
Solutions to Problems and Projects for Chapter 9

9.1. This is a warm up exercise using a basic result from Section 6.2.

i. F (x) = 2 · 1
4
x4 + C = 1

2
x4 + C

ii. F (x) = 5 · 3
4
x

4
3 + C = 15

4
x

4
3 + C

iii. F (x) = 3 · 1
6
x6 + 1

4
· 7
9
x

9
7 + C = 1

2
x6 + 7

36
x

9
7 + C

iv. F (x) = 6 · 1
5
x5 − 3

8
· 3
8
x

8
3 + C = 6

5
x5 − 9

64
x

8
3 + C

9.2. By antidifferentiating term by term,∫
(1− 3x2 + 2x−

1
2 ) dx = x− x3 + 4x

1
2 + C∫

(−1
3
x−2 + 8x

1
3 ) dx = 1

3
x−1 + 6x

4
3 + C∫

(−4 + 3x−2 + 7x
1
2 ) dx = −4x− 3x−1 + 14

3
x

3
2 + C

9.3. i.
∫ 3

0

x2 dx = 1
3
x3
∣∣∣3
0

= 9− 0 = 9

ii.
∫ −2
−8

x−2 dx = −x−1
∣∣∣−2
−8

= − 1
x

∣∣∣−2
−8

= − 1
−2 − (− 1

−8) = 4
8
− 1

8
= 3

8

iii.
∫ 12

3

x
1
2 dx = 2

3
x

3
2

∣∣∣12
3

= 2
3

(√
12

3 −
√

3
3
) = 2

3

(
23
√

3
3 −
√

3
3
) = 2

3
(7 · 3

√
3) = 14

√
3

9.4. With the antiderivative F (x) = 2
3
x

3
2 +2x, we get

∫ 9

0

(x
1
2 +2) dx = 2

3
x

3
2 +2x

∣∣9
0

= 2
3
(33)+18 = 36.

0 9

f (x) =   x + √ 2

9.5. The graph of y = x3 is sketched in Figure 5.11(c). By raising this graph by 1 unit, the graph

of f(x) = x3 + 1 is obtained. The area is given by
∫ 4

0

(x3 + 1) dx = 1
4
x4 + x

∣∣4
0

= 64 + 4 = 68.

9.6. At its highest point, the parabola y = −3x2 + 9x + 1 has a horizontal tangent. At the
x-coordinate of this point the derivative dy

dx
= −6x + 9 is equal to 0, so that x = 9

6
= 3

2
.

The y-coordinate of the corresponding point on the parabola is y = −3(3
2
)2 + 9(3

2
) + 1 =

27
4

+ 1 = 31
4
. The x-coordinates of the points of intersection of the parabola with the x-axis

satisfy −3x2 + 9x+ 1 = 0, so that x =
−9±
√

92−4(−3)(1)
−6 = 9±

√
93

6
≈ −0.11 or 3.11. We can now



conclude that the area in question lies above the x-axis. It is equal to∫ 9+
√
93

6

9−
√

93
6

(−3x2 + 9x+ 1) dx = −x3 + 9
2
x2 + x

∣∣∣ 9+√93
6

9−
√
93

6

= −
(
9+
√
93

6

)3
+ 9

2

(
9+
√
93

6

)2
+ 9+

√
93

6
−
[
−
(
9−
√
93

6

)3
+ 9

2

(
9−
√
93

6

)2
+ 9−

√
93

6

]
≈ 16.554+0.054 ≈ 16.62.

9.7. Let’s first get a sense for the shape and location of this area. At its highest point, the parabola
y = −x2 + 9x − 6 has a horizontal tangent. Since dy

dx
= −2x + 9, this occurs for x = 9

2
. The

corresponding y-coordinate is −(9
2
)2 + 9·9

2
− 6 = −81

4
+ 81

2
− 6 = 81−24

4
= 57

4
. The parabola

1 8

y = 2

intersects the line y = 2 for x satisfying −x2 + 9x − 6 = 2 or x2 − 9x + 8 = 0 and hence for

x =
9±
√

92−4(1)(8)
2

= 9±
√
49

2
= 1 or 8. The required area is given by∫ 8

1

(−x2+9x−6) dx − 2(8−1) = −1
3
x3+ 9

2
x2−6x

∣∣8
1
−14 = −1

3
83+ 9

2
82−6·8−(−1

3
+ 9

2
−6)−14

= 8(−128
6

+ 216
6
− 36

6
)− (−2

6
+ 27

6
− 36

6
)− 14 = 8·52

6
+ 11

6
− 84

6
= 343

6
= 571

6
.

9.8. The first thing we need to do is to find the x-coordinates of the points of intersection of the
parabola and the line. They are obtained by solving x2 − 5x− 8 = 0 for x. By the quadratic

formula x =
5±
√

25−4(1)(−8)
2

= 5±
√
57

2
≈ −1.275 or 6.275. We’ll use the “strip” strategy of

Section 9.2 to compute volumes. So let x be any coordinate with 5−
√
57

2
≤ x ≤ 5+

√
57

2
and

y = x2

x

dx

place a strip of thickness dx as shown in the figure. The upper end of the strip has y-coordinate
y = 5x+ 8 and the lower end of the strip has coordinate y = x2. So the length of the strip is

2



5x+ 8− x2. Since its width is dx, its area is (5x+ 8− x2) dx. The sum of all the areas of all
the strips with x varying from x = 5−

√
57

2
to x = 5+

√
57

2
adds up to the area between the line

y = 5x+ 8 and the parabola y = x2. On the other hand, this sum is the integral∫ 5+
√
57

2

5−
√

57
2

(5x+ 8− x2) dx = 5
2
x2 + 8x− 1

3
x3
∣∣∣ 5+√57

2

5−
√
57

2

= 5
2
(5+
√
57

2
)2 + 8(5+

√
57

2
)− 1

3
(5+
√
57

2
)3−

[
5
2
(5−
√
57

2
)2 + 8(5−

√
57

2
)− 1

3
(5−
√
57

2
)3
]

≈ 66.278 + 5.445 = 71.723.

9.9. Solving x2 + y2 = 4 for y gives y = ±
√

4− x2. The graph of y =
√

4− x2 is the upper half of
the circle and the graph of y = −

√
4− x2 is the lower half. Notice that the definite integral∫ 2

0

√
4− x2 dx

represents the area of one quarter of the circle of radius 2. So
∫ 2

0

√
4− x2 dx = 1

4
π(2)2 = π.

The same argument with the circle x2+y2 = a2 of radius a tells us that
∫ a

0

√
a2 − x2 dx = 1

4
πa2.

9.10. Since
∫ 5

0

5
2

√
52 − x2 dx = 5

2

∫ 5

0

√
52 − x2 dx, we get applying the conclusion of Problem 9.9

that
∫ 5

0

5
2

√
52 − x2 dx = 5

2
· 1
4
π52 = 125

8
π.

9.11. A look at Figure 4.24 tells us that this area is
∫ π

2

−π
2

cosx dx = sinx
∣∣∣π2
−π

2

= 1 − (−1) = 2. Not

surprisingly, this is equal to the area under one loop of the sine curve. See Section 9.13.

9.12. i.
∫ 8

2

1
x
dx = ln 8− ln 2 = ln 8

2
= ln 22 = 2 ln 2 ≈ 1.386.

ii.
∫ 4

−1
ex dx = ex

∣∣4
−1 = e4 − 1

e
≈ 54.23.

9.13.
∫ ln 5

ln 2

ex dx = ex
∣∣ln 5

ln 2
= eln 5 − eln 2 = 5− 2 = 3.

9.14.
∫ 7

3

1
x
dx = lnx

∣∣7
3

= ln 7− ln 3 = ln 7
3
≈ 0.847.

The next four problems illustrate what has been described in Section 9.1 in the abstract. Similar
computations were already carried out in Section 5.6.

9.15. i.
3∑
i=0

g(xi)∆xi = g(0)0.3 + g(0.3)0.2 + g(0.5)0.2 + g(0.7)0.3

= (4− 02)0.3 + (4− 0.32)0.2 + (4− 0.52)0.2 + (4− 0.72)0.3 = 3.785.

The corresponding graph is sketched in (a) below.
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ii.
5∑
i=0

g(xi)∆xi = g(0)0.2 + g(0.2)0.2 + g(0.4)0.1 + g(0.5)0.2 + g(0.7)0.2 + g(0.9)0.1

= (4−02)0.2+(4−0.22)0.2+(4−0.42)0.1+(4−0.52)0.2+(4−0.72)0.2+(4−0.92)0.1

= 3.747.

The graph corresponding to this situation is sketched in (b) below.

0 1 0 1

(a)            (b)

iii. The partitions of both (i) and (ii) are coarse relative to the length 1 of the given interval
and therefore each of the approximations of the area under the graph are rough. Using
the fundamental theorem of calculus we see that the exact value of the area under the

graph is
∫ 1

0

(4 − x2) dx = 4x − 1
3
x3
∣∣1
0

= 4 − 1
3

= 32
3
≈ 3.67. The second partition is

somewhat tighter and provides the better approximation.

9.16. i. Since 1
3
< 1

2
< 1 < 2 < 21

3
< 3 (note the correction x4 = 21

3
), we get

∆x0 = 1
2
− 1

3
= 1

6
,∆x1 = 1− 1

2
= 1

2
,∆x2 = 2−1 = 1,∆x3 = 21

3
−2 = 1

3
,∆x4 = 3−21

3
= 2

3
,

so that 4∑
i=0

f(xi)∆xi = f(1
3
)1
6

+ f(1
2
)1
2

+ f(1)1 + f(2)1
3

+ f(21
3
)2
3
.

= 3 · 1
6

+ 2 · 1
2

+ 1 · 1 + 1
2
· 1
3

+ 3
7
· 2
3

= 220
21
≈ 2.952.

ii. Now 1
3
< 1

2
< 2

3
< 1 < 3

2
< 2 < 21

3
< 3 and hence

∆x0 = 1
2
−1

3
= 1

6
,∆x1 = 2

3
−1

2
= 1

6
,∆x2 = 1−2

3
= 1

3
,∆x3 = 3

2
−1 = 1

2
,

∆x4 = 2−3
2

= 1
2
,∆x5 = 21

3
−2 = 1

3
,∆x6 = 3−21

3
= 2

3
,

6∑
i=0

f(xi)∆xi = f(1
3
)1
6

+ f(1
2
)1
6

+ f(2
3
)1
3

+ f(1)1
2

+ f(3
2
)1
2

+ f(2)1
3

+ f(21
3
)2
3
.

= 3 · 1
6

+ 2 · 1
6

+ 3
2
· 1
3

+ 1 · 1
2

+ 2
3
· 1
2

+ 1
2
· 1
3

+ 3
7
· 2
3

= 213
21
≈ 2.619.

iii. The fact that d
dx

lnx = 1
x
(see Section 7.11) and the fundamental theorem of calculus

together imply that
∫ 3

1
3

1
x
dx = lnx

∣∣3
1
3

= ln 3− ln 3−1 = 2 ln 3 ≈ 2.197.
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9.17. Proceeding from left to right and adding as before, we get
1
2
(0.3) + 1

2.3
(0.2) + 1

2.5
(0.4) + 1

2.9
(0.5) + 1

3.4
(0.2) + 1

3.6
(0.4)

= 0.150 + 0.087 + 0.160 + 0.172 + 0.059 + 0.111 = 0.739.

This is a rough approximation of the area under the graph of y = 1
x
over the interval from 2 to 4

on the x-axis. The precise value of this area is
∫ 4

2

1
x
dx = ln x

∣∣4
2

= ln 4− ln 2 = ln 2 ≈ 0.693.

This computation involves facts from Section 7.11.

9.18. Proceeding from left to right and adding, we get

0· 1
9

+
√

1
9
·1
9

+
√

2
9
·2
9

+
√

4
9
·3
9

+
√

7
9
·4
9

+
√

11
9
·5
9

+
√

16
9
·2
9

= (1
3

+ 2
√
2

3
+ 2 + 4

√
7

3
+ 5

√
11
3

+ 8
3
)1
9
≈ 1.67.

This is a rough approximation of the area under the graph of y =
√
x from 0 to 2. The

precise value is
∫ 2

0

√
x dx =

∫ 2

0

x
1
2dx = 2

3
x

3
2

∣∣2
0

= 2
3
(
√

2)3 ≈ 1.89.

9.19. The relevant formula is
∫ √

a2 − x2 dx = 1
2

[
x
√
a2 − x2 +a2 sin−1 x

a

]
+C with a = 2. Applying

it twice, we get∫ 2

0

√
4− x2 dx = 1

2

[
x
√

4− x2 + 4 sin−1 x
2

]∣∣2
0

= 1
2
(0 + 4 · π

2
)− 0 = π and∫ √2

−
√
2

√
4− x2 dx = 1

2

[
x
√

4− x2 + 4 sin−1 x
2

]∣∣√2
−
√
2

= 1
2

[
(
√

2 ·
√

2 + 4 sin−1
√
2
2

)− ((−
√

2) ·
√

2 + 4 sin−1−
√
2

2
)
]

= 1
2
(2 + 4 · π

4
+ 2− 4(−π

4
)π) = 2 + π.

The circle in question has center the origin and radius 2. To interpret the two integrals
as parts of the area of this circle refer to the figure below. Figure (a) tells us that the first
integral is equal to one-fourth of the area of a circle of radius 2. This is 1

4
· 22π = π and

confirms our earlier result. Now turn to Figure (b). Notice that the points singled out are

(a)                    (b) 

0 2 √2√2−

(−
√

2,
√

2) and (
√

2,
√

2). Since the segments connecting them to the origin lie on the lines
y = −x and y = x, respectively, it follows that these segments are perpendicular to each
other. In view of the figure, the area that the second integral represents consists of one
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quarter of the circle plus two triangles with base
√

2 and height
√

2. So this area is equal to
1
4
22π + 2(1

2
(
√

2 ·
√

2)) = π + 2.

9.20. The fourth term is 4( 3
10,000

)3 1
10,000

and the next to last term is 4(5 + 9,,998
10,000

)3 1
10,000

. Since
1
n

= dx = 1
10,000

we see that n = 10,000. The partition a = x0, x1, . . . , xn−1, xn = b is

0, 1
10,000

, 2
10,000

, . . . , 5 + 9,,999
10,000

, 5 + 10,,000
10,000

= 6,

f(x) = 4x3 and the integral that the sum approximates is
∫ 6

0

4x3 = x4
∣∣6
0

= 64 = 1296.

9.21. Since dx = 1
10,000

, it follows that n = 10,000. The partition starts with a = x0 = 5 and jumps
by 1

10,000
at each step. So x1 = 5+ 1

10,000
, x2 = 5+ 2

10,000
, · · · , xn−1 = 5+ 9,999

10,000
, and xn = b = 6.

Taking f(x) =
√
x, and substituting into

n−1∑
i=0

f(xi)∆xi, we get the sum above. It follows that

the sum is approximated by the integral∫ 6

5

√
x dx = 2

3
(x)

3
2

∣∣6
5

= 2
3
(6

3
2 − 5

3
2 ) ≈ 2.34.

Note the correction of the answer in the text. Alternatively, with dx = 1
n

= 1
10,000

, the choices

a = x0 = 0, xn = b = 1, and f(x) =
√

5 + x work as well. The integral
∫ 1

0

√
5 + x dx =

2
3
(5 + x)

3
2

∣∣1
0
provides the same result. (This integral reduces to the first with the substitution

u = x+ 5.)

9.22. i. There is very little to do in this part except to realize that i is the only variable in the
expression and that constants can be factored out. It follows that

n−1∑
i=0

f(xi)∆xi =
n−1∑
i=0

(
ib
n

)2 b
n

=
n−1∑
i=0

i2b2

n2
b
n

=
(
b3

n3

)n−1∑
i=0

i2.

ii. After reviewing the principle of mathematical induction from segment 3E of Section 3.8,
let Sk be the statement 12 + 22 + 32 + · · · + (k − 1)2 = (k−1)k(2k−1)

6
. Note that the

statement—whether true or not—makes sense for any k ≥ 2. So with regard to your
review, m = 2. Note first that S2 is true because 12 = 1 = (2−1)(2)(2·2−1)

6
= 6

6
. We’ll now

prove for any k ≥ 2, that the truth of Sk implies the truth of Sk+1. So we’re assuming
that

12 + 22 + 32 + · · ·+ (k − 1)2 = (k−1)k(2k−1)
6

is correct. After adding k2 to both sides, we get

12 + 22 + 32 + · · ·+ (k − 1)2 + k2 = (k−1)k(2k−1)
6

+ k2.

Working with the right side, we get
(k−1)k(2k−1)

6
+ k2 = k[ (k−1)(2k−1)

6
+ k] = k[ (k−1)(2k−1)+6k

6
] = k[2k

2+3k+1
6

]

= k[ (k+1)(2k+1)
6

] = k(k+1)(2(k+1)−1)
6

.
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So

12 + 22 + 32 + · · ·+ (k − 1)2 + k2 = k(k+1)(2(k+1)−1)
6

.

Note therefore that Sk+1 is true. We have verified for any k ≥ 2 that the truth of Sk
implies the truth of Sk+1. It follows from the principle of mathematical induction that
Sk is true for all k ≥ 2. So with n in place of k, Sn is true for all n ≥ 2.

iii. We know that
n−1∑
i=0

i2 = 0 + 12 + 22 + 32 + · · ·+ (n− 1)2 = (n−1)n(2n−1)
6

for any n and therefore that
n−1∑
i=0

f(xi)∆xi =
(
b3

n3

)n−1∑
i=0

i2 = b3

n3

(n−1)n(2n−1)
6

= b3

3
(n−1)n(2n−1)

2n3 = b3

3

(
2n3−3n2+n

2n3

)
= b3

3

(
1− 3

2n
+ 1

2n2

)
iv. If follows from the initial information for the problem that all the ∆xi are equal to 1

n
. By

letting n go to infinity in part (iii), two things happen simultaneously: All the ∆xi go to

zero, so that
n−1∑
i=0

f(xi)∆xi closes in on
∫ b

0

f(x) dx and at the same time, b3
3

(
1− 3

2n
+ 1

2n2

)
gets pushed to b3

3
. The equality of part (iii) tells us that∫ b

0

x2 dx = b3

3
.

9.23. i. As in the previous problem,
n−1∑
i=0

f(xi)∆xi =
(
b4

n4

)n−1∑
i=0

i3

follows because i is the only variable in the expression and b4

n4 can be factored out.

ii. We’ll let Sk be the statement 13 + 23 + 33 + · · ·+ (k − 1)3 = 1
4
(k − 1)2k2 and follow the

strategy of the principle of mathematical induction of segment 3E of Section 3.8. The
statement Sk (whether true or not) makes sense for any k ≥ 2. Note first that S2 is true
because 13 = 1 = 1

4
(2−1)222. We’ll now prove for any k ≥ 2, that the truth of Sk implies

the truth of Sk+1. So we’re assuming that

13 + 23 + 33 + · · ·+ (k − 1)3 = 1
4
(k − 1)2k2

is correct. After adding k3 to both sides, we get

13 + 23 + 33 + · · ·+ (k − 1)3 + k3 = 1
4
(k − 1)2k2 + k3.

Since
1
4
(k − 1)2k2 + k3 = 1

4
k2((k − 1)2 + 4k) = 1

4
k2(k2 − 2k + 1 + 4k) = 1

4
k2(k + 1)2

it follows that
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13 + 23 + 33 + · · ·+ (k − 1)3 + k3 = 1
4
k2(k + 1)2

and that hence Sk+1 is true. We have verified for any k ≥ 2 that the truth of Sk implies
the truth of Sk+1. Therefore by the principle of mathematical induction, Sk is true for
all k ≥ 2. Changing notation from k to n tells us that Sn is true for any n ≥ 2.

iii. We now know that
n−1∑
i=0

i3 = 0 + 13 + 23 + 33 + · · ·+ (n− 1)3 = 1
4
(n− 1)2n2

and therefore that
n−1∑
i=0

f(xi)∆xi =
(
b4

n4

)n−1∑
i=0

i3 = b4

n4
1
4
(n− 1)2n2 = b4

4
n4−2n3+n2

n4 = b4

4

(
1− 2

n
+ 1

n2

)
.

iv. From the given of the problem, all ∆xi are equal to 1
n
. So by pushing n go to infinity in

part (iii),
n−1∑
i=0

f(xi)∆xi closes in on
∫ b

0

f(x) dx and simultaneously b4

4

(
1 − 2

n
+ 1

n2

)
gets

pushed to b4

4
. It follows that ∫ b

0

x3 dx = b4

4
.

9.24. This problem is identical to Problem 5.58. Its solution is attended to in the solution set for
Chapter 5.

9.25. By formula (V1) of Section 9.2 and the fundamental theorem of calculus, this volume is

π

∫ 1

−2
(ex)2 dx = π

∫ 1

−2
e2x dx = 1

2
e2x
∣∣1
−2 = 1

2
(e2 − e−4) ≈ 3.69.

9.26. We need an antiderivative of tanx = sinx
cosx

. Let g(x) = cos x. Since g′(x) = − sinx, we see that
tanx = −g′(x)

g(x)
. By a formula of Section 7.11, d

dx
(− ln |g(x)|) = −g′(x)

g(x)
so that d

dx
(− ln |cosx|) =

tanx. Using cos π
4

=
√
2
2
, cos 0 = 1, and basic properties of the log function from Section 7.11,∫ π

4

0

tanx dx = − ln | cosx |
∣∣π4
0

= − ln | cos π
4
| − (− ln | cos 0 |)

= − ln
√
2
2

+ ln 1 = − ln 2
1
2 + ln 2 + 0

= −1
2

ln 2 + ln 2 = 1
2

ln 2 ≈ 0.347.

This is the area under the graph of y = tanx over the interval [0, π
4
]. See Figure 4.26.

9.27. i. Since
√

1 + 4x2 ≥ 0, the definite integral
∫ 5

1

√
1 + 4x2 dx is the area under the graph of

the function f(x) =
√

1 + 4x2 over the interval 1 ≤ x ≤ 5.

ii. This integral is also the length of the graph of the function f(x) = x2 from the point
(1, 1) to the point (5, 25). This follows from the length of graphs formula in Section 9.3
and the observation that with f(x) = x2, f ′(x) = 2x and f ′(x)2 = 4x2.
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9.28. i. Since
√

1 + x ≥ 0, the integral
∫ 3

0

√
1 + x dx is the area under the graph of f(x) =

√
1 + x from x = 0 to x = 3.

ii. For y = g(x) = 1√
π
(1 + x)

1
4 , πg(x)2 = (1 + x)

1
2 so that by a formula in Section 9.2 this

integral is also the volume obtained by rotating the region under the graph of g(x) for
0 ≤ x ≤ 3 one revolution about the x-axis.

iii. Finally for h(x) = 2
3
x

3
2 , h′(x)2 = x, so that by Section 9.3 the integral is the the length

of the part of the graph of h(x) = 2
3
x

3
2 from (0, 0) to (3, 2

3
3
√

3) = (3, 2
√

3).

9.29. Since the circle with center (r, 0) and radius r has equation (x− r)2 + y2 = r2, the upper half
of this circle is the graph of the function y =

√
r2 − (x− r)2 with 0 ≤ x ≤ 2r. The volume

obtained by revolving the region under this graph around the x-axis is

π

∫ 2r

0

(r2 − (x− r)2) dx = π

∫ 2r

0

(−x2 + 2rx) dx = π(−1
3
x3 + rx2)

∣∣∣2r
0

= 4
3
πr3.

9.30. The segment from 0 to (h, r) in Figure 9.46 has slope r
h
and lies on the line y = r

h
x. So the

volume obtained by revolving the segment is

π

∫ h

0

( r
h
)2x2 dx = π · r2

3h2
x3
∣∣∣h
0

= 1
3
πr2h.

9.31. This volume is given by

π

∫ 4

0

(
√
x)2 dx = π

∫ 4

0

x dx = π · 1
2
x2
∣∣∣4
0

= 8π.

9.32. Check that

π

∫ π
2

0

sin2 x dx+ π

∫ π
2

0

cos2 x dx = π

∫ π
2

0

(sin2 x+ cos2 x) dx = π

∫ π
2

0

1 dx = πx
∣∣∣π2
0

= π2

2
.

Notice that π
∫ π

2

0

sin2 x dx = π

∫ π
2

0

cos2 x dx by studying the relevant areas under the graphs

of Figure 4.23 and 4.24. It follows that both of these integrals are equal to π2

4
.

9.33. Since dy
dx

= 2x, the length of is arc is given by the integral∫ 5

2

√
1 +

(
dy
dx

)2
dx =

∫ 5

2

√
1 + 4x2 dx.

This integral is also the area under the graph of y =
√

1 + 4x2 from x = 2 to x = 5.

9.34. Refer to Figure 9.47. Since the distance from B to the origin is 2, the x-coordinate of B is equal
to x = 2 cos 60◦ = 1 in case (a), x = 2 cos 45◦ = 2

√
2
2

=
√

2 in case (b), and x = 2 cos 30◦ =

2
√
3
2

=
√

3 in case (c). With f(x) = (4− x2) 1
2 , we get f ′(x) = 1

2
(4− x2)− 1

2 (−2x) = −x√
4−x2 . So

f ′(x)2 = x2

4−x2 and hence√
1 + f ′(x)2 =

√
1 + x2

4−x2 =
√

4−x2+x2
4−x2 =

√
4

4−x2 = 2√
4−x2 .

Since the radius of the circle is 2, its upper half is 2π units long, so that the lengths of the
circular arcs from A and B are 2π

6
, 2π

4
, and 2π

3
, respectively. So by the length formula of

9



Section 9.3,
∫ 1

0

2√
4−x2 dx = 2π

6
. This verifies the first equality. The other two follow in the

same way.

9.35. The description of the process leading to the formula V =

∫ d

c

A(y) dy is complete. It follows

the script of Section 9.1. The only difference is the fact that the partition involves an interval
of the y-axis rather than the x-axis. The argument is valid for any interval [c, d] on the y-axis
and not just those on the positive y-axis (as depicted in Figure 9.48).

9.36. The circle below depicts the cross of the sphere with the xy-plane. Let (x, y) be an arbitrary
point on this circle with x ≥ 0. Its coordinates satisfy the equation x2 + y2 = r2, where r is

(x, y) 
y 

the radius of the sphere. The circle determined by cutting the sphere with a plane through its
y-coordinate (x, y) perpendicular to the y-axis is also shown. Since its radius is x =

√
r2 − y2,

the area of this horizontal circle is A(y) = π(r2 − y2). It follows from the volume formula of
Problem 9.35, that the volume of the sphere of radius r is

V =

∫ r

−r
π(r2 − y2) dy = π(r2y − y3

3
)
∣∣∣r
−r

= π
(
(r3 − r3

3
)− (r2(−r)− (−r)3

3
)
)

= 4
3
πr3.

9.37. By the surface area formula of Section 9.4 applied to f(x) = x
1
2 , we get

S = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx = 2π

∫ b

a

x
1
2

√
1 + (1

2
x−

1
2 )2 dx = 2π

∫ b

a

√
x(1 + x−1

4
) dx

= 2π

∫ b

a

√
x+ 1

4
dx.

To evaluate the integral, let u = x+ 1
4
, to get

2π

∫ b+ 1
4

a+ 1
4

u
1
2 du = 2π

[
2
3
u

3
2

∣∣∣b+ 1
4

a+ 1
4

]
= 4

3
π
[
(b+ 1

4
)
3
2 − (a+ 1

4
)
3
2

]
.

9.38. i. The cone has height h = x and radius r = y. Solving (x − R)2 + y2 = R2 for y, we
get y =

√
R2 − (x−R)2 =

√
2Rx− x2. So by Problem 9.30, the volume of the cone is

V (x) = 1
3
πr2h = 1

3
πx(2Rx− x2) with x restricted to 0 ≤ x ≤ 2R.
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ii. By a formula of Section 9.4 the surface area of the cone that the segment from the origin
to (x, y) generates is equal to πys. Since y =

√
2Rx− x2 and s =

√
x2 + y2 =

√
2Rx,

we find that the surface area of the cone is

S(x) = πys = π
√

2Rx− x2
√

2Rx = π
√

2Rx(2Rx− x2) = π(4R2x2 − 2Rx3)
1
2

with x restricted to 0 ≤ x ≤ 2R.

iii. By the product rule,

V ′(x) = 1
3
π[(2Rx− x2) + x(2R− 2x)] = 1

3
π(4Rx− 3x2) = 1

3
πx(4R− 3x)

so that V ′(x) = 0 only for x = 0 and x = 4
3
R. Since V ′(x) > 0 for x < 4

3
R and V ′(x) < 0

for x > 4
3
R, it follows that V (x) reaches its maximum value for x = 4

3
R. This maximum

value is

V (4
3
R) = 1

3
π(4

3
R)
(
2R(4

3
R)− (4

3
R)2
)

= (4π
9
R)(24

9
R2 − 16

9
R2) = 32π

81
R3.

Since S ′(x) = 1
2
π(4R2x2 − 2Rx3)−

1
2 (8R2x − 6Rx2) = π

2
2Rx(4R−3x)

(2R)
1
2 x(2R−x)

1
2
, the critical points

of the function S(x) occur at x equal to 0, 4
3
R, and 2R. Since S ′(x) > 0 for 0 < x < 4

3
R

and S ′(x) < 0 for x > 4
3
R, it follows that S(x) reaches its maximum value for x = 4

3
R.

This maximum value is

S(4
3
R) = π

(
4R2(4

3
R)2 − 2R(4

3
R)3
) 1

2 = π(64
9
R4 − 128

27
R4)

1
2 = π(192

27
− 128

27
)
1
2R2 = 8π

3
√
3
R2.

A related problem was considered by Archimedes. Consider the sphere of radius r inscribed in
the cylinder with base the circle of radius r and height 2r. Archimedes had derived the expressions
4
3
πr3 and 4πr2 for the volume and surface area of a sphere of radius r. He knew that the volume and

surface area of the cylinder (including its bases) are (πr2)2r = 2πr3 and (2πr)(2r) + 2πr2 = 6πr2

respectively. So he knew that the respective ratios of the volume and surface area of the sphere to the
volume and surface area of the cylinder are both equal to 2

3
. Archimedes was evidently very proud

of this discovery. According to the eye-witness report of the Roman statesman Cicero in 75 BC, the
fraction 2

3
and a figure of the cylinder and the inscribed sphere were etched on Archimedes’s tomb.

(The location of the tomb today is unknown.)

9.39. The area function A(x) is an antiderivative of f(x) = 1+x+x2 that satisfies A(a) = A(3) = 0.
So A(x) has the form A(x) = x+ 1

2
x2 + 1

3
x3 +C. Since 0 = A(3) = 3 + 9

2
+ 9 +C = 161

2
+C,

it follows that C = −161
2
. Therefore A(x) = x+ 1

2
x2 + 1

3
x3 − 161

2
.

9.40. Since A(x) is an antiderivative of y = cosx satisfying A(π
2
) = 0, we see that A(x) = sin x+C

with 0 = A(π
2
) = 1 + C. Therefore A(x) = sinx− 1.

9.41. This A(x) is an antiderivative of y = sinhx satisfying A(1) = 0. So A(x) = cosh x + C with
0 = A(1) = e1+e−1

2
+ C = e

2
+ 1

2e
+ C. Therefore A(x) = cosh x− ( e

2
+ 1

2e
).

9.42. Since the functions have the same domain (−∞,∞) and since they assign the same value at
each number of this domain (for example f(c) = F (c) = φ(c) = c2 + 3c), these three functions
are identical.
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9.43.
∫ 4

0

√
x dx = 2

3
x

3
2

∣∣4
0

= 2
3
8 = 16

3
. In the same way

∫ 4

0

√
t dt = 2

3
t
3
2

∣∣4
0

= 16
3

and again for the

remaining two integrals. The bottom line is that the variable used for the integrand of a
definite integral has no effect on the value of the integral. It is a so-called “dummy” variable.

9.44. In terms of the variables involved, the definite integral
∫ t

0

√
x dx is equal to a number that

depends only on t. So the rule t −→
∫ t

0

√
x dx defines a function. The value this function

assigns to any t is the number ∫ t

0

√
x dx = 2

3
x

3
2

∣∣t
0

= 2
3
t
3
2 .

So the functions is t −→ 2
3
t
3
2 . The numbers it assigns to 1, 4, and 100 are 2

3
, 2
3
4

3
2 = 16

3
, and

2
3
(100)

3
2 = 2

3
(1000), respectively.

9.45. By applying the fundamental theorem of calculus, we see that

F (x) = −t−1
∣∣x
2

= −x−1 + 1
2
, G(x) = −z−1

∣∣x
2

= −x−1 + 1
2
, and H(t) = −x−1

∣∣t
2

= −t−1 + 1
2
.

So F (4) = 1
4
, G(4) = 1

4
, and H(4) = 1

4
, and for any c, F (c) = −1

c
+ 1

2
, G(c) = −1

c
+ 1

2
,

and H(c) = −1
c

+ 1
2
. It is clear that the three functions are identical. In terms of area, the

functions y = 1
t2
, y = 1

z2
, and y = 1

x2
have identical graphs on their respective (t, y), (z, y), and

(x, y) coordinate planes. So the areas under these graphs from 2 to any fixed number c ≥ 2

are also the same. Since

K(x) =

∫ 2

1

1
t2
dt+

∫ x

2

1
t2
dt =

(
− t−1

∣∣2
1

)
+ F (x) = F (x) +

(
− 1

2
+ 1
)

= F (x) + 1
2
.

So K(x) and F (x) differ by the constant C = 1
2
equal to the area

∫ 2

1

1
t2
dt under the graph of

the function y = 1
t2

from t = 1 to t = 2.

9.46. The fundamental theorem of calculus tells us that∫ x

3

(t2 + 5) dt = (1
3
t3 + 5t)

∣∣x
3

= 1
3
x3 + 5x− (1

3
33 + 15) = 1

3
x3 + 5x− 24.

So the function in question is x −→ 1
3
x3 + 5x− 24. Its value at x = 5 is 125

3
+ 25− 24 = 422

3
.

The problem with defining this function by x −→
∫ x

3

(x2 + 5) dx is the double use of x for

both the variable of the function and a limit of integration. (Under some circumstances this
could lead to serious confusion.)

9.47. The equality highlighted in the box toward the end of Section 9.6 tells us that F ′(x) = x2+3x,
G′(x) = 1

x2
, and K ′(x) =

√
x3 + 5.

9.48. The integral
∫ x

1

1
t
dt defines an area function that has f(x) = 1

x
as its derivative (apply the

equality highlighted toward the end of Section 9.6 to see this). A look at Section 7.11 tells us
that this area function is how the natural log lnx is defined for x ≥ 1.

9.49. Such a definite integral is G(x) =

∫ x

0

√
2t2 + 4 dt. By the equality highlighted toward the end
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of Section 9.6, G′(x) = g(x).

9.50. The circle in question is x2 + y2 = 1. The upper half of the circle is the graph of the function
y =
√

1− x2. For any x with −1 ≤ x ≤ 1, let G(x) be the area under the upper half of the
circle (and above the x-axis) from −1 to x. Observe (after changing variables from x to t)

that G(x) =

∫ x

−1

√
1− t2 dt. Given the equality (in the box) toward the end of Section 9.6, it

follows that G′(x) =
√

1− x2.

9.51. With u = 4x− 5, we get du
dx

= 4 and hence du = 4dx and dx = du
4
. So∫

(4x− 5)
1
2dx =

∫
u

1
2 · du

4
= 1

4

∫
u

1
2 du = 1

4

[
2
3
u

3
2 + C ′

]
= 2

12
(4x− 5)

3
2 + C′

4
= 1

6
(4x− 5)

3
2 + C.

9.52. After trying the other possibilities, you will probably settle on u = 1 − 5x2. With this
substitution, du

dx
= −10x and hence du = −10x dx. So∫
10x(1− 5x2)

2
3 dx =

∫
u

2
3 (−du) = −

∫
u

2
3 du = −

[
3
5
u

5
3 + C ′

]
= −3

5

(
1− 5x2

) 5
3 − C ′ = −3

5
(1− 5x2)

5
3 + C.

9.53. With u = x2 and du = 2x dx, we get∫
x cosx2 dx =

∫
(cosu)(1

2
du) = 1

2

∫
cosu du

= 1
2

[sinu+ C ′] = 1
2

sinx2 + C.

Taking u = sin t, we have du
dt

= cos t and therefore∫
sin3 t cos t dt =

∫
u3 du = u4

4
+ C = 1

4
sin4 t+ C.

9.54. With u = x + 1, the problem with the square root gets resolved. Note that du = dx and
x = u− 1. So ∫

(x− 1)(x+ 1)
1
2 dx =

∫
(u− 2)u

1
2 du =

∫ (
u

3
2 − 2u

1
2

)
du

= 2
5
u

5
2 − 2 · 2

3
u

3
2 + C

= 2
5
(x+ 1)

5
2 − 4

3
(x+ 1)

3
2 + C.

9.55. For the first integral, let u = x+ 3. Because dx = du and x = u− 3, we get∫
x2(x+ 3)

1
2 dx =

∫
(u− 3)2u

1
2 du =

∫
(u2 − 6u+ 9)u

1
2 du

=

∫ (
u

5
2 − 6u

3
2 + 9u

1
2

)
du

= 2
7
u

7
2 − 6 · 2

5
u

5
2 + 9 · 2

3
u

3
2 + C

= 2
7
(x+ 3)

7
2 − 12

5
(x+ 3)

5
2 + 6(x+ 3)

3
2 + C.
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For the second integral, let u = x− 2. Since dx = du and x = u+ 2, we see that∫
x2

(x−2)3 dx =

∫
(u+2)2

u3
du =

∫
u2+2u+4

u3
du

=

∫
(u−1 + 2u−2 + 4u−3) du

= lnu− 2u−1 − 2u−2 + C

= ln(x− 2)− 2(x− 2)−1 − 2(x− 2)−2 + C.

9.56. Let’s try u = tanϕ with −π
2
< ϕ < π

2
. Note that du

dϕ
= sec2 ϕ and du = sec2 ϕdϕ. Therefore∫

sec2 ϕ
tan2 ϕ+1

dϕ =

∫
du
u2+1

.

By Formula (10) from Section 9.11,
∫

du
u2+1

= tan−1 u+ C. So∫
sec2 ϕ

tan2 ϕ+1
dϕ = tan−1(tanϕ) + C = ϕ+ C.

There is a much simpler approach to this problem. Dividing the identity

sin2 ϕ+ cos2 ϕ = 1

by cos2 ϕ, gives us the identity tan2 ϕ+ 1 = sec2 ϕ. So∫
sec2 ϕ

tan2 ϕ+1
dϕ =

∫
dϕ = ϕ+ C.

9.57. With u = x7 + 9, du
dx

= 7x6. Hence du = 7x6 dx and (looking ahead), x6dx = 1
7
du. So∫

5x6

x7+9
dx =

∫
5( 1

7
du)

u
=

∫
5
7
u−1du = 5

7
ln |u|+ C

= 5
7

ln |x7 + 9|+ C.

9.58. Try u = 1 + 2x+ 4x2. So du
dx

= 2 + 8x = 2(1 + 4x). Hence du = 2(1 + 4x)dx. Therefore,∫
(1 + 4x)(1 + 2x+ 4x2)

1
2dx =

∫
u

1
2
du
2

=

∫
1
2
u

1
2 du

= 1
2
· 2
3
u

3
2 + C = 1

3
(1 + 2x+ 4x2)

3
2 + C.

9.59. With u = cosx, du
dx

= − sinx and du = − sinx dx. Therefore∫
tanx dx =

∫
sinx
cosx

dx =

∫
− 1

u
du = ln |u|+ C = ln |cosx|+ C.

9.60. With u = ez + 1, du = ezdz and ez = u− 1. For the first integral we get∫
(ez + 1)

1
2 ezdz =

∫
u

1
2 du = 2

3
u

3
2 + C = 2

3
(ez + 1)

3
2 + C.

For the second one,
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∫
(ez + 1)

1
2 e2zdz =

∫
(ez + 1)

1
2 ez · ezdz

=

∫
u

1
2 (u− 1)du =

∫
(u

3
2 − u

1
2 )du

= 2
5
u

5
2 − 2

3
u

3
2 + C

= 2
5
(ez + 1)

5
2 − 2

3
(ez + 1)

3
2 + C.

9.61. For the first integral, let u = 1−x2. So du = −2x dx and x dx = −1
2
du. For both x = −1 and

x = 1, u = 0. It follows that∫ 1

−1

√
1− x2x dx =

∫ 0

0

−1
2
u

1
2 du = 0.

Alternatively,∫ √
1− x2x dx =

∫
−1

2
u

1
2 du = −1

2
· 2
3
u

3
2 + C = −1

3
(1− x2)

3
2 + C.

An application of the fundamental theorem of calculus confirms the earlier result.

For the second integral, let u = 3 + 5x3. So du = 15x2 dx. It follows that∫ 3

−1
(3 + 5x3)

3
2x2 dx =

∫ 138

−2

1
15
u

3
2 du = 1

15
· 2
5
u

5
2

∣∣138
−2 = 2

75

(
138

5
2 − (−2)

5
2

)
.

Now we see that there is a problem because (−2)
5
2 = ((−2)

1
2 )5 is not defined. For the integrand

(3 + 5x3)
3
2x2 to be defined we need 3 + 5x3 ≥ 0, hence x3 ≥ −3

5
and x ≥ −(3

5
)
1
3 ≈ −0.84.

Since the integrand is not defined for −1 ≤ x < −(3
5
)
1
3 the integral does not make sense.

9.62. Let u = 1 + 4x
1
3 . So du

dx
= 4

3
x−

2
3 and hence x−

2
3dx = 3

4
du. When x = 1 and x = 8, u = 5 and

u = 9, respectively. Therefore,∫ 8

1

x−
2
3

√
1 + 4x

1
3dx =

∫ 9

5

u
1
2 · 3

4
du =

∫ 9

5

3
4
u

1
2 du

=
[
3
4
· 2
3
u

3
2

∣∣9
5

]
= 1

2
9

3
2 − 1

2
5

3
2

= 1
2
· 33 − 1

2

(√
5
)3

= 1
2

(
27− 5

√
5
)
.

9.63. Let u = lnx. So du
dx

= 1
x
and du = dx

x
. For x = 1 and 3, respectively u = 0 and ln 3. Therefore,∫ 1

3

(lnx)2

x
dx = −

∫ 3

1

(lnx)2

x
dx = −

∫ ln 3

0

u2 du

= −1
3
u3
∣∣ln 3

0
= −1

3
(ln 3)3.

9.64. Starting with u = x and dv = cosx dx, we get du = dx and v = sinx. So∫
x cosx dx =

∫
u dv = uv −

∫
v du = x sinx−

∫
sinx dx

= x sinx+ cosx+ C.
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9.65. With u = x and dv = e5x dx, we get du = dx and v = 1
5
e5x. So∫

xe5x dx =

∫
u dv = uv −

∫
v du = x · 1

5
e5x −

∫
1
5
e5x dx

= x
5
e5x − 1

5
· 1
5
e5x + C = x

5
e5x − 1

25
e5x + C.

Turning to the integral
∫
x2e5xdx, let’s check whether u = x2 and dv = e5xdx accomplishes

anything. Since du = 2x dx and v = 1
5
e5x, we get∫

x2e5xdx =

∫
u dv = uv −

∫
v du = x2 · 1

5
e5x −

∫
2x · 1

5
e5xdx

= x2

5
e5x − 2

5

∫
xe5xdx.

Notice that the integral has been reduced to the one already solved earlier. So∫
x2e5x dx = x2

5
e5x − 2

5

[
x
5
e5x − 1

25
e5x + C ′

]
= x2

5
e5x − 2x

25
e5x + 2

125
e5x + C.

9.66. Proceeding as suggested, we have u = lnx, dv = x dx, as well as du = 1
x
dx and v = x2

2
. So∫

x lnx dx =

∫
u dv = uv −

∫
v du

= x2

2
lnx−

∫
x2

2
· 1
x
dx = x2

2
lnx− 1

2

∫
x dx

= x2

2
lnx− 1

4
x2 + C.

The suggestion is to let u = lnx and hence dv = x2 dx. So du = 1
x
dx, v = x3

3
, and we get∫

x2 lnx dx =

∫
u dv = uv −

∫
v du = x3

3
lnx−

∫
x3

3
· 1
x
dx

= x3

3
lnx− 1

3

∫
x2 dx = x3

3
lnx− 1

9
x3 + C.

9.67. i. Integrating by parts with u = ln(x2 + 1), dv = dx, and hence du = 2x
x2+1

and v = x

transforms
∫

ln(x2 + 1) dx =

∫
u dv into uv −

∫
v du = x ln(x2 + 1)− 2

∫
x2

x2+1
dx.

ii. By a polynomial division x2

x2+1
= 1− 1

x2+1
or by noticing that 1− 1

x2+1
= x2+1−1

x2+1
= x2

x2+1
,

we see that
∫

x2

x2+1
dx =

∫
(1− 1

x2+1
) dx = x−

∫
1

x2+1
dx. Therefore the integral of (i) is

equal to x ln(x2 + 1)− 2

∫
x2

x2+1
dx = x ln(x2 + 1)− 2x+ 2

∫
1

x2+1
dx.

iii. By a result of Section 9.9.1, d
dx

tan−1 x = 1
x2+1

. So from (ii),∫
ln(x2 + 1)dx = x ln(x2 + 1)− 2x+ 2 tan−1x+ C.

iv. Differentiating the function x ln(x2 + 1)− 2x+ 2 tan−1x, we get

ln(x2 + 1) + x · 2x
x2+1
− 2 + 2

x2+1
= ln(x2 + 1) + 2x2−2(x2+1)+2

x2+1
= ln(x2 + 1),

so that this function is the antiderivative we need.
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9.68. Let z = t
1
2 . So dz = 1

2
t−

1
2 dt and

∫
cos t

1
2 dt =

∫
(cos z) · 2z dz = 2

∫
z cos z dz. Now let u = z

and dv = cos z dz. So du = dz and v = sin z. Therefore,∫
z cos z dz =

∫
u dv = uv −

∫
v du

= z sin z −
∫

sin z dz = z sin z + cos z + C ′.

It follows that ∫
cos t

1
2 dt = 2 [z sin z + cos z + C ′] = 2t

1
2 sin t

1
2 + 2 cos t

1
2 + C.

9.69. By applying the partial fractions maneuver,

1

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3
=
A(x− 3) +B(x− 2)

(x− 2)(x− 3)
=

(A+B)x− (3A+ 2B)

(x− 2)(x− 3)

so that A + B = 0 and 3A + 2B = −1. Since B = −A and 3A − 2A = −1, we get A = −1

and B = 1. Combining this computation with the fact (from Section 7.11) that ln |g(x)| is an
antiderivative of g′(x)

g(x)
for any differentiable function y = g(x), we get∫

1
(x−2)(x−3) dx =

∫
−1
x−2 dx+

∫
1

x−3 dx = − ln |x− 2|+ ln |x− 3|+ C.

9.70. By the partial fractions maneuver once more,

x+ 1

(x+ 2)(x− 3)
=

A

x+ 2
+

B

x− 3
=
A(x− 3) +B(x+ 2)

(x+ 2)(x− 3)
=

(A+B)x− (3A− 2B)

(x+ 2)(x− 3)

and hence A + B = 1 and 3A− 2B = −1. Adding 2A + 2B = 2 and 3A− 2B = −1, we get
A = 1

5
and hence B = 4

5
. So x+1

(x+2)(x−3) =
1
5

x+2
+

4
5

x−3 . Turning to the fact from Section 7.11

that ln |g(x)| is an antiderivative of g′(x)
g(x)

for any differentiable function y = g(x), we get∫
x+1

(x+2)(x−3) dx = 1
5

∫
1

x+2
dx+ 4

5

∫
1

x−3 dx = 1
5

ln |x+ 2|+ 4
5

ln |x− 3|+ C.

9.71. Since tanh−1x is involved, we will assume that −1 < x < 1. To see why, consider Figure 9.38

and the discussion that precedes it. The equality
∫

1
x2−1 dx = 1

2
ln
∣∣x−1
x+1

∣∣+C is the case s = 1

of an equality verified in Section 9.7.3. It follows that∫
1

1−x2 dx = −1
2

ln
∣∣x−1
x+1

∣∣+ C = 1
2

ln
∣∣x−1
x+1

∣∣−1 + C = 1
2

ln
∣∣x+1
x−1

∣∣+ C.

Since −1 < x < 1, it follows that 1 > −x > −1. Hence both 1 + x > 0 and 1 − x > 0. So
x+1
x−1 > 0 and hence by fact 3 of Section 9.9.2,∫

1
1−x2 dx = 1

2
ln
(
1+x
1−x

)
+ C = tanh−1 x+ C.

The formula
∫

1
1−x2 dx = 1

2
ln
∣∣x+1
x−1

∣∣+C is valid for all x except x = ±1 and has much greater

applicability than the formula involving tanh−1 x+ C as it requires that −1 < x < 1.
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9.72. Review the procedure described in Section 9.8 that leads from the graph of any increasing or
decreasing function y = f(x) to the graph of its inverse y = f−1(x). Applying it to the graph
of y = f(x) =

√
r2 − x2 for 0 ≤ x ≤ r we see that the graph of the inverse is the same as the

graph of the function. Two functions that have identical graphs must be the same function.
It follows that y = f−1(x) =

√
r2 − x2 with 0 ≤ x ≤ r. To verify this explicitly, let’s solve

y =
√
r2 − x2 for x under the assumption that 0 ≤ x ≤ r. Doing this, we get y2 = r2−x2, hence

x2 = r2 − y2, and therefore x =
√
r2 − y2. So the rule for the inverse is f−1(y) =

√
r2 − y2.

Noting that 0 ≤ y ≤ r and relabeling the variable, we get f−1(x) =
√
r2 − x2. Therefore

f−1(x) = f(x) for all x with 0 ≤ x ≤ r.

9.73. By applying the formula d
dx
f−1(x) = 1

f ′(f−1(x))
to the function f(x) = cosx with 0 ≤ x ≤ π,

we get d
dx

cos−1(x) = 1
− sin(cos−1(x))

. Since sin2 x + cos2 x = 1, sin2 x = 1 − cos2 x and hence
sinx =

√
1− cos2 x (note that sinx ≥ 0 over 0 ≤ x ≤ π). It follows that

d
dx

cos−1(x) = 1
− sin(cos−1(x))

= 1

−
√

1−(cos(cos−1(x)))2
= − 1√

1−x2 .

Since the derivative of sin−1 x is equal to 1√
1−x2 , the derivatives of functions cos−1(x) and

− sin−1(x) are equal. It follows that cos−1(x) = − sin−1(x) + C for some constant C (and
all x with −1 ≤ x ≤ 1.) Since cos 0 = 1 and sin π

2
= 1, cos−1(1) = 0 and sin−1(1) = π

2
.

Evaluating cos−1(x) = − sin−1(x) +C at x = 1, we se that C = π
2
, and hence that cos−1(x) =

− sin−1(x) + π
2
. Notice that some minus signs were erroneously omitted in the formulation of

Problem 9.73.

9.74. The graph of the inverse y = f−1(x) of a function y = f(x) is gotten by reflecting the graph
of the function by reflecting it across the line y = x. So the two graphs have the same
shape and differ only in the way they are positioned. Figure 9.53 depicts the example under
consideration. It follows from the observation just made that the area bounded by the graph
of the function f(x) = x2 for x ≥ 0, the y-axis, and the horizontal dotted segment is equal to
the area bounded by the graph of f−1(x) =

√
x, the x-axis, and the vertical dotted segment.

Therefore the area under the graph of f−1(x) =
√
x over the interval 0 ≤ x ≤ c is equal to

the area cd of the rectangle determined by the point (c, d) minus the area under the graph of
f(x) = x2 over the interval 0 ≤ x ≤ d. Translated, this is the equality∫ d

0

√
x dx = cd−

∫ c

0

x2 dx.

By the fundamental theorem of calculus, the two integrals are equal to 2
3
x

3
2

∣∣d
0

= 2
3
d
√
d and

1
3
x3
∣∣c
0

= 1
3
c3, respectively. Since c =

√
d, c2 = d and 2

3
c3 = c3 − 1

3
c3, it follows that 2

3
d
√
d =

cd− 1
3
c3 as we needed to show.

Now to the second equality. Since f ′(x)2 = 4x2, the term
√

1 + 4x2 suggests that this
time the lengths of the two graphs might be involved. It follows from the way the two graphs
are related, that the length of the graph of f−1(x) =

√
x between the points (0, 0) and (d, c)

is the same as that of f(x) = x2 between (0, 0) and (c, d). Since d
dx
f−1(x) = 1

2
x−

1
2 = 1

2x
1
2
and

d
dx
f(x) = 2x, the length formula of Section 9.3 tells us that
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∫ d

0

√
1 + 1

4x
dx =

∫ c

0

√
1 + 4x2 dx .

The second integral can be solved by letting u = 2x and du = 2dx and applying Formula (17)
of Section 9.11. Doing so, we get that this integral is equal to

1
2

∫ 2c

0

√
1 + u2 du = 1

4

[
u
√

1 + u2 + ln(u+
√

1 + u2)
]∣∣2c

0

= 1
4

[
2c
√

1 + 4c2 + ln(2c+
√

1 + 4c2)
]
.

The solution of the integral
∫ d

0

√
1 + 1

4x
dx =

∫ d

0

√
1
4
( 1
x

+ 4) dx = 1
2

∫ d

0

√
1
x

+ 4 dx relies on

the substitution u =
√

1
x

+ 4 that transforms the integral into one to which the algebraic
maneuver of partial fractions can be applied (the maneuver that deals with quadratic fac-
tors). We defer to the site http://www.integral-calculator.com/# for the details. The site
displays not only the solution, but also the steps involved. Type sqrt(1+1/(4x)) into the
box containing e^(x/2)* sin(ax) and then click Go!.

9.75. We’ll consider the situation of an increasing function (that if a decreasing function is dealt
with in the same way). The figure below depicts a typical situation. The relevant area ele-
ment is shown. Its thickness is dy and its length is x. The corresponding value y = f(x) is its
y-coordinate. When it is rotated one complete revolution about the y-axis this thin strip gener-
ates a disc of volume πx2 dy. The definition of the inverse implies that x = f−1(y) so that this

y = f (x)

x

(a, c)

(b, d )

y

c

d

volume is πf−1(y)2 dy. The volume obtained by revolving the region bounded by the graph
of y = f(x) and the lines y = c and y = d around the y-axis is therefore equal to

V =

∫ d

c

π(f−1(y))2 dy.

Since the cross-sectional area of the solid at y is πf−1(y)2 the conclusion of Problem 9.35
provides the same result.

9.76. i. Since the derivative of tan−1 x is 1
x2+1

, we get by the chain rule that

f ′(x) = d
dx

tan−1
(
x−1
x+1

)
= 1

(x−1
x+1

)2+1

d
dx

(x−1
x+1

) = 1
(x2−2x+1)+(x2+2x+1)

(x+1)2

· (x+1)−(x−1)
(x+1)2

= (x+1)2

2(x2+1)
· 2
(x+1)2

= 1
x2+1

.
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ii. Because f(x) and tan−1x have the same derivative, we should be able to conclude that
tan−1

(
x−1
x+1

)
= tan−1x+ C for some constant C. Let’s see how this conclusion holds up.

iii. Since tan(−π
4
) = −1, tan−1(−1) = −π

4
. Plugging x = 0 into the equality of (ii) we get

−π
4

= tan−1(−1) = tan−1(0) + C, and hence that C = −π
4
. Therefore

tan−1
(
x−1
x+1

)
= tan−1x− π

4
.

iv. From Figure 9.33 we know that lim
x→+∞

tan−1x = π
2
and lim

x→−∞
tan−1x = −π

2
. Combined

with the equality derived in (iii) this implies that

lim
x→+∞

tan−1
(
x−1
x+1

)
= π

4
and lim

x→−∞
tan−1

(
x−1
x+1

)
= −3π

4
.

The fact that x−1
x+1

=
x(1− 1

x
)

x(1+ 1
x
)

=
1− 1

x

1+ 1
x

tells us that lim
x→±∞

x−1
x+1

= 1. Since tan π
4

= 1, we know

that tan−1(1) = π
4
. It follows from this that lim

x→+∞
tan−1

(
x−1
x+1

)
and lim

x→−∞
tan−1

(
x−1
x+1

)
are

both equal to π
4
.

v. Clearly lim
x→−∞

tan−1
(
x−1
x+1

)
= −3π

4
and lim

x→−∞
tan−1

(
x−1
x+1

)
= π

4
cannot both hold. What has

gone wrong? The problem is that while y = tan−1 x is differentiable for all x, this is not
the case for the function y = tan−1

(
x−1
x+1

)
at x = −1 where there is a discontinuity. It is

for this reason that the conclusion of part (ii) is wrong. It is the case that tan−1
(
x−1
x+1

)
=

tan−1x+C over each of the intervals (−∞,−1) and (−1,+∞). However the two constants
C are different.

9.77. Consider the parabola f(x) = x2. Let (c, c2) with c ≥ 0 be a point on the parabola, and let
L(c) be the length of the parabola from the origin (0, 0) to (c, c2). See Figure 9.54. By the

length formula L(c) =

∫ c

0

√
1 + 4x2 dx. To determine L(c) we’ll use the substitutions u = 2x

and du = 2 dx along with the formula (from Section 9.10 or Section 9.11)∫ √
1 + u2 du = 1

2
[u
√

1 + u2 + ln(u+
√

1 + u2)] + C

and the fact that ln 1 = 0 to get∫ c

0

√
1 + 4x2 dx = 1

2

∫ 2c

0

√
1 + u2 du = 1

2
[u
√

1 + u2 + ln(u+
√

1 + u2)]
∣∣2c
0

= 1
4
[2c
√

1 + (2c)2 + ln(2c+
√

1 + (2c)2 )].

9.78. Project. As already pointed out this study relies on Kepler’s analysis in Sections 5.5 and 5.9
and in particular on Figure 5.39. Figure 9.55 below summarizes much relevant information
and includes the circular arc that the two slanting segments of Figure 5.39a determine. By
Problem 1.9 the center C of the circle on which the arc lies is at the intersection of the
perpendicular bisectors of the two slanting segments of Figure 9.55b. The symmetry of the
situation places C on the vertical line x = b as Figure 9.55a shows. The angulation of the
perpendicular bisector suggests—and our computation will confirm—that the coordinate c is
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(a)                (b)

r

x

y

2 r√2 r√−
x

y

C = (b, c)

P = (a, r)

Q = (b,    r)3
2
−

a = 2   2 r√ b = 3   2 r√

`

P  = (a, −r)

negative.

i. Let’s start with a look at Figure 9.55a. Since C = (b, c) is the center of the circle and
3
2
r − c is its radius, the equation of the circle is (x − b)2 + (y − c)2 = (3

2
r − c)2. Since

P = (a, r) is on the circle, (a− b)2 + (r − c)2 = (3
2
r − c)2. It follows that

(
√

2r)2 + r2 − 2rc+ c2 = 9
4
r2 − 3rc+ c2

and hence that rc = 9
4
r2 − 3r2. So c = (9

4
−12

4
)r = −3

4
r and 3

2
r − c = 3

2
r + 3

4
r =

9
4
r. It follows that the equation of the circle on which the arc of Figure 9.55a lies is

(x− b)2 + (y + 3
4
r)2 = (9

4
r)2.

ii. We now shift this circle b units to the left into the position shown in Figure 9.55b. The
center of this shifted circle is the point (0, c) = (0,−3

4
r) on the y-axis and its equation

is x2 + (y + 3
4
r)2 = (9

4
r)2. Solving it for y, we get y + 3

4
r = ±

√
(9
4
r)2 − x2. So the upper

half of this shifted circle is the graph of the function f(x) =
√(

9
4
r
)2 − x2 − 3

4
r.

iii. Continue to focus on Figure 9.55b and consider the barrel-shaped solid obtained by

revolving the region bounded by the graph of f(x) =
√(

9
4
r
)2 − x2− 3

4
r, the x-axis, and

the lines x = −
√

2r and x =
√

2r once around the x-axis. By appealing to symmetry
and the formula (V1) of Section 9.2, we see that the volume V of this barrel-shape is

V = 2π

∫ √2r
0

(√
(9
4
r)2 − x2 − 3

4
r
)2
dx = 2π

∫ √2r
0

(
81
16
r2 − x2 − 3

2
r
√

(9
4
r)2 − x2 + 9

16
r2
)
dx =

2π

∫ √2r
0

(
90
16
r2−x2− 3

2
r
√

(9
4
r)2 − x2

)
dx = 2π

∫ √2r
0

(
90
16
r2−x2

)
dx−3πr

∫ √2r
0

√
(9
4
r)2 − x2 dx.

By the fundamental theorem of calculus and the integral formula preceding Example 9.31
in Section 9.10 with a = 9

4
r,

V = π
(

45
4
r2x− 2

3
x3 − 3

2
r
[
x
√

(9
4
r)2 − x2 + (9

4
r)2 sin−1 x

9
4
r

])∣∣∣√2r
0

= π
(

45
√
2

4
r3 − 4

√
2

3
r3 − 3

2
r
[√

2r
√

(9
4
r)2 − (

√
2r)2 + (9

4
r)2 sin−1(4

√
2

9
)
])

.
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The rest consists of algebraic simplifications:

= πr3
(
45
√
2

4
− 4

√
2

3
− 3

2

[√
2
√

(9
4
)2 − (

√
2)2 + (9

4
)2 sin−1(4

√
2

9
)
])

= πr3
(
270
√
2

24
− 32

√
2

24
− 3

2

[√
2
√

49
16

+ (9
4
)2 sin−1(4

√
2

9
)
])

= πr3
(
238
√
2

24
− 3

2

[
7
4

√
2 + 81

16
sin−1(4

√
2

9
)
])

= πr3
(
238
√
2

24
− 3

2
7
4

√
2− 3

2
81
16

sin−1(4
√
2

9
)
)

= πr3
(
238
√
2

24
− 63

√
2

24
− 243

32
sin−1(4

√
2

9
)
)

= πr3
(
175
√
2

24
− 243

32
sin−1(4

√
2

9
)
)
≈ 16.18r3.

We have shown that the barrel with circular sides depicted in Figure 9.55b has volume
V closely approximated by 16.18r3 where r is the radius of the barrel’s circular ends.
Inscribed in this barrel is Kepler’s model of the Austrian barrel. It has the same circular
ends and volume 19

6

√
2πr3 ≈ 14.07r3.

iv. Let s be the length of the slanting diagonal on which the Austrian wine merchants
based their measurement of the volumes of barrels. By applying the distance formula
to the points Q and P ′ of Figure 9.55a, we get s2 = (QP ′)2 = (b − a)2 + (3

2
r + r)2 =

((5
2
r)2 + 2r2) = (25

4
+ 8

4
)r2 = 33

4
r2 and hence s =

√
33
2
r. Since r = 2√

33
s, the volume

V ≈ 16.18r3 ≈ 16.18( 2√
33
s)3 ≈ 0.68s3. A comparison of Figures 5.40 and 9.55b tells us

that the s for the barrel with the circular sides is the same as the s for Kepler’s Austrian
barrel inscribed in it. Since the wine merchants’ rule for determining the volume of a
barrel is Vrule = 0.6s3 the price for a full barrel of wine for the circular barrel and Kepler’s
Austrian barrel will be the same, even though the volume of the latter (approximately
0.59s3) is about 10% less.

9.79. i. Let x = tan θ with −π
2
< θ < π

2
. Note that dx = sec2 θ dθ. Therefore∫

1√
x2+1

dx =

∫
sec2 θ dθ

(tan2 θ+1)
1
2
.

Recall that tan2 θ + 1 = sec2 θ. For −π
2
< θ < π

2
, both cos θ ≥ 0 and sec θ ≥ 0. So

sec θ = (1 + tan2 θ)
1
2 . By applying the integral formula in Section 9.10 for sec θ, we get∫

sec2 θ dθ

(tan2 θ+1)
1
2

=

∫
sec θ dθ = ln |sec θ + tan θ|+ C.

ii. Since tan θ = x and sec θ = (1 + tan2 θ)
1
2 =
√

1 + x2, it follows that∫
1√
x2+1

dx = ln |x+
√

1 + x2|+ C.

9.80. i. Taking x = sec θ with 0 ≤ θ < π
2
, we get x2 − 1 = sec2 θ− 1 = tan2 θ and since tan θ > 0

over this range of θ that
√
x2 − 1 = tan θ. Since dx = sec θ tan θ dθ, we get∫

x2√
x2−1 dx =

∫
sec2 θ
tan θ

sec θ tan θ dθ =

∫
sec3 θ dθ.
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ii. Making use of an equality from Section 9.10,∫
sec3 θ dθ = 1

2

[
sec θ · tan θ + ln |sec θ + tan θ|

]
+ C.

After substituting sec θ = x and tan θ =
√
x2 − 1 into this expression, we get∫

x2√
x2−1 dx = 1

2

[
x
√
x2 − 1 + ln(x+

√
x2 − 1)

]
+ C.

9.81. i. Consider the substitution x = sin θ with −π
2
≤ θ ≤ π

2
. So dx = cos θ dθ. Since 1− x2 =

1− sin2 θ = cos2 θ and cos θ ≥ 0, we get∫ √
1−x2
x

dx =

∫
cos θ
sin θ
· cos θ dθ =

∫
cos2 θ
sin θ

dθ

=

∫
1−sin2 θ
sin θ

dθ =

∫
1

sin θ
dθ −

∫
sin θ dθ.

=

∫
1

sin θ
dθ + cos θ.

The integral
∫

1
sin θ

dθ can be evaluated with the same trick that led to the solution∫
1

cos θ
dθ =

∫
sec θ dθ = ln |sec θ + tan θ|+ C,

except that csc θ = 1
sin θ

and cot θ = cos θ
sin θ

take the place of sec θ and tan θ.

ii. The trick can be avoided by use of the substitution x = cos θ with 0 ≤ θ ≤ π and dx =

− sin θ dθ. Since sin2 θ+cos2 θ = 1 and sin θ ≥ 0 over this range of θ, sin θ =
√

1− cos2 θ.

Using this and the formula
∫

sec dθ = ln | sec θ + tan θ|+ C, we get∫ √
1−x2
x

dx = −
∫

sin θ
cos θ
· sin θ dθ =

∫
cos2 θ−1
cos θ

dθ =

∫
cos θ dθ −

∫
sec θ dθ

= sin θ − ln | sec θ + tan θ|+ C =
√

1− x2 − ln
∣∣1+√1−x2

x

∣∣+ C.

9.82. Solving x2

a2
+ y2

b2
= 1 for y, we get y2

b2
= 1− x2

a2
= a2−x2

a2
. So y2 = b2

a2
(a2−x2) and y = ± b

a

√
a2 − x2.

The + option provides the function f(x) = b
a
(a2 − x2) 1

2 that has the upper half of the ellipse
as its graph. Since

f ′(x) = 1
2
· b
a
(a2 − x2)− 1

2 (−2x) = − b
a
x(a2 − x2)− 1

2 = − b
a

x

(a2−x2)
1
2
,

the length of the upper half of the ellipse is given by the integral∫ a

−a

√
1 + b2

a2
x2

a2−x2 dx =

∫ a

−a

√
a2(a2−x2)+b2x2

a2(a2−x2) dx =

∫ a

−a

√
a4−(a2−b2)x2
a2(a2−x2) dx

=

∫ a

−a

√
a4−c2x2
a2(a2−x2) dx =

∫ a

−a

√
a2−ε2x2
a2−x2 dx.

The trig substitution x = a sin θ with −π
2
≤ θ ≤ π

2
and dx = a cos θ dθ transforms this integral

to ∫ π
2

−π
2

√
a2−ε2a2 sin2 θ
a2−a2 sin2 θ (a cos θ) dθ = a

∫ π
2

−π
2

√
1−ε2 sin2 θ
1−sin2 θ (cos θ) dθ = a

∫ π
2

−π
2

√
1− ε2 sin2 θ dθ.
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9.83. With a = 1 and b = 1√
2
, c2 = a2 − b2 = 1 − 1

2
= 1

2
and c = 1√

2
. Therefore, ε = c

a
= 1√

2
. So√

1− ε2 sin2 θ =
√

1− 1
2

sin2 θ =
√

1
2

+ 1
2
(1− sin2 θ) = 1√

2

√
1 + cos2 θ and therefore

√
2

∫ π
2

−π
2

√
1− ε2 sin2 θ dθ =

∫ π
2

−π
2

√
1 + cos2 θ dθ.

Since the length of the sine curve between the points (−π
2
,−1) and (π

2
, 1) is equal to its length

between (0, 0) and (π, 0), it follows from Section 9.13 that
∫ π

2

−π
2

√
1 + cos2 θ dθ is the length of

one loop of the sine curve.

9.84. Consider
∫ 3

0

coshx2 dx. Put into the four boxes of the trapezoidal-rule-calculator above:

Enter function: = cosh(x2), a = 0, b = 3, and successively n = 10, 20, 50, 100, and 200.
(The trapezoidal and Simpson rules calculators referred to have a limit of 200 on the number
of intervals allowed.) Then (possibly after dealing with annoying advertisements) push the
CALCULATE to get the trapezoidal approximations:

i. T10 ≈ 894.6303, T20 ≈ 767.5961, T50 ≈ 729.9901, T100 ≈ 724.5377, and T200 ≈ 723.1714.

Then do the same thing with the simpsons-rule-calculator to get

ii. S10 ≈ 752.6349, S20 ≈ 725.2513, S50 ≈ 722.7877, S100 ≈ 722.7202, and S200 ≈ 722.7160.

The close agreement between S50, S100, and S200 suggests that S200 ≈ 722.7160 is a close
approximation of the value of the integral. The convergence of the trapezoidal approximations,
on the other hand, is a bit sluggish.

9.85. Type 1/x into the Enter function: = box and repeat this with
∫ 100

1

1
x
dx, to get

i. T100 ≈ 4.6809 and T200 ≈ 4.6251.

ii. S100 ≈ 4.6176 and S200 ≈ 4.6025.

iii. We know that
∫ x

1

1
t
dt defines the function lnx for x ≥ 1. Therefore the actual value of

the integral is ln 100, and this is approximated by 4.6052 with accuracy to four decimal
places. Once again, the Simpson rule wins the accuracy race.

Finally turn to

http://www.integral-calculator.com/#

and have the site solve the integrals by replacing e^(x/2) * sin(ax) in the box by 1/(9+x^3) for
the first integral, sin(sqrt(x)), for the second, e^(-x^2) for the third, cosh(x^2) for the fourth,
and sqrt(1-tan^2(x)) for the last. In each case click on Go! and go to Show steps for the details.
What has been achieved for e^(-x^2)?
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