ π(182) ≈ 1018 in2. Since the ultimate strength of

a wire is 220,000 pounds/in2, this provides the estimate 1018× 220,000 ≈ 224,000,000

pounds. Since the cable is pressed together from circular strands, provided with a

coating of lead paste, and wrapped with additional wires, not all of the cross section

of the cable is weight (or tension) bearing. A more accurate approach is to note that

the cross-sectional area of a single wire is π(0.196
2

)2 ≈ 0.030172 in2 so that the ultimate

strength of a single wire is (0.030172)(220,000) ≈ 6638 pounds/in2. Multiplying this

by the 27,572 wires of the cable this gives the approximation for the ultimate strength

of the cable as (6638)(27,572) ≈ 183,000,000 pounds.

The Akashi Straits Bridge was already studied in Problem 8.28. A comparison of the

data provided there with that of the introduction to Problem 10.12 shows that there are

differences. The center span is listed as 1990 m and again as 1991 m. The difference of

1 meter was the result of the powerful Kobe Earthquake of 1995. The towers—already built

at the time—moved apart by about 1 meter (actually 0.8 m) in response to the seismic

forces. While the towers suffered no damage of any consequence, their shift increased the
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center span accordingly. The second difference concerns the height of the towers. This is

listed both as 282.8 m and 297 m. This discrepancy is explained by the fact that the first

figure does not include the height of the saddle-like structures that brace the cables at the

very top of each tower. With their height included, the towers rise to 297.3 m. We now turn

to a study of the main cables of the Akashi Straits Bridge.

10.12. i. The hexagonal array of 127 steel wires in each strand conforms to the arrangement

described in Section 10.2. It follows that 127 = 3k2 + 3k+ 1 for some k. It is easy

to see that k = 6. In general, the horizontal diameter has 2k+ 1 wires along it, a

strand has 13 wires along the diameter.

ii. Given that a wire has a diameter of 5.23 millimeters, it has a cross-sectional

area of π(5.23
2

)2 ≈ 21.4829 mm2. Since the wires have an ultimate strength of

1800 N per mm2, it follows that a single wire has an ultimate strength of about

(21.4829)(1800) ≈ 38,669 N.

iii. By summing up the ultimate strengths of the 36,830 steel wires in a cable,

we get that a cable of the Akashi Straits Bridge has an ultimate strength of

(38,669)(36,830) ≈ 1,424,000,000 N.

iv. A look at Section 6.10 tells us that 1 newton corresponds to about 0.2248 pounds.

It follows that the ultimate strength of each cable is 1,424,000,000(0.2248) ≈
319,000,000 pounds. We saw in Section 10.2 that the ultimate strength of a cable

of the George Washington Bridge is 175,000,000 pounds. So a main cable of the

Akashi Straits Bridge is almost twice as strong as a main cable of the George

Washington Bridge. This is in part explained by the fact that the diameter

of the cable of the Akashi Straights Bridge is greater than that of the George

Washington (about 1.12 meters compared to the 0.915 meters). Most of the

difference, however, is due to the greater tensile strength of the steel wires used

in the cable of the Akashi Straits Bridge.

10.13. The tractrix y = T (x) of Figure 10.13 satisfies dy
dx

= T ′(x) = −
√
a2−x2
x

. So by the length

formula of Section 9.3, the length of the curve from (a, 0) to (c, T (c)) is equal to∫ a

c

√
1 + T ′(x)2 dx =

∫ a

c

√
1 + a2−x2

x2
dx =

∫ a

c

√
a2

x2
dx =

∫ a

c

a
x
dx = a lnx

∣∣a
c

= a ln a
c
.

10.14. That A(c) =

∫ a

c

(
a sech−1 x

a
−
√
a2 − x2

)
dx follows from the formula for T (x) derived

in Section 10.3.

i. By Formula (23) of Section 9.11, with u = x
a

and hence du = 1
a
dx, we get

1
a

∫
sech−1 x

a
dx = x

a
sech−1 x

a
+ sin−1 x

a
+ C.

8



Factoring a2 from (a2 − x2), we get
√
a2 − x2 =

√
a2(1− x2

a2
) = a

√
1− (x

a
)2

and hence that

∫ √
a2 − x2 dx = a

∫ √
1− (x

a
)2 dx. By applying Formula (16) of

Section 9.11 with u = x
a

and du = 1
a
dx, we see that

1
a

∫ √
1− (x

a
)2 dx = x

2a

√
1− (x

a
)2 + 1

2
sin−1 x

a
+ C.

After multiplying both integrals above by a2, we get∫ (
a sech−1 x

a
−
√
a2 − x2

)
dx

=
(
ax sech−1 x

a
+ a2 sin−1 x

a

)
−
(
ax
2

√
1− (x

a
)2 + a2

2
sin−1 x

a

)
+ C

= ax sech−1 x
a

+ a2

2
sin−1 x

a
− ax

2

√
1− (x

a
)2 + C.

From Figures 9.39 and 9.31 we know that sech−1(1) = 0 and sin−1(1) = π
2
. So it

follows that

A(c) =

∫ a

c

(
a sech−1 x

a
−
√
a2 − x2

)
dx =

(
ax sech−1 x

a
+ a2

2
sin−1 x

a
− ax

2

√
1− (x

a
)2
) ∣∣∣a

c

= πa2

4
− ac sech−1 c

a
− a2

2
sin−1 c

a
+ ac

2

√
1− ( c

a
)2.

ii. The limit formula in question is lim
x→0

(
x sech−1x

)
= 0. The property of y = sin−1 x

can be read off from Figure 9.31. It is the fact that lim
x→0

sin−1 x = 0. Pushing c to

zero in the expression for A(c), tells us that lim
c→0

A(c) = 1
4
πa2.

10.15. i. The derivative of f(x) = 1
x

is f ′(x) = −x−2. Therefore, f ′(x)2 = (−x−2)2 =

x−4 = 1
x4

. Therefore

S(c) =

∫ c

1

2π 1
x

√
1 + 1

x4
dx =

∫ c

1

2π 1
x

√
x4+1
x4

dx =

∫ c

1

2π 1
x3

√
x4 + 1 dx.

ii. The area under the graph of f(x) = 1
x

from x = 1 to x = c (for c ≥ 1) is equal to∫ c

1

1
x

= lnx
∣∣c
1

= ln c− ln 1 = ln c. Even though the natural log function ln grows

very slowly, see Figure 7.42, it is a fact that lim
c→+∞

ln c = +∞. To see this pick

any number d > 0 (no matter how large) and notice that ln(ed+1) = d+ 1. So the

values of y = lnx eventually becomes larger than any positive number. Hence the

consequence that lim
c→+∞

ln c = +∞. It follows that the area under the full graph

of f(x) = 1
x

with x ≥ 1 is infinite. Because 1
x

√
1 + f ′(x)2 > 1

x
, the area under

the graph of y = 1
x

√
1 + f ′(x)2 with x ≥ 1 is infinite also. It follows that

lim
c→+∞

∫ c

1

1
x

√
1 + f ′(x)2 dx = lim

c→+∞

∫ c

1

1
x

√
1 + 1

x4
dx = +∞.

Therefore by part i, the area lim
c→+∞

S(c) of the surface obtained by rotating the

graph of f(x) = 1
x

with x ≥ 1 one revolution around the x-axis is infinite as well.
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10.16. Turn to http://www.integral-calculator.com/# and type 1/x^3sqrt(x^4+1) into the

box containing e^(x/2)* sin(ax) and click Go!. In addition to the antiderivative

already mentioned, there is also the antiderivative

1
2

ln
(√

x4 + 1 + x2
)
−
√
x4+1
2x2

+ C.

Checking this is a slog also.

10.17. The derivative x′(t) = 15t4 − 195t2 + 540 = 15(t4 − 13t2 + 36) provides the velocity

v(t) of the point. By applying the quadratic formula to (t2)2 − 13t2 + 36 = 0 we

see that the velocity of the point is zero when t2 = 13±
√
132−4·36
2

= 13±
√
25

2
= 4 and 9.

Therefore the point stops at times t equal to −3,−2, 2, and 3. Checking at the instants

t = −4,−21
2

= −5
2
, 0, 5

2
and 4, we see that

v(±4) = 15
(
(±4)4−13(±4)2+36

)
= 15(162−13·16+36) = 15

(
16(16−13)+36

)
> 0,

v(±5
2
) = 15(25

2

42
− 13·25

4
+ 36) = 15(25

4
(25
4
− 13) + 36) = 15(25

4
(−27

4
) + 36) < 0, and

v(0) = 15(0− 0 + 36) > 0.

It follows that over the time intervals [−5,−3), (−3,−2), (−2, 2), (2, 3) and (3,+∞),

the point moves to the right, then left, then right, then left, and finally right again,

respectively.

The acceleration is equal to a(t) = v′(t) = 15(4t3 − 26t) = 60t(t2 − 13
2

) so that the

force at time t is F (t) = m · 60t(t2 − 13
2

). Since t(t2 − 13
2

) = t
(
t +

√
13
2

)(
t −

√
13
2

)
, it

follows that the force is zero at times

t = −
√

13
2
≈ −2.55, t = 0, and t =

√
13
2
≈ 2.55.

Notice that the force is negative for t < −
√

13
2

, positive over −
√

13
2
< t < 0, negative

over 0 < t <
√

13
2

, and positive again for
√

13
2
< t.

Let’s turn to the motion of the point on the x-axis. Since

x(−5) = 3(−5)5 − 65(−5)3 + 540(−5) + 3950 = 25(−375 + 325− 108 + 158) = 0 and

v(−5) = 15[(−5)4 − 13(−5)2 + 36] = 5040

the point starts at time t = −5 at the origin, moving to the right with an initial speed

of 5040. With the force pushing it to the left, the point stops for the first time at

t = −3 at position

x(−3) = 3(−3)5 − 65(−3)3 + 540(−3) + 3950 = 3356.

The force, still acting to the left, continues to push the point to the left. But at time

t = −
√

13
2
≈ −2.55 the force begins acting to the right, stopping the point at time

t = −2 at position

10



x(−2) = 3(−2)5 − 65(−2)3 + 540(−2) + 3950 = 3294.

The force acts to the right until t = 0 and pushes the point to the right until then. At

t = 0 the force begins to act to the left, slowing the point until it stops at time t = 2

at position

x(2) = 3(2)5 − 65(2)3 + 540(2) + 3950 = 4606.

The force still acting to the left, now moves the point to the left. At time t =
√

13
2
≈

−2.55, the force changes direction for the last time and acts to the right. It slows the

point to a stop at time t = 3 at position

x(3) = 3(3)5 − 65(3)3 + 540(3) + 3950 = 4544.

From that time on the force is positive. It drives the point to the right at ever increasing

speeds.

10.18. The body is depicted below as moving on an x-axis. Its position at time t = 0 is the

origin 0. Since a(t) = a is constant and the velocity v(t) is an antiderivative of a(t), it

follows that v(t) = at+ C with C a constant. Since v(t) = 0, v(t) = at. The distance

that the body moves during time t is the coordinate x(t) of its position. Since x(t) is an

0

t = 0 t

x(t)

an antiderivative of v(t) = at, x(t) = 1
2
at2 + C, again C a constant. Since x(0) = 0,

x(t) = 1
2
at2. The body’s average speed from time t = 0 to t is x(t)

t
= 1

2
at2

t
= 1

2
at =

1
2
v′(t). Therefore its velocity v′(t) at time t is equal to twice its average velocity over

the time interval [0, t].

10.19. At any time t, y(t) = 1 − x(t). Therefore the point moves along the line y = −x + 1

through (0, 1) with slope −1. Since x(t) = t and y(t) = 1− t, the point starts at time

t = 0 from the position (0, 1). Since its velocity in the x direction x′(t) = 1 is always

positive, the point moves down the line and to the right. Its speed at any time t ≥ 0

is
√
x′(t)2 + y′(t)2 =

√
12 + (−1)2 =

√
2 and hence constant.

10.20. At any time t, y(t) = 1
5
x(t)2 so that the point moves along the parabola y = 1

5
x2. It

starts its trip at (−10, 1
5
(−10)2) = (−10, 20) and finishes at (10, 20). Its speed at any

time t is
√
x′(t)2 + y′(t)2 =

√
12 + (2

5
t)2. It starts with a speed of

√
12 + (−2

5
(10))2 =

√
12 + 42 =

√
17, moves down the parabola attaining its minimum speed of 1 at time

t = 0 at the bottom (0, 0) of the parabola, and then moves up the parabola and reaches

(10, 20) with a speed of
√

17. If the mass m of the point is 1, then (using F = ma) the

horizontal component of the force acting on it is x′′(t) = 0 and the vertical component

is y′′(t) = 2
5
. So the force acting on the point is directed upward with magnitude 2

5
. It

acts initially by slowing the downward motion of the point, stops it at (0, 0), and then

pushes the point upward.

11



10.21. Since y(t) =
√
t− 1 needs to make sense, the motion ends at time t = 1. Since

x(t)2 = t and y(t)2 = 1 − t, it follows that x(t)2 + y(t)2 = 1. Therefore the point

moves on the circle x2 + y2 = 1 starting at (x(0), y(0)) = (0, 1). As t flows from t = 0

to t = 1, x(t) increases to x(1) = 1 and y(t) decreasing to y(1) = 0. So the point

moves clockwise down to (1, 0). Since x′(t) = 1
2
t−

1
2 and y′(t) = −1

2
(1− t)− 1

2 its speed

is
√
x′(t)2 + y′(t)2 =

√
1
4t

+ 1
4(1−t) =

√
(1−t)+t
4t(1−t) = 1

2

√
1

t(1−t) . Notice that its initial and

terminal speeds are both infinite.

10.22. Since x(t)3 = t and y(t) = t = x(t)3, the point moves along the curve y = x3. It

starts at (−10,−1000) and stops at (10, 1000). Since x′(t) = 1
3
t−

2
3 and y′(t) = 1 the

speed of the point is
√
x′(t)2 + y′(t)2 =

√
1

9t
4
3

+ 1. Its acceleration in the x-direction

is x′′(t) = −2
9
t−

5
3 = − 2

9t
5
3

and in the y-direction y′′(t) = 0. Since its mass is equal to 1,

the resultant of the forces acting on the point in the x- and y-directions is equal to

F (t) = − 2

9t
5
3

in the x-direction. The point starts at (−10,−1000) with a speed of√
1

9(−10)
4
3

+ 1 ≈ 1.003. For t < 0, the force F (t) is positive and drives the point upward

along the curve y = x3. At (0, 0) the point reaches infinite speed. Thereafter t > 0 and

hence F (t) is negative. So the point slows down and reaches (10, 1000) with a speed

of
√

1

9(10)
4
3

+ 1 ≈ 1.003 (the same as its initial speed).

10.23. We are given that x′(t) = 2t and y′(t) = t3 + 4t.

i. It follows that x(t) = t2 + C1 and y(t) = 1
4
t4 + 2t2 + C2. Since the point is

at (−4, 3) at time t = 0, C1 = −4 and C2 = 3. Therefore x(t) = t2 − 4 and

y(t) = 1
4
t4 + 2t2 + 3. At time t = 2 the point is at (0, 4 + 8 + 3) = (0, 15).

ii. Since t2 = x(t) + 4, we see that

y(t) = 1
4
(x(t) + 4)2 + 2(x(t) + 4) + 3 = 1

4
x(t)2 + 4x(t) + 15 .

So the point travels along the parabola y = 1
4
x2 + 4x+ 15.

10.24. The point starts its motion at (x(0), y(0)) = (0, 0). Since x′(t) = 1 and y′(t) = cos t,

the velocity of the point is constant in the x-direction and varies between −1 and 1 in

the y-direction. Since x′′(t) = 0, the horizontal component of the force on the point

is zero. It follows that the force on the point acts in the y-direction and is equal to

F (t) = y′′(t) = − sin t. If the point is above the x-axis, then y(t) = sin t is positive.

Since F (t) = − sin t is negative, the point is pushed downward. If the point is below

the x-axis, then y(t) = sin t is negative. So F (t) = − sin t is positive and the point is

pushed upward. In summary, the horizontal component of the point’s speed is constant

and the vertically acting force causes the up and down oscillation of the point as it

moves along the curve y = sinx.
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10.25. Problem 7.37 already considered some of these concerns. Since x(t)2 + y(t)2 = 1, the

point moves on the circle x2 + y2 = 1. When t = 0 the point is at (1, 0). Since

y(t) = sin t increases from 0 to 1 as t flows from t = 0 to t = π
2
, the point moves from

(1, 0) to (0, 1). As t varies from t = π
2

to t = 3π
2

, y(t) = sin t decreases from 1 to −1.

It follows that the point continues its counterclockwise motion around the circle.

i. Since x′(t) = − sin t and y′(t) = cos t,
√
x′(t)2 + y′(t)2 =

√
sin2 t+ cos2 t = 1. So

the speed of the point around the circle is constant and equal to 1.

ii. We get x′′(t) = − cos t = −x(t) and y′′(t) = − sin t = −y(t). With the point

P in any position (as in figure (a) below for instance) its coordinates (x(t), y(t))

determine the lengths of the components x′′(t) and y′′(t) of the force acting on

the point. Since x′′(t) and x(t) as well as y′′(t) and y(t) have opposite signs, these

components will always act in the direction of the x- and y-axes.

iii. By the parallelogram law and figure (b), the force on P (the resultant of the two

components x′′(t) and y′′(t)) acts toward the origin O with magnitude 1.

O

(x(t), y(t))

x

y

y  (t)`̀

x  (t)`̀

O

(x(t), y(t))

x

y

y  (t)`̀

x  (t)`̀

x  (t)`̀

y  (t)`̀

(a)                (b)

10.26. The four equations are at1 + bt1 = w, at2 + bt2 = 3w, bt1 = 700 and bt2 = w + 300.

There are several different ways to proceed. For example, since t1(a + b) = w and

t2(a + b) = 3w, it follows that t2
t1

= 3 and t2 = 3t1. In addition to bt1 = 700, we

now know that 3bt1 = w + 300. So w = 3(700)− 300 = 1800 yards. Another way (as

suggested in the parenthetical comment) is to divide at1 + bt1 = w by bt1 = 700 to get
a
b

+ 1 = w
700

and at2 + bt2 = 3w by bt2 = w + 300 to get a
b

+ 1 = 3w
w+300

. So w
700

= 3w
w+300

and hence w + 300 = 3(700). Again w = 1800 yards. So the prize goes to Marilyn.

10.27. Nothing to do here but chuckle.

10.28. A version of this problem was considered in Problem 3.24. Since 1 au about 150,000,000

km, the scale there was 6,000,000 km = 1 cm. The current 10,000,000 km = 3 cm is

13
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larger. Table 10.1 informs us that Mercury’s semimajor axis is approximately 57,909,000

km and that its eccentricity is close to ε = 0.2056. It follows that its semiminor axis is

b =
√
a2 − c2 =

√
a2 − a2ε2 = a

√
1− ε2 = (57,909,000)

√
1− 0.20562 ≈ 56,672,000 km.

In terms of the given scale,

2a ≈ 2(57,909,000) = 115,818,000 = 11.5818(10,000,000) = 11.5818(3) ≈ 34.75 cm

2b ≈ 2(56,762,000) = 113,524,000 = 11.3524(10,000,000) = 11.3524(3) ≈ 34.06 cm.

Since 34.06
34.75

≈ 0.98, it follows that 2b is 98% of 2a. The square of side 2a and the

inscribed circle of radius a as well as the 2a × 2b rectangle with the inscribed ellipse

with semimajor axis a and semiminor axis b are both shown above. Both are drawn

at a smaller scale than computed above so as to provide a side by side comparison.

Which diagram corresponds to which situation?

10.29. Since Mars orbits outside Earth, the two planets are at the shortest possible distance

from each other, let’s call it d, at a moment when the following three things occur

simultaneously: Mars is at perihelion so closest to the Sun, Earth is at aphelion so

farthest from the Sun, and the Sun, Earth, and Mars are aligned. The figure below

illustrates such an occurrence. It follows that d = aM(1 − εM) − aE(1 + εE) where

a  (1+    )  ε 
E E

a   (1−     )  ε 
M  M

Earth

Mars

d

S

aM , aE, εM , and εE are the semimajor axes of the orbits of Mars and Earth, respectively,

and εM and εE are the eccentricities of their orbits. Putting in the data from Table 10.1,

we get

d ≈ 227,944,000(1− 0.09339)− 149,598,000(1 + 0.01671) ≈ 54,559,000 km.
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10.30. The relevant formula is a3

T 2 = GM
4π2 , where a is the semimajor axis of the orbit of either

of the satellites, T is its period, and M is the mass of Eugenia. We’ll use MKS, so

that G = 6.67384× 10−11 m3

kg·s2 . The fact that the two orbits are nearly circular means

that we can take a to be the given radius in each case. So for the outer satellite,

a = 1,165,000 m and, since its period is 4.7 days, T ≈ 4.7(24)(60)(60) ≈ 406,000

seconds. So we get that the mass of Eugenia is

M ≈ 4π2a3

GT 2 ≈ 4π2(1,165,0003)
6.674×10−11·406,0002 ≈ 5.674× 1018 kg.

We can now use the formula T 2 = 4π2a3

GM
or T =

√
4π2a3

GM
to get that

T =
√

4π2(611,0003)
(6.674×10−11)(5.674×1018) ≈ 154,200 sec

is the period of the inner satellite. This is equivalent to about 154,200
(24)(60)(60)

≈ 1.8 days.

10.31. From Table 10.1 we know that the period of Venus’s orbit is approximately 0.6152

years or—since one year is about 365.2596 days (see Section 10.4.3)—approximately

0.6152(365.2596) ≈ 224.71 days. Each of the three computations proceeds from in-

formation about the angle α to an estimate of the elapsed time t. Gauss’s formula

connects α and β and Kepler’s equation leads from β to t. The time t is the elapsed

time from perihelion at t = 0. We’ll use the rewritten versions tan β(t)
2

=
√

1−ε
1+ε

tan α(t)
2

and t = T
2π

(β(t) − ε sin β(t)) of Gauss’s and Kepler’s equations with T ≈ 224.71 days

the period of Venus and ε ≈ 0.0068 its eccentricity.

i. We’ll compute the time it takes for α to sweep from 0◦ to 60◦ or π
3
. Taking

α(t) = π
3
, we get

tan β(t)
2

=
√

1−ε
1+ε

tan π
6
≈
√

1−0.0068
1+0.0068

· 1√
3
≈ 0.5734,

so that β(t)
2
≈ tan−1(0.5734) ≈ 0.5206 and β(t) ≈ 1.0413 radians. So

t = T
2π

(β(t)− ε sin β(t)) ≈ 224.71
2π

(1.0413− 0.0068 sin(1.0413)) ≈ 37.03 days.

ii. Next we’ll compute the time it takes for α to sweep from 60◦ to 120◦. Since t is

elapsed time from the perihelion position α = 0, we’ll compute the time for α to

move from 0◦ to 120◦ and subtract the time calculated in part i. With α(t) = 120◦

or 2π
3

, we get

tan β(t)
2

=
√

1−ε
1+ε

tan π
3
≈
√

1−0.0068
1+0.0068

·
√

3 ≈ 1.7203,

and hence β(t)
2
≈ tan−1(1.7203) ≈ 1.0442 and β(t) ≈ 2.0885 radians. So

t = T
2π

(β(t)− ε sin β(t)) ≈ 224.71
2π

(2.0885− 0.0068 sin(2.0885)) ≈ 74.48 days.

It follows that α takes approximately 74.48 − 37.03 = 37.45 days to rotate from

60◦ to 120◦.
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iii. Since the segment from the Sun S to Venus sweeps out half the area of the ellipse

in time T
2
≈ 112.35 days, it follows that during this time α flows from 0◦ to 180◦

Therefore it takes 112.35− 74.48 = 37.82 days for α to rotate from 120◦ to 180◦.

10.32. In Section 10.4.2 we saw that the speed of a planet at any time t after it passes peri-

helion is given by v(t) = 2πa
T

√
2a
r(t)
− 1, where r(t) is the distance from the planet to

the Sun at that time, a is the semimajor axis of the orbit, and T is the period. The

formula tells us that v(t) is a maximum when r(t) is at its minimum and that v(t) is

a minimum when r(t) is at its maximum.

Since the minimal distance between S and the planet is its perihelion distance

a(1− ε), we see that

vmax = 2πa
T

√
2a

a(1−ε) − 1 = 2πa
T

√
2−(1−ε)

1−ε = 2πa
T

√
1+ε
1−ε .

Since the maximal distance between S and the planet is its aphelion distance a(1+ε),

vmin = 2πa
T

√
2a

a(1+ε)
− 1 = 2πa

T

√
2−(1+ε)

1+ε
= 2πa

T

√
1−ε
1+ε

.

Inserting the orbital parameters for the Moon, a = 384,400 km, ε = 0.0549, and

T = 27.3217 days or 27.3217(24)(60)(60) ≈ 2,360,600 seconds into the formulas just

derived, we get

vmax = 2πa
T

√
1+ε
1−ε ≈

2π(3.844×105)
2.3606×106

√
1+0.0549
1−0.0549 ≈ 1.0810 km/s

vmin = 2πa
T

√
1+ε
1−ε ≈

2π(3.844×105)
2.3606×106

√
1−0.0549
1+0.0549

≈ 0.9684 km/s.

10.33. We’ll compute with greater accuracy than the problem calls for. The fact that 1 au

= 149,597,892 km, the information in Table 10.1 tells us that the semimajor axis for

Halley’s orbit is a = 2,667,950,000
149,597,892

≈ 17.8341 au. Taking the eccentricity of its orbit ε =

0.9671, we get b =
√
a2 − c2 = a

√
1− c2

a2
= a
√

1− ε2 = 4.5369 au for the semiminor

axis, c = aε = 17.2474 au, and q = a − c = 17.8341 − 17.2474 = 0.5867 au for the

perihelion distance of Halley’s orbit.

i. Since the center of Earth’s orbit is S = (c, 0) and its radius is 1, its orbit has

equation is (x − c)2 + y2 = 1. The coordinates of the points of intersection H1

and H2 satisfy both x2

a2
+ y2

b2
= 1 and (x − c)2 + y2 = 1, so that their common

x-coordinate satisfies x2

a2
+ 1−(x−c)2

b2
= 1. So b2x2 + a2(1 − (x − c)2) = a2b2 and

hence b2x2 + a2 − a2(x − c)2 − a2b2 = 0. After multiplying through by −1 and

recalling that a2 = b2 + c2, we get

0 = a2(x− c)2 − b2x2 − a2 + a2b2 = a2(x2 − 2cx+ c2)− b2x2 − a2 + a2b2

= (a2 − b2)x2 − 2a2cx+ a2c2 + a2b2 − a2 = c2x2 − 2a2cx+ (a4 − a2).
By the quadratic formula,
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x =
2a2c±
√

4a4c2−4c2(a4−a2)
2c2

= 2a2c±
√
4a2c2

2c2
= 2a2c±2ac

2c2
= a2±a

c
.

As already noted in the hint, the + option x = a2+a
c

implies that x = a2+a
c

=

a(a
c

+ 1
c
) > a (since ε = c

a
< 1). Figure 10.44 tells us that this cannot be since

Halley’s orbit intersects that x-axis at x = a. So the x-coordinate of both H1 and

H2 is a2−a
c

.

To compute the y-coordinates of these two points, we can use the equation

(x − c)2 + y2 = 1 of Earth’s orbit. Since y = ±
√

1− (x− c)2, the y-coordinates

of H1 and H2 are y = ±
√

1− (a
2−a
c
− c)2. By simplifying, we get

1− (a
2−a
c
− c)2 = 1−

(
a2−a−c2

c

)2
= 1− (b2−a)2

c2
= c2−b4+2b2a−a2

c2

= 2b2a−b4−b2
c2

= b2

c2
(2a− b2 − 1).

So the y-coordinates of H1 and H2 are b
c

√
2a− b2 − 1 and − b

c

√
2a− b2 − 1, re-

spectively. Putting in the numerical values (and rounding to 4 decimal place

accuracy), we find that the x-coordinate of H1 and H2 is 17.4067 and the y-

coordinates ±0.9872, respectively.

ii. Since r(t) is the distance from S to H1 and H1 lies on Earth’s orbit r(t) = 1

(so that there is nothing to compute). Turning to the angle α(t) and the figure

below, we see that sin γ = y = 0.9872. So γ ≈ sin−1(0.9872) ≈ 1.4106. Therefore

α(t) = π − γ ≈ 3.1416 − 1.4106 ≈ 1.7310. Let’s insert this information into the

S x

H1

H2

γ
α(t)

x

y

Earth’s orbit

equations

tan β(t)
2

=
√

1−ε
1+ε

tan α(t)
2

and t = T
2π

(β(t)− ε sin β(t))

of Gauss and Kepler for Halley’s orbit, hence with ε = 0.9671 and T = 75.32 years.

Doing so, we get tan β(t)
2

=
√

1−0.9671
1+0.9671

tan 1.7310
2
≈ 0.1519 so β(t)

2
≈ tan−1(0.1519) ≈

0.1507 and β(t) ≈ 0.3015. Putting this β(t) into Kepler’s equation, we get
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t ≈ 75.32
2π

(0.3015− 0.9671 sin(0.3015)) ≈ 0.1716 years.

Since 1 year has approximately 365.2596 days (see Section 10.43), it takes Halley

t ≈ 0.1716(365.2596) ≈ 62.68 days to travel from its perihelion position to the

point H1. By the symmetry of the situation, Halley takes about 125.36 days to

travel from H2 to H1. This is the time that it will remain inside Earth’s orbit.

iii. The inequality |β(t) − βi| < εi measures the difference between the ith approx-

imation βi and the value β(t). What is called for is the smallest i for which

εi < 0.0002. Making use of the fact that ε < 0.9672, we get by squaring 0.9672

again and again, that ε256 < 0.000196. So with i = 256 iterations, we can be sure

that |β(t)− βi| < 0.0002.

10.34. Let’s do this for April 27th, 2017 at 9:32 am. The website tells us that in 2017 Earth’s

perihelion occurred on January 4th at 2:18 pm.

i. Starting with January 4th at 2:18 pm and counting 27 additional days for January,

28 for February, 31 for March, and taking 26 days from April, we get exactly 112

days between this perihelion and April 26th at 2:18 pm. Adding 12 hours brings

us to 2:18 am on April 27th, and with 7 hours and 14 minutes more to the moment

April 27th, 2017 at 9:32 am of interest. So the relevant t is 112 days, 19 hours,

and 14 minutes, or t = 112.8014 days.

ii. The first thing to do is to is to compute the corresponding β(t) of Kepler’s equation

using the successive approximation strategy of Step 3 of Section 10.4.1. We’ll take

the eccentricity of Earth’s orbit to be ε = 0.0167 and the period of its orbit as

T = 365.2596 days (from Section 10.4.3).

The first approximation is β1 = 2πt
T

= 2π(112.8014)
365.2596

≈ 1.9404. Using

bi+1 = 2πt
T

+ ε sin βi = β1 + ε sin βi

again and again, we get

β2 ≈ 1.9404 + 0.0167 sin(1.9404) ≈ 1.9560,

β3 ≈ 1.9404 + 0.0167 sin(1.9560) ≈ 1.9559,

β4 ≈ 1.9404 + 0.0167 sin(1.9559) ≈ 1.9559.

Since we have reached stable state, β(t) ≈ 1.9559 radians. Taking the semimajor

axis of Earth’s orbit to be a = 149,598,000 km, we find (by Step 1 of Section

10.4.1) that the distance of the Earth from the Sun at time t is

r(t) = a(1− ε cos β(t)) ≈ 149,598,000(1− 0.0167 cos(1.9559)) ≈ 150,536,000 km.

Using Gauss’s equation tan α(t)
2

=
√

1−ε
1+ε

tan β(t)
2

, we get

tan α(t)
2
≈
√

1−0.0167
1+0.0167

tan 1.9559
2
≈ 1.4598
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and hence α(t) ≈ 2 tan−1(1.4598) ≈ 1.9404 or about 111.18◦.

iii. It remains to insert the above estimates into the speed formula

v(t) = 2πa
T

√
2a
r(t)
− 1.

Since Earth’s speed is best given in km/sec, we’ll convert T = 365.2596 days to

T = 365.2596(24)(60)(60) = 31,558,000 seconds. So we get

v(t) ≈ 2π(149,598,000)
31,558,000

√
2(149,598,000)
150,536,000

− 1 ≈ 29.5987 km/sec.

10.35. Let’s say a little more about these constants. The constant κ is specific to a given

elliptical orbit. It is closely related to Kepler’s second law. Let t be any time and

suppose that the segment PS traces out the area At during time t. Then the ratio At
t

is a constant. It has the same value no matter what t is and no matter where in its

orbit P moves. This is the constant κ. The fact that the area of an ellipse is abπ where

a and b are the semimajor and semiminor axis of the ellipse, tells us that κ = abπ
T

where

T the period of the orbit. The latus rectum is also specific to a given orbit. Consider

the line perpendicular to the focal axis of the ellipse through a focal point. It intersects

the ellipse at two points. The latus rectum is the distance L between these two points.

The standard equation x2

a2
+ y2

b2
= 1 implies that L = 2b2

a
. The constant K is given by

Kepler’s third law. For any P in elliptical orbit around the same S, the ratio a3

T 2 is the

same. This is the constant K. Finally, there is the constant G of universal gravitation.

Newton’s equality K = a3

T 2 = GM
4π2 gives added precision to Kepler’s third law. Since

κ2 = a2b2π2

T 2 and π2

2
LK = π2

2
·2b2
a
· a3
T 2 , we get κ2 = π2

2
LK. From K = GM

4π2 , we get that
π2

2
LK = π2

2
L·GM

4π2 = GLM
8
. So κ2 = π2

2
LK = GLM

8
. Take square roots to get the rest.

10.36. Suppose that P is at perihelion at time t = 0 and that after an elapsed time t > 0 the

angle β(t) = π. Kepler’s equation β(t)− ε sin β(t) = 2πt
T

tells us that π− ε·0 = 2πt
T

and

hence that t = T
2
. By Figure 10.20, β(t) = π corresponds to an apoapsis position. So

periapsis to apoapsis takes time T
2
. Since the time from one periapsis position to the

next is the period T of the orbit, the time from apoapsis to periapsis is also T
2
.

10.37. Figure 10.20 tells us that when β(t) = π
2
, P has completed the first 1

4
th of its orbit.

Inserting β(t) = π
2

into Kepler’s equation β(t)−ε sin β(t) = 2πt
T

informs us that π
2
−ε =

2πt
T

. Dividing through by 2π we get that t
T

= 1
4
− ε

2π
. So P completes the first

1
4
th of its orbit when t = T

4
− Tε

2π
. If the orbit is a flat ellipse with ε ≈ 1, then

t ≈ T (1
4
− 1

2π
) ≈ (0.0908)T ≈ 1

11
T .

10.38. The problem has a mistake in its formulation. It is not the case in general that the

approximation βi+1 = βi +
2πt
T
−(βi−ε sinβi)
1−ε cosβi for the zero β(t) of the function f(x) =

x − ε sinx − 2πt
T

is better than βi. Whether this is so or not depends on the graph of

f(x) between β(t) and β1. Since f ′(x) = 1−ε cosx and 1 ≥ cosx > ε cosx, f ′(x) > 0 so

that y = f(x) is an increasing function. Because f ′′(x) = ε sinx, the graph of y = f(x)
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is concave up over the intervals (0, π), (2π, 3π), (4π, 5π), . . . and concave down over the

intervals (π, 2π), (3π, 4π), (5π, 6π), . . . . The assertions about the increasing nature of

the function f(x) and the concavity pattern do not depend on the particular ε.

We turn to examples with ε = 1
2
. Use https://www.desmos.com/calculator to obtain

the graph of y = x− 1
2

sinx. For any t ≥ 0, the graph of f(x) = x− 1
2

sinx− 2πt
T

is gotten

by shifting this graph downward by the distance 2πt
T

. Figures (a) and (b) consider the

π π2 π3 π4 x

y

f (x) = x − − sin x − 2− π1

2

1

5

(a)

β1
β(t) β

2

π π2 π3 π4 x

y

f (x) = x − − sin x − 2− π1

2

1

5

(b)

β
1 2

β β (t)

3
β
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specific case t = 1.1T . Since 2πt
T

= 21
5
π, this is the example f(x) = x− 1

2
sinx− 21

5
π.

The number β(t) satisfies β(t) − 1
2

sin β(t) = 21
5
π. So x = β(t) is the solution of the

equation f(x) = x− 1
2

sinx− 21
5
π = 0. Newton’s method generates the numbers

βi+1 = βi − f(βi)
f ′(βi)

= βi +
2 1
5
π−(βi− 1

2
sinβi)

1− 1
2
cosβi

.

If the method works as intended, then the sequence β1, β2, . . . consists of approxima-

tions βi of β(t) that become successively tighter and converge to β(t).

Figure (a) depicts the graph of f(x) and the solution x = β(t) of f(x) = 0. It

also depicts the initial guess β1 at the solution β(t) as well as the number β2. Since

β(t) < β1 < 3π and y = f(x) is increasing and concave up over the interval (2π, 3π),

the sequence β1, β2, . . . converges to β(t) as intended. Any subsequent βi+1 is a better

approximation of β(t) than βi. This is illustrated in the figure and confirmed by the

conclusion of Problem 7.91(i).

Figure (b) studies the same example. The only difference is the initial guess β1.

Since the third approximation β3 satisfies β(t) < β3 < 3π, this case reduces to the one

depicted in Figure (a). So here too Newton’s method converges to the solution β(t).

Figure (c) considers the example f(x) = x − 1
2

sinx − 2πt
T

with t = 1.9T , therefore

with 2πt
T

= 3.8π = 34
5
π. The value β(t) satisfies β(t)− 1

2
sin β(t) = 34

5
π. It is therefore

the solution of f(x) = x− 1
2

sinx− 34
5
π = 0. Since y = f(x) is increasing and concave

down over the interval (3π, 4π) and β1 satisfies 3π < β1 < β(t), Figure (c) tells us that

here too the sequence β1, β2, . . . of Newton’s method converges to β(t). This is verified

5 x

f (x) = x − − sin x − 3− π1

2

4

5

π3 π4 π

(c)

1 β
2

β

β(t)

in a more general context by the conclusion of Problem 7.91(ii).
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We will see next that f(x) = x − 1
2

sinx − 2πt
T

with t = 1.5T and hence with
2πt
T

= 3π provides an example for which Newton’s method does not converge. In this

case, Newton’s iteration formula is βi+1 = βi +
3π−(βi− 1

2
sinβi)

1− 1
2
cosβi

. Start with the guess

β1 = 2π. Then β2 = 2π + 3π−2π
1− 1

2

= 4π. The next step β3 = 4π + 3π−4π
1− 1

2

= 2π. It follows

that the βi alternate between 2π and 4π. So the sequence that Newton’s method gives

π π3 π4 x

y

f (x) = x − − sin x − 3π1

2

(d)

β
1

π2

β(t)

β
2

rise to is 2π, 4π, 2π, 4π . . . . So there is no convergence and no increasing accuracy.

Figure (d) illustrates the infinite loop that is involved.

The site http://keisan.casio.com/exec/system/1244946907 carries out Newton’s

method for any differentiable function f(x). The calculator

http://orbitsimulator.com/sheela/kepler.htm

computes the solutions of Kepler’s equation for any ε but with restrictions on 2πt
T

.

10.39. The β(t) we need is the solution of Kepler’s equation β(t) = β1 + ε sin β(t) with

β1 = 2πt
T

= 2.924336 and ε the eccentricity 0.016711 for Earth’s orbit. So x = β(t) is

the solution of f(x) = x− ε sinx− β1 = 0.

β2 = β1 − f(β1)
f ′(β1)

= β1 + β1−(β1−ε sinβi)
1−ε cosβ1 = 2.924336 + 0.016711 sin 2.924336

1−0.016711 cos 2.924336 = 2.9278802.

After rounding to six decimal place accuracy, we get β2 = β(t) = 2.927880.

10.40. i. 1
1−(−1)

∫ 1

−1
x2 dx = 1

2
· 1
3
x3
∣∣1
−1 = 1

6
(1− (−1)) = 1

3
.

ii. 1
2−(−2)

∫ 2

−2
x3 dx = 1

4
· 1
4
x4
∣∣2
−2 = 1

16
(16− (16)) = 0.
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iii. 1
8−0

∫ 8

0

x
1
3 dx = 1

8
· 3
4
x

4
3

∣∣8
0

= 3
32

(8
1
3 )4 = 3

32
24 = 3

2
.

f (x) = x 
3

f (x) = x1/3

(ii)

1/3
3/2

(i)                 (iii)

f (x) = x 
2

(−1, 1)

2−2 0

(1, 1)

(2, 8)

(−2, −8)

(8, 2)

10.41. 1
10−1

∫ 10

1

x−1 dx = 1
9
· lnx

∣∣10
1

= 1
9
(ln 10− ln 1) = 1

9
ln 10 ≈ 1

9
(2.3026) ≈ 0.2558.

10.42. i. 1
5−(−5)

∫ 5

−5
(x2−4) dx = 1

10
(1
3
x3−4x)

∣∣5
−5 = 1

10

(
1
3
53−20)− (−1

3
53 +20

)
= 2

30
53 = 25

3
.

ii. 1
1−(−1)

∫ 1

−1
x−2 dx = 1

2
(−x−1)

∣∣1
−1 = 1

2
(−1

1
− ( 1

−1)) = 0. So the average value of

f(x) = 1
x2

over [−1, 1] is zero? Even though the function is positive throughout?

iii. By applying Formula 16 of Section 9.11, we get

1
1−(−1)

∫ 1

−1

√
1− x2 dx = 1

2

(
x
2

√
1− x2 + 1

2
sin−1x

)∣∣1
−1 = 1

2

(
1
2
· π
2
− 1

2
· (−π

2
)
)

= π
4
.

f (x) =
x2
12 2f (x) =

(i)

f (x) = x  − 4 
 

−1

(5, 21)(−5, 21)

8 1
3

1

√1− x

−1 1

π
4

(ii)           (iii)
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10.43. 1
π

∫ π

0

sinx dx = 1
π
(− cosx)

∣∣π
0

= 1
π
(−(−1)− (−1)) = 2

π
.

0 θ

1 sin θ

π

f (x) =

π
2

The next item on the agenda is to consider the identity cosα(t) = cosβ(t)−ε
1−ε cosβ(t) of Sec-

tion 10.4.1 and to solve it for cos β(t). Since cosα(t)(1 − ε cos β(t)) = cos β(t) − ε, we get

cosα(t) = ε cosα(t) cos β(t) + cos β(t)− ε. So

ε+ cosα(t) = (ε cosα(t) + 1) cos β(t)

and therefore cos β(t) = ε+cosα(t)
1+ε cosα(t)

. Combining this with r(t) = a(1− ε cos β(t)), we get

r(t) = a(1− ε ε+cosα(t)
1+ε cosα(t)

) = a(1+ε cosα(t)−ε(ε+cosα(t)
1+ε cosα(t)

) = a(1−ε2)
1+ε cosα(t)

.

10.44. The average value of r(β) = a(1− ε cos β) over [0, π] is

1
π

∫ π

0

r(β) dβ = a
π

∫ π

0

(1− ε cos β) dβ = a
π
(β − ε sin β)

∣∣π
0

= a
π
(π − 0) = a.

10.45. We’ll provide the details for the argument that the average value of the function r(α)

over [0, π] is

1
π

∫ π

0

r(α) dα = a(1−ε2)
π

∫ π

0

1
1+ε cosα

dα = b.

i. Let u = tan α
2
. Solving the identity u2 = tan2 α

2
= 1−cosα

1+cosα
for cosα, we get

u2(1+cosα) = 1−cosα and hence cosα(u2+1) = 1−u2. So cosα = 1−u2
1+u2

. Turning

to sinα, we get sinα = tan α
2
(1 + cosα) = u(1 + 1−u2

1+u2
) = u(1+u

2+1−u2
1+u2

) = 2u
1+u2

.

By Example 7.29, du
dα

= 1
2

sec2 α
2
, so that dα = 2 du

sec2 α
2

= 2 cos2 α
2
du. By another

conclusion of Problem 1.23, cos2 α
2

= 1
2
(1 + cosα) so that dα = (1 + 1−u2

1+u2
) du =

1+u2+1−u2
1+u2

du = 2
1+u2

du. Therefore

1
1+ε cosα

dα = 1

1+ε 1−u
2

1+u2

2
1+u2

du = 2
1+u2+ε(1−u2) du = 2

1+ε+(1−ε)u2 du = 2
1+ε

1
(1+ 1−ε

1+ε
u2)

du

and hence ∫
1

1+ε cosα
dα = 2

1+ε

∫
1

1+
(√

1−ε
1+ε

u
)
2 du.

ii. We next let z =
√

1−ε
1+ε

u. So dz =
√

1−ε
1+ε

du and hence du =
√

1+ε
1−ε dz. Changing

variables to z and then using integral Formula (10) of Section 9.11 transforms the

last integral into
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2
1+ε

√
1+ε
1−ε

∫
dz

1+z2
= 2

(
√
1+ε)2

√
1+ε√
1−ε

∫
dz

1+z2
= 2√

1−ε2

∫
dz

1+z2
= 2√

1−ε2 tan−1z + C

= 2√
1−ε2 tan−1

(√
1−ε
1+ε

tan α
2

)
+ C.

iii. Note that the antiderivative that part (ii) provides is not defined for α = π.

This means that in order to complete the evaluation of the integral

∫ π

0

1
1+ε cosα

dα

we’ll need to turn to the strategy of improper integrals (as this was illustrated in

Section 10.3.1). Instead of integrating from 0 to π, we will integrate from 0 to ϕ

with 0 ≤ ϕ < π and then—once this integration is completed—push ϕ to π:∫ π

0

1
1+ε cosα

dα = lim
ϕ→π

∫ ϕ

0

1
1+ε cosα

dα = lim
ϕ→π

2√
1−ε2 tan−1

(√
1−ε
1+ε

tan ϕ
2

)
.

The last part of the calculation requires two facts from Section 9.9.1 about the

inverse tangent function tan−1 x. First that it is differentiable and hence contin-

uous (see the first part of Section 7.6). This allows us to move lim
ϕ→π

past tan−1.

The second fact is that lim
x→+∞

tan−1 x = π
2

(see Figure 9.33). It now follows that

lim
ϕ→π

2√
1−ε2 tan−1

(√
1−ε
1+ε

tan ϕ
2

)
= 2√

1−ε2 tan−1
(√

1−ε
1+ε

lim
ϕ→π

tan ϕ
2

)
= π√

1−ε2 .

iv. We can therefore conclude that

1
π

∫ π

0

r(α) dα = a(1−ε2)
π

∫ π

0

1
1+ε cosα

dα = a(1−ε2)
π

π√
1−ε2 = a

√
1− ε2 = b.

We turn finally to the average of r as function of time t with time t ranging over the

interval [0, T ], where T is the period of the orbit.

10.46. This average is given by the integral 1
T

∫ T

0

r(t) dt. The key to evaluating it is the equality

r(t) = a
(
1− ε cos β(t)

)
and Kepler’s equation β(t)− ε sin β(t) = 2πt

T
.

i. Differentiating the equation β(t) − ε sin β(t) = 2πt
T

through with respect to t,

we get β′(t) − ε cos β(t) · β′(t) = 2π
T
. So β′(t)(1 − ε cos β(t)) = 2π

T
. After using

r(t) = a
(
1− ε cos β(t)

)
, we get β′(t)( r(t)

a
) = 2π

T
and hence T

2aπ
β′(t)r(t) = 1.

ii. By inserting first T
2aπ

β′(t)r(t) and then r(t) = a
(
1−ε cos β(t)

)
into the integrand,

1
T

∫ T

0

r(t) dt = 1
T

∫ T

0

r(t)
(
T
2aπ
β′(t)r(t)

)
dt = 1

2aπ

∫ T

0

r(t)2β′(t) dt

= a
2π

∫ T

0

(
1− ε cos β(t)

)2
β′(t) dt.

iii. With the substitutions u = β(t) and du = β′(t) dt this last integral becomes

a
2π

∫ 2π

0

(
1− ε cosu

)2
du = a

2π

[ ∫ 2π

0

du− 2ε

∫ 2π

0

cosu du+ ε2
∫ 2π

0

cos2 u du

]
.
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Evaluating these integrals (use the formula the formula cos2 u = 1
2
(1 + cos 2u)

from Problem 1.23 for the last one), we get

a
2π

[
2π − 2ε · 0 + ε2

2
(2π + 0)

]
= a
(
1 + 1

2
ε2
)
.

10.47. We have determined the averages a, b and a
(
1 + 1

2
ε2
)

of the distance r between P and

S as function of the angles β, α, as well as time t. Let’s consider these averages in

the context of the figure below. Notice that the distance r increases from a(1 − ε) at

periapsis to a(1 + ε) at apoapsis. For β = π
2

and α = π
2
, the distances from P to S are

r = a and r = L
2

= b2

a
= b

a
b ≤ b ≤ a, respectively. Therefore as the angle ranges from

0 to π
2
, r is larger as function of β than of α (unless a = b and the orbit is a circle). It

is not surprising therefore that the average a of r as a function of β is larger than the

periapsis

P

c

b

 α β

apoapsis

a

a
S

L

2

average b of r as a function of α (again, unless a = b). The average a(1 + 1
2
ε2) of r

as a function of time seems to reflect best what is going on. We know from Kepler’s

second law that the longer the segment PS is the more slowly it rotates. The example

of the comet of Problem 10.37 is a good illustration of this. The first quarter of the

orbit takes about 9% of its period, so that the second quarter takes about 41%. So the

larger the distance r, the more time the comet “spends” at that distance. The larger

average a(1 + 1
2
ε2) is a reflection of this.

10.48. The motion of P in the xy-plane of Figure 10.47a is determined by the equations

x(t) = 5
3
t3 and y(t) = 4t3 + 2 with t ≥ 0.

i. For t = 0, the coordinates of P are x(0) = 0 and y(0) = 2. So the point starts

at (0, 2). For t = 2, x(2) = 40
3

and y(2) = 34 so that P is at (40
3
, 34). Since

t3 = 3
5
x(t), y(t) = 12

5
x(t) + 2, so that P moves on the line y = 12

5
x+ 2.

ii. Since x′(t) = 5t2 and y′(t) = 12t2, the speed of P is v(t) =
√
x′(t)2 + y′(t)2 =√

25t4 + 144t4 =
√

169t4 = 13t2.

iii. Since the mass of P is equal to 1, the horizontal and vertical components of

the force acting on it are x′′(t) = 10t and y′′(t) = 24t, respectively. By the
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parallelogram law and the Pythagorean theorem, the magnitude of the force on P

is
√
x′′(t)2 + y′′(t)2 =

√
100t2 + 576t2 =

√
676 t = 26t. Since both x′′(t) and y′′(t)

are positive, the horizontal and vertical components of the force act to the right

and upward respectively. It follows that the force pushes P up along the line.

iv. The equation W =

∫ b

a

f(x) dx = 1
2
mv(t1)

2 − 1
2
mv(t0)

2 of Section 10.5.1 connects

work and kinetic energy. Taking m = 1, t0 = 0, t1 = 2 in the case of the point P ,

we get mv(t0)
2 = 0 and mv(t1)

2 = 522 = 2704. Therefore W = 1
2
(2704) = 1352.

v. The formula J =

∫ t1

t0

F (t) dt = mv(t1) −mv(t0) of Section 10.5.2 relates impulse

and momentum. With m = 1, v(t0) = v(0) = 0 and v(t1) = v(2) = 52, we get

J = 52.

10.49. In this problem the point P moves on the z-axis of Figure 10.47b with position given

by z(t) = 13
3
t3 at any time t ≥ 0.

i. Over the time interval [0, 2], the point moves from z(0) = 0 to z(2) = 13
3

(23) = 104
3

.

ii. The speed of the point at any time t is v(t) = z′(t) = 13t2.

iii. Since force = mass × acceleration, the force F (t) on the point is F (t) = z′′(t) =

26t. Since z(t) = 13
3
t3 and hence t = ( 3

13
z(t))

1
3 , we get

26t = 26( 3
13

)
1
3 z(t)

1
3 = (263 3

13
)
1
3 z(t)

1
3 = (23133 3

13
)
1
3 z(t)

1
3 = 2(3 ·132)

1
3 z(t)

1
3 ,

so that the force on the point as a function of the position z is f(z) = 2(3 ·132)
1
3 z

1
3 .

iv. By the fundamental theorem of calculus,

W =

∫ 104
3

0

f(z) dz = 3
2
(3 ·132)

1
3 z

4
3

∣∣∣ 1043
0

= 3
2
(3 ·132)

1
3 (104

3
)
4
3 = 3

2
(3 ·132)

1
3 (2

313
3

)
4
3

= 3
2
(3 ·132)

1
3
24(134)

1
3

(34)
1
3

= 233
(
136

33

) 1
3 = 23132 = 1352.

v. The impulse J of the force from t = 0 to t = 2 is J =

∫ 2

0

26t dt = 13t2
∣∣2
0

= 52.

10.50. Both points move on a line starting at time t = 0 from rest. For any time t ≥ 0 they

have the same velocity v(t) = 13t2. Their accelerations are both a(t) = 26t. It follows

that the motions of the two points on their respective lines are identical.

The next set of problems involve applications of Pappus’s Theorems A and B.

10.51. The length of the semicircle of radius r is πr. Let c be the distance from the centroid

C to the axis of revolution. The path described by C is a circle of radius c so that the

distance C travels is 2πc. Since (by Section 9.4) the surface area of a sphere of radius

r is 4πr2, it follows by Pappus’s Theorem A that (πr)(2πc) = 4πr2. So πc = 2r and

hence c = 2
π
r.
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10.52. The circumference of the circle of radius r is 2πr and the distance traveled by its

centroid (the center C) is 2πR. It follows from Pappus’s Theorem A that the surface

area of the perfect geometric donut is 4π2rR.

10.53. The centroid of the slanting side of the triangle is its midpoint. It follows by using

similar triangles that its distance from the axis of revolution is r
2
. So the centroid

travels a distance of 2π( r
2
) = πr and by Pappus’s Theorem A, the surface area of the

cone is s · πr = πrs.

10.54. Let c be the distance from the centroid C of the region to the axis of revolution.

Since the area of the semicircle is 1
2
πr2, Pappus’s Theorem B tells us that 4

3
πr3 =

(1
2
πr2)(2πc) = π2r2c. It follows that c = 4

3π
r.

10.55. The area of the circle is πr2 and its centroid (the center C) travels a distance 2πR.

By Pappus’s Theorem B the volume of the perfect geometric donut that is generated

is (πr2)(2πR) = 2π2r2R. This is the same answer as that of Example 9.9.

10.56. By Archimedes’s result in Section 2.5, the centroid C of the triangle with base r and

side length s satisfies the condition that ratio of CB′ over BB′ is 1
3
. Since the right

triangles with hypotenuse CB′ and BB′ are similar, the distance c from C to the axis

of revolution satisfies c
r

= 1
3
. So c = r

3
. Since the area of the triangle with base r and

height h is 1
2
rh, it follows that by Pappus’s Theorem B that the volume of the cone

with base radius r and height h is (1
2
rh)(2πc) = (1

2
rh)(2

3
πr) = 1

3
πr2h.

The discussion of the connection between torque and center of mass illustrates the essen-

tial role that integral calculus plays when it comes to the explanation of the basic physics of

force and rotation. The example as well as the two problems that follow study beams that

are homogeneous, in other words beams of constant density ρ(x) = c. As the discussion and

Figure 10.32a demonstrate, for such a beam x̄ = b
2
, so that the center of mass C = (x̄, ȳ)

is the geometric center of the beam. In addition, the torque of the beam of is W · b
2
, where

W is the weight of the beam. If the homogeneous beam is in horizontal position, then b is

equal to the beam’s length L and the torque generated is W · L
2
.

10.57. Let mD be the mass placed at D. With the clown standing at the end of the beam to the

left of B, the counterclockwise torques around B are the 784.8xN-m of the clown with

x = 3 m plus the 176.58 N-m of the beam. Clockwise on the right, we have the torque

of 706.32 N-m of the beam plus the (9.81mD · 6) N-m generated by the mass mD at D.

The mass mD will balance the beam if (784.8)(3) + 176.58 = 706.58 + (9.81)(6)mD. It

follows that the smallest mass placed on the beam at the point D that will allow the

clown to walk all the way to the end of the beam is mD = (784.8)(3)+176.58
706.58+(9.81)(6)

≈ 3.31 kg.

10.58. The weight of the clown is now (9.81)(65) = 637.65 N so that with the clown a distance

x from B, the counterclockwise torque around B to the left is 637.65x + 176.58 N-m.
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The mass of the 9 meters of beam to the right of B is 4 · 9 = 36 kg so that its weight

is (9.81)(36) = 353.16 N-m. So the 9 meters of the beam to right of B produce a

clockwise torque of (353.16)(9
2
) = 1589.22 N-m around B. The tipping point occurs

when 637.65x+ 176.58 = 1589.22, or when x = 1589.22−176.58
637.65

≈ 2.22 meters.

Finally the discussion of the indexes of inertia of the disc and the sphere. The discussion

proceeds in two steps: from the circle to the disc and from the disc to the sphere.

A disc is given by a circle and the region inside it. Consider a thin, homogeneous disc of

radius r and mass m. Since the area of the disc is πr2, the density of the disc is m
πr2

per unit

area.

10.59. i. The circular ring with inner radius xi and thickness ∆xi = xi+1 − xi shown in

Figure 10.54a is the difference between a disc of radius xi+1 and a smaller one of

radius xi. The area of this difference is

πx2i+1 − πx2i = π[(xi + ∆xi)
2 − x2i ] = π[x2i + 2xi∆xi + (∆xi)

2 − x2i ]
= π[2xi∆xi + (∆xi)

2] ≈ 2πxi∆xi.

Since ∆xi is very small compared to xi the term (∆xi)
2 is much smaller yet

(in the same way that (0.0001)2 = 0.0000001 is much smaller than 0.0001) and

can be ignored. It follows that the mass of the circular ring (area × density)

is approximately m
πr2

(2πxi∆xi) = 2m
r2
xi∆xi, so that its index of inertia (mass ×

radius2) is approximately
(
2m
r2
xi∆xi

)
x2i = 2m

r2
x3i∆xi.

ii. By summing up all these indices of inertia we get the approximation
n−1∑
i

2m
r2
x3i∆xi

of the index of inertia of the homogeneous disc of radius r and mass m. By

repeating this construction with partitions P of smaller and smaller norm, we see

in the limit that the index of inertia of the homogeneous disc of radius r and mass

m is

lim
‖P‖→0

n−1∑
i=0

2m
r2
x3i∆xi =

∫ r

0

2m
r2
x3 dx.

By the fundamental theorem of calculus this is equal to
(
2m
r2

x4

4

) ∣∣∣r
0

= 1
2
mr2.

Finally, there is the step from the disc to the sphere. The sphere in this context refers

the solid that it encloses. Suppose that the sphere is homogeneous with radius r and mass

m. Since the volume of the sphere is 4
3
πr3, its density is m

4
3
πr3

= 3
4
m
πr3

per unit volume.

10.60. The ouline of the solution—this time using the more succinct dx notation introduced

in Section 9.1—along with the many examples of the definite integral already discussed

(in Sections 9.1 to 9.5 and above) should be sufficient to allow the industrious reader

to fill in the details that the assertions in parts (i) and (ii) call for.
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