
Solutions to Problems and Projects for Chapter 12

We are given a polar coordinate system in the coordinates r and θ along with a su-
perimposed rectangular (or Cartesian) coordinate system with coordinates x and y. The
transformation equations x = r cos θ and y = r sin θ as well as r = ±

√
x2 + y2 and tan θ = y

x

that relate the two coordinate systems are relevant throughout.

12.1. i. The equation 2x + 3y = 4 transforms to 2r cos θ + 3r sin θ = 4 and hence to
r(2 cos θ+3 sin θ) = 4. Since 2 cos θ+3 sin θ cannot be zero, r = f(θ) = 4

2 cos θ+3 sin θ
.

ii. Since x2 + y2 = 4y transforms to r2 cos2 θ + r2 sin2 θ = 4r sin θ and therefore to
r2(cos2 θ + sin2 θ) = 4r sin θ, we get r2 = 4r sin θ. For r 6= 0, this equivalent to
the equation r = 4 sin θ which defines the function r = f(θ) = 4 sin θ. So the
only difference between the equations r2 = 4r sin θ and r = 4 sin θ involves the
origin O. The first equation is satisfied by any representation (0, θ) of O. The
second equation on the other hand is only satisfied by representations (0, θ) for
which sin θ = 0. In this case, θ = 0,±π,±2π, . . . .

iii. This equation transforms to

r2 = r cos θ(r2 cos2 θ − 3r2 sin2 θ) = r3 cos θ(cos2 θ − 2 sin2 θ).

If r 6= 0, then r cos θ(cos2θ − 3 sin2 θ) = 1. Because cos θ(cos2 θ − 3 sin2 θ) cannot
be zero,

r = f(θ) = 1
cos θ(cos2 θ−3 sin2 θ)

.

The graph of this function does not include the origin because r cannot be zero.
In all other respects, its graph is the same as that of the Cartesian equation
x2 + y2 = x(3x2 − 3y2).

12.2. i. Since r > 0, the equation r = 5 transforms to
√
x2 + y2 = 5. The distance

formula tells us that the graph of this Cartesian equation is the circle of radius 5.

ii. Observe first that the only difference between the equations r = 3 cos θ and r2 =

3r cos θ occurs when r = 0. Since cos π
2

= 0, the origin is on both graphs.
What happens at the origin is analogous to what was observed in the solution
of Problem 12.1ii. The first equation is only satisfied by representations (0, θ)

for which cos θ = 0. The second equation is satisfied by any representation (0, θ)

of O. The polar equation r2 = 3r cos θ transforms directly to the Cartesian (or
rectangular) equation x2 + y2 = 3x.

iii. tan θ = 6 becomes y
x

= 6.

iv. Consider the equation r2 = 2r sin θ tan θ and note that the only difference be-
tween it and r = 2 sin θ tan θ occurs when r = 0, hence at the origin. Because
(r, θ) = (0, 0) satisfies r = 2 sin θ tan θ, its graph is the same as the graph of
r2 = 2r sin θ tan θ. This last equation transforms to x2 + y2 = 2y · y

x
. The graph



of this equation does not include the y-axis, namely the line x = 0. Any set of
polar coordinates of any point on this line (except the origin) involves one of the
angles ±π

2
,±3π

2
,±5π

2
, . . . . Since these are all angles for which tan θ = sin θ

cos θ
is not

defined, r2 = 2r sin θ tan θ is not defined for any point on this line (except the
origin) either.

12.3. i. The graph is the set of all (r, θ) with r = −6 and θ completely free. Since the
distance of any point (−6, θ) from the origin is 6, all such points lie on the circle
of radius 6 centered at the origin. The fact that any point (6, θ) on this circle
can be expressed as (−6,−θ) means that the graph of the equation r = −6 is the
entire circle.

ii. The graph is the set of all points of the form (r,−8π
6

) with r arbitrary. The
angle θ = −8π

6
= −4π

3
is equal to −4π

3
· 180 = −4 · 60 = −240◦. Consider

the ray θ = −8π
6
. Any point on the ray has coordinates (r,−8π

6
) with r ≥ 0

and any point on the ray in the opposite direction has coordinates (r,−8π
6

) with
r ≤ 0. So the graph of the equation θ = −8π

6
is the line that the angle −8π

6

determines. The Cartesian equation of this line is given by tan(−8π
6

) = y
x
. Because

tan(−8π
6

) = − tan(4π
3

) = − tan π
3

= −
√

3, the Cartesian equation is y = −
√

3x.

iii. The graph of r = 4 sin θ is the same as that of r2 = 4r sin θ. Any point (r, θ) with
r 6= 0 that satisfies one of the equation satisfies the other too. Since sin 0 = 0

the origin is on both graphs as well. Working with r2 = 4r sin θ is easier since it
transforms to the Cartesian equation x2 +y2 = 4y. This equation can be analyzed
by completing the square. Because, x2 + y2 − 4y + 22 = 22 = 4, we get

x2 + (y − 2)2 = 4.

It follows that the graph of r = 4 sin θ is the circle with center the Cartesian point
(0, 2) and radius 2.

iv. The equation r(sin θ+ cos θ) = 1 transforms to the Cartesian equation y+ x = 1,
or y = −x+ 1. This is the line with slope −1 and y-intercept 1.

12.4. As θ varies from θ = π to θ = 3π
2
, the ray that θ determines rotates counterclockwise

through the third quarter. Since r = sin θ varies from 0 to −1, the points (r, θ) move
in the first quadrant from the origin to the Cartesian point (0, 1). So it seems that the
right half of the circle of Figure 12.4 is traced out again. As θ varies from θ = 3π

2
to

θ = 2π, the ray that θ determines rotates counterclockwise through the fourth quarter.
Since r = sin θ varies from −1 to 0, the points (r, θ) move in the second quadrant
from the Cartesian point (0, 1) to (−1, 0). So it seems that the left half of the circle
of Figure 12.4 is traced out once more. The same thing is true for columns 5, 6, 7 and
8. The fact that any point (r, θ) satisfying r = sin θ lies on the graph of the Cartesian
equation x2 + (y − 1

2
)2 = (1

2
)2 tells us that what “seems” is actually the case.
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12.5. The table is drawn in below. As θ varies from 0 to π
2
, r = cos θ varies from 1 to 0, so

the point (r, θ) traces out a curve from (1, 0) to the origin (0, π
2
). As θ varies from π

2

to π, r = cos θ varies from 0 to −1, so the polar point (r, θ) traces out a curve in the
fourth quadrant from the origin back to (−1, π) = (1, 0). So as θ varies from 0 to π,

π
2

π
3

2
π
2

≤0 ≤
π
2

≤ ≤ ≤ ≤π π
2

≤ ≤
3π

1 >
cos  

0 -1>0 -1 > 0 1>0 1 > 0

π
2

3π
2

3π
2

3
π2

0 > -1 -1 > 0 1>0
cos cos cos

π
2

≤0
π
2

π

cos cos

π

cos cos

≤ ≤ ≤ ≤ ≤ ≤ ≤− − −−

1   2     3       4         5           6  7    8 

θ θ

θ

θθθ θθ

θ θ θ θθ

θ− − −

θ θ

the point (r, θ) traces out a loop to the right of the y-axis. What loop is this exactly?
Since the graph of r = cos θ includes the origin, it is identical to the graph of r2 =

r cos θ. In Cartesian coordinates this is the equation is x2 + y2 = x. Completing the
square for x2−x+y2 = 0, we get x2−x+(1

2
)2+y2 = (1

2
)2 and hence (x− 1

2
)2+y2 = (1

2
)2.

It follows that the graph of r = cos θ is the circle of radius 1
2
centered at the Cartesian

point (1
2
, 0).

12.6. For ax + by + c = 0 to represent a line, it has to be assumed that one of a or b is
not zero. (If both are zero, then c is zero as well, so that any point (x, y) satisfies the
equation and the graph is the entire plane.)

The polar version of the equation ax + by + c = 0 is ar cos θ + br sin θ + c = 0. So
r(a cos θ + b sin θ) = −c. If c 6= 0, then a cos θ + b sin θ is never 0 and

r = f(θ) = −c
a cos θ+b sin θ

is a polar function with graph the given line.

Let’s assume that c = 0. In this case, the line is not the graph of a polar function.
Consider the case b 6= 0 and hence the line y = −a

b
x. Let θ0 with −π

2
< θ0 <

π
2
be

the angle the line makes with the polar axis. Note that tan θ0 = y
x

= −a
b
is the slope

of the line. For any point (r, θ) on the line (that is not the origin), θ must be one of
the angles θ0, θ0 ± π, θ0 ± 2π, . . . . Assume, if possible, that the line is the graph of a
polar function r = f(θ). Since any point on the line is on the graph, there must be for
any real number r a θ such that r = f(θ). But any such θ must be one of the angles
θ0, θ0 ± π, θ0 ± 2π, . . . , so that there are not enough θs to provide all real values r.

12.7. Each equation has the form r = d
1+ε cos θ

with d > 0 and ε ≥ 0. So the graphs are conic
sections.

i. In these two cases ε = 1 and the graphs are both parabolas with focal point the
origin O and a vertical directrix x = d. The directrix in the first case is the line
x = 4 and in the second case it is x = 8. Given these facts the parabolas are
easily sketched. The Cartesian equation is

√
x2 + y2 + x = d. Since x2 + y2 =

d2 − 2dx+ x2 and hence y2 = d2 − 2dx, a more transparent form of the equation
is y2 = −2d(x− d

2
).
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ii. Here ε < 1 so that each graph is an ellipse with eccentricity ε, semimajor axis
a = d

1−ε2 , and semiminor axis b = d√
1−ε2 . In each case, the focal points are the

origin and (−2εa, 0) (in either polar or Cartesian coordinates) and the graph is
obtained by shifting the standard ellipse x2

a2
+ y2

b2
= 1 by εa units to the left.

In the first case, ε = 1
5
, d = 2,

a = 2
1−( 1

5
)2

= 2
24
25

= 25
12
, b = 2√

1−( 1
5

)2
= 2√

24
25

= 10√
24

= 5√
6
,

and the focal points are (0, 0) and (−5
6
, 0). In the second case, ε = 1

2
, d = 5,

a = 5
1−( 1

2
)2

= 5
3
4

= 20
3
, b = 5√

1−( 1
2

)2
= 5√

3
4

= 10√
3
,

and the focal points are (0, 0) and (−20
3
, 0).

iii. Now ε > 1 so that each graph is a hyperbola with eccentricity ε, semimajor axis
a = d

ε2−1
, and semiminor axis b = d√

ε2−1
. In each case, the focal points are the

origin and (−2εa, 0) and the graph is obtained by shifting the standard hyperbola
x2

a2
− y2

b2
= 1 by εa units to the left.

In the first case, ε = 3, d = 3, a = 3
32−1

= 3
8
, b = 3√

32−1
= 3√

8
, and the focal

points are (0, 0) and (−9
4
, 0). In the second case, ε = 5, d = 1

2
, a =

1
2

52−1
= 1

48
, b =

1
2√

52−1
= 1

2
√

24
= 1

4
√

6
, and the focal points are (0, 0) and (− 5

24
, 0).

12.8. We’ll start with the equation r = d
1+ε cos θ

and determine ε and d in each case.

i. By Section 12.2 part (i), the directrix of the parabola is the vertical line x = d and
the focus is the origin. So d = 7 and ε = 1. Therefore the equation is r = 7

1+cos θ
.

ii. Since the semimajor and semiminor axes of the ellipse are a = 6 and b = 4

respectively, we know from Section 12.2 part (ii) that d
1−ε2 = 6 and d√

1−ε2 = 4.

Since d2

1−ε2 = 16, it follows that d = d2

1−ε2 ·
1−ε2
d

= 16
6

= 8
3
. Since d

1−ε2 = 6, we get
1− ε2 = d

6
= 8

18
= 4

9
. So ε2 = 5

9
and ε =

√
5

3
. Therefore the equation that we are

looking for is r =
8
3

1+
√
5

3
cos θ

= 8
3+
√

5 cos θ
.

iii. The fact that the semimajor and semiminor axes of the hyperbola are a = 6 and
b = 4 respectively, together with the information in Section 12.2 part (iii) tell us
that d

ε2−1
= 6 and d√

ε2−1
= 4. Since d2

ε2−1
= 16, we get d = d2

ε2−1
· ε2−1

d
= 16

6
= 8

3
.

Since d
ε2−1

= 6, ε2 − 1 = d
6

= 8
18

= 4
9
. Therefore ε2 = 13

9
and ε =

√
13
3
. So the

equation that we are looking for is r =
8
3

1+
√
13
3

cos θ
= 8

3+
√

13 cos θ
.

12.9. The following observation solves the problem. Suppose that two parabolas A and B
in the plane are related by the fact that the distances between the focal points and
directrixes are the same. Then parabola A can be moved in the plane in such a way
that the moved parabola A′ and the parabola B have the same focal point and directrix.
So the parabolas A′ and B coincide. This means that A and B have the same shape.
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12.10. The ellipse discussed in Section 12.2 part (ii) has semimajor axis a = d
1−ε2 and semimi-

nor axis b = d√
1−ε2 . Assuming that a = 7 and b = 4, we see that d

1−ε2 = 7 and
d√

1−ε2 = 4. Therefore d2

1−ε2 = 16 and it follows that d = d2

1−ε2 ·
1−ε2
d

= 16
7
. Since d

1−ε2 = 7,

we see that 1− ε2 = d
7

= 16
49
. So ε2 = 33

49
and ε =

√
33
7
. This means that the ellipse (∗)

given by r =
16
7

1+
√
33
7

cos θ
has semimajor axis a = 7 and semiminor axis b = 4. The ellipse

C and the ellipse (∗) can each be moved in the plane to coincide with the ellipse that
has equation x2

72
+ y2

42
= 1. Therefore the ellipses C and (∗) have the same shape.

12.11. The hyperbola studied in Section 12.2 part (iii) has semimajor axis a = d
ε2−1

and
semiminor axis is b = d√

ε2−1
. With a = 5 and b = 3, we see that d

ε2−1
= 5 and

d√
ε2−1

= 3. Therefore d2

ε2−1
= 9 and hence d = d2

ε2−1
· ε2−1

d
= 9

5
. Since d

ε2−1
= 5, it follows

that ε2 − 1 = d
5

= 9
25
. So ε2 = 34

25
and ε =

√
34
5
. Therefore the hyperbola (∗) given by

r =
9
5

1+
√
34
5

cos θ
has semimajor axis a = 5 and semiminor axis b = 3. The hyperbola

C and the hyperbola (∗) can each be moved to coincide with the hyperbola that has
equation x2

52
− y2

32
= 1. Therefore the hyperbolas C and (∗) have the same shape.

12.12. The ellipse with equation r = d
1+ε cos θ

and ε < 1 discussed in Section 12.2 part (ii) has
semimajor axis a = d

1−ε2 and semiminor axis b = d√
1−ε2 . Since b2 = d2

1−ε2 we see that
d = d2

1−ε2 ·
1−ε2
d

= b2

a
. Since 1−ε2

d
= 1

a
, we get 1− ε2 = d

a
= b2

a2
. Hence ε2 = 1− b2

a2
= a2−b2

a2

and ε =
√
a2−b2
a

. It follows that the graph of the equation r =
b2

a

1+

√
a2−b2
a

cos θ
is an ellipse

with semimajor axis a and semiminor axis b. Since this ellipse and the ellipse C have
the same semimajor and semiminor axes, they have the same shape.

12.13. The hyperbola with equation r = d
1+ε cos θ

and ε > 1 discussed in part (iii) of Section 12.2
has semimajor axis a = d

ε2−1
and semiminor axis b = d√

ε2−1
. Since b2 = d2

ε2−1
we get

d = d2

ε2−1
· ε2−1

d
= b2

a
and since ε2−1

d
= 1

a
, we see that ε2 − 1 = d

a
= b2

a2
. Hence

ε2 = 1 + b2

a2
= a2+b2

a2
and ε =

√
a2+b2

a
. So the graph of the equation r =

b2

a

1+

√
a2+b2

a
cos θ

is a hyperbola with semimajor axis a and semiminor axis b. Because it has the same
semimajor and semimajor axes as hyperbola C, it has the same shape as C.

12.14. The equation r = d
1+ε sin θ

, where d > 0 and ε ≥ 0, can be written as r + εr sin θ = d.
The corresponding Cartesian equation is ±

√
x2 + y2 + εy = d.

Let’s begin with the case ε = 1. Since
√
x2 + y2 ≥ y and d > 0, it follows that the

minus alternative does not occur and hence that
√
x2 + y2 + y = d. That this is an

equation of the parabola with focal point the origin and directrix the horizontal line
y = d can be seen as follows. Let P = (x, y) be any point in the on the parabola. Its
distance from the origin is

√
x2 + y2. Since d > 0 the directrix lies above the focal

point. It follows that y < d and that the distance from P to the line y = d is d − y.
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So
√
x2 + y2 = d− y and hence

√
x2 + y2 + y = d. Since this is the equation derived

earlier it follows that the graph of r = d
1+sin θ

is a parabola with focal point the origin
and directrix the line y = d.

We’ll now suppose that ε 6= 1. Squaring both sides of ±
√
x2 + y2 = d− εy, we get

in successive steps (one of them a completion of a square)

x2 + y2 = d2 − 2εdy + ε2y2

x2 + (1− ε2)y2 + 2εdy = d2

x2

1−ε2 + y2 + 2εd
1−ε2y = d2

1−ε2

x2

1−ε2 + y2 + 2εd
1−ε2y + ε2d2

(1−ε2)2
= d2

1−ε2 + ε2d2

(1−ε2)2

x2

1−ε2 +
(
y + εd

1−ε2
)2

= (1−ε2)d2+εd2

(1−ε2)2
=
(

d
1−ε2

)2, and

x2

d2

1−ε2
+

(y+ εd
1−ε2

)2

( d
1−ε2

)2
= 1.

Now proceed as in cases (ii) and (iii) of Section 12.2 to show that the graph of this
equation is an ellipse if ε < 1 and a hyperbola if ε > 1. In each case the y-axis is the
focal axis and the origin is the upper focal point.

12.15. Over the interval 0 < θ < π, r = f(θ) = sin θ is positive and equal to the distance
from (r, θ) to the origin. A look at the graph of Figure 12.4 shows that this distance
increases from 0 to 1 as the ray determined by θ rotates from θ = 0 to θ = π

2
and

decreases from 1 back to 0 as this ray moves from π
2
to π. The point traces out the

circle in the process. Over the interval π < θ < 2π, r = f(θ) = sin θ is negative so that
the distance from (r, θ) to the origin is −r = −f(θ) = − sin θ. As the ray determined
by θ rotates from θ = π to θ = 2π the point (r, θ) traces out the circle again. In the
process, its distance − sin θ from the origin increases over π ≤ θ ≤ 3π

2
and decreases

over 3π
2
≤ θ ≤ 2π. The derivative f ′(θ) = cos θ reflects this behavior of the graph. It

is positive over 0 ≤ θ ≤ π
2
and negative over π

2
< θ < π. Over π < θ < 2π, − cos θ is

positive for π < θ < 3π
2

and negative over 3π
2
< θ < 2π.

12.16. Let P = (f(θ), θ) be any point on the graph of a polar function f(θ). Assume that P is
not the origin O, so that f(θ) 6= 0. Consider the point (f(θ+ ∆θ), θ+ ∆θ) for a small
positive ∆θ. Draw the segment from O to this point and put in the circular arc with
center O and radius f(θ) between the rays determined by θ and θ + ∆θ. Figure (a)
below sketches a situation where the graph of the function lies below this circular arc.
The curving triangle of the figure is the beak at P . With ∆s the length of the circular
arc the radian measure of ∆θ is ∆θ = ∆s

f(θ)
. So 1

∆θ
= 1

∆s
· f(θ). After a substitution,

f(θ + ∆θ)− f(θ)

∆θ
=
f(θ + ∆θ)− f(θ)

∆s
· f(θ).

Put in the tangent line to the graph of r = f(θ) at P , and let A be the point of

6



Δ Ps

f (   +     )Δ  

O

tangent to the

r = f (  )

tangent to the

B
θ θθ

θ

θ

(a)            (b)

circle at P

graph at PP

O

r = f (  )

θ

θ

 f (  ) −

A

Δ θΔ θ

intersection of the tangent with the ray determined by θ+∆θ. Also put in the tangent
line to the circle at P , and let B be the point of intersection of this tangent and the
same ray. The two tangent lines and the ray form the triangle ∆APB that we call the
triangle at P . See Figure (b).

We’ll now push ∆θ to 0 and investigate lim
∆θ→0

f(θ + ∆θ)− f(θ)

∆s
. As ∆θ is pushed

to 0, the segment OAB rotates toward the segment OP . Both the beak at P and
the triangle at P shrink in the direction of their tips at P . The shrinking triangle
approximates the shrinking beak better and better as the gap between OBA and OP
closes. In the process, ∆s gets closer to BP and f(θ)−f(θ+∆θ) = −(f(θ+∆θ)−f(θ))

to AB. Therefore, as ∆θ is pushed to 0,

−(f(θ + ∆θ)− f(θ))

∆s
closes in on the ratio

AB

BP
.

Because the tangent line to a circle at a point is perpendicular to its radius to the
point, we know that the angle at P between PO and PB is π

2
. So as ∆θ shrinks to 0,

the angle ∠PBA approaches π
2
, and the triangle ∆APB approaches a right triangle

with right angle at B. It follows that the ratio AB
BP

closes in on the tangent of the angle
∠APB. Because ∠APO = γ and ∠BPO = π

2
, the angle ∠APB = π

2
− γ. By putting

it all together, we have demonstrated that as ∆θ shrinks to 0

−(f(θ + ∆θ)− f(θ))

∆s
closes in on

AB

BP
and this in turn on tan(π

2
− γ).

Since tan(π
2
− γ) = − tan(γ − π

2
) we have verified that

lim
∆θ→0

f(θ + ∆θ)− f(θ)

∆s
= tan(γ − π

2
).

We have now arrived at the conclusion f ′(θ) = f(θ) · tan(γ(θ) − π
2
) in the case of

Figure (a). The notation γ(θ) emphasizes the fact that γ depends on θ that is to say,
γ = γ(θ) is a function of θ.
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12.17. Consider the function r = f(θ) = 2
sin θ

. Rewriting the equation as r sin θ = 2 gives us
the Cartesian version y = 2. That γ(θ) = θ follows from elementary geometry. See
Figure (a) below. To confirm the equality f ′(θ) = f(θ) · tan(θ − π

2
), observe first that

f ′(θ) = −2(sin θ)−2 cos θ = −2 cos θ
sin2θ

. Next, we’ll rewrite tan(θ − π
2
). Using a diagram

similar to Figure 4.25 and the argument in Section 4.6 that establishes the identities
cos(θ + π

2
) = − sin θ and sin(θ + π

2
) = cos θ, we get the identities cos(θ − π

2
) = sin θ

and sin(θ − π
2
) = − cos θ. It follows that tan(θ − π

2
) =

sin(θ−π
2

)

cos(θ−π
2

)
= − cos θ

sin θ
. Therefore

f(θ) · tan(θ − π
2
) is also equal to −2 cos θ

sin2 θ
.

12.18. Consider f(θ) = cos θ. Its graph (described in Problem 12.5) is the circle with center
the polar (and Cartesian) point C = (1

2
, 0) shown in Figure (b) below. Since the radius

CP is perpendicular to the tangent at P , the angles γ and ∠OPC add to π
2
. Since the

triangle ∆OCP is isosceles, ∠OPC = θ. So γ + θ = π
2
and γ − π

2
= −θ. It remains to

O

θ

(a)      (b)       (c)

O

θ

r sin    = 2
γ

γ

(−, 0)1
2

P

O

θ

γ

 − π
4

θ

C =

check that − sin θ = cos θ · tan(−θ). But this is so since tan(−θ) = sin(−θ)
cos(−θ) = − sin θ

cos θ
.

12.19. After r = f(θ) = 1
sin θ−cos θ

is rewritten as r(sin θ − cos θ) = 1, we recognize that the
Cartesian version of this equation is y = x+ 1. Its graph is the slanted line depicted in
Figure (c) above. The triangle in the figure tells us that γ+ π

4
+ (π− θ) = π. It follows

that γ = θ − π
4
and hence that tan(γ − π

2
) = tan(θ − 3π

4
). By applying the addition

formulas for the sine and cosine to sin(θ − 3π
4

) and cos(θ − 3π
4

) we get

tan(θ − 3π
4

) =
sin(θ− 3π

4
)

cos(θ− 3π
4

)
=

sin θ cos(− 3π
4

) + cos θ sin(− 3π
4

)

cos θ cos(− 3π
4

)− sin θ sin(− 3π
4

)
.

Since cos(−3π
4

) = cos(3π
4

) = −
√

2
2

and sin(−3π
4

) = − sin(3π
4

) = −
√

2
2
, it follows that

tan(θ − 3π
4

) =
−
√
2

2
sin θ−

√
2

2
cos θ

−
√
2

2
cos θ+

√
2

2
sin θ

= sin θ+cos θ
cos θ−sin θ

. Because f(θ) = (sin θ − cos θ)−1, we get

f ′(θ) = −(sin θ − cos θ)−2(cos θ + sin θ) = − cos θ+sin θ
(sin θ−cos θ)2

.

The fact that f(θ) tan(θ− 3π
4

) = 1
sin θ−cos θ

· sin θ+cos θ
cos θ−sin θ

= − sin θ+cos θ
(sin θ−cos θ)2

verifies the formula
f ′(θ) = f(θ) · tan(γ − π

2
).

12.20. In this problem the angles γ and ϕ are restricted 0 ≤ γ < π and 0 ≤ ϕ < π (but there
are no restrictions on θ). The concern is the determination of the slope tanϕ of the
graph (in the Cartesian context) in terms of polar data. Observe that if γ(θ) = 0, then
tan(γ(θ)− π

2
) = tan(−π

2
). In this case both tan(γ(θ)− π

2
) and f ′(θ) are undefined.
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i. If f(θ) 6= 0 the formula f ′(θ) = f(θ) · tan(γ − π
2
) tells us that tan(γ − π

2
) = f ′(θ)

f(θ)
.

The inverse tangent tan−1 f
′(θ)
f(θ)

is the angle φ with −π
2
< φ < π

2
such that tanφ =

tan(γ− π
2
). The fact that γ satisfies 0 ≤ γ < π and hence −π

2
≤ γ− π

2
< π

2
means

that γ − π
2

= φ except when γ = 0 when tan(γ − π
2
) is not defined. Therefore

either γ = tan−1 f
′(θ)
f(θ)

+ π
2
or γ = 0. Let’s turn to Figure 12.36.

Adding up the angles of the triangle ∆ABP tells us that ϕ+ (π − θ) + γ = π

in case (a) and θ + (π − ϕ) + (π − γ) = π in case (b). So ϕ = θ − γ in case
(a) and ϕ = θ − γ + π in case (b). The fact that sin(φ ± π) = − sinφ and
cos(φ± π) = − cosφ for any angle φ (see Example 4.18 for instance) tells us that
tan(φ± π) = tanφ and hence that the slope of the tangent line is

tanϕ = tan(θ − γ)

in either case. It is not hard to check that this equality also holds when ∆ABP

is “degenerate” (for instance if γ = 0, or if θ is π in case (a) or 0 in case (b)).

ii. Differentiating the equations x = r cos θ and y = r sin θ (using the product rule)
we get dx

dθ
= dr

dθ
cos θ − r sin θ and dy

dθ
= dr

dθ
sin θ + r cos θ. Since dy

dx
is the slope of

the graph in Cartesian terms it follows that

tanϕ =
dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ
· sin θ + r cos θ

dr
dθ
· cos θ − r sin θ

.

If r = f(θ) = 0 and dr
dθ

= f ′(θ) 6= 0 this simplifies to tanϕ = sin θ
cos θ

= tan θ.

12.21. We’ll start by computing the angle γ in all these cases. The values of f ′(θ)/f(θ) =

− sin θ
1+cos θ

for θ equal to 0, π
6
, π

4
, π

3
, and π

2
are computed in the table below. Since f ′(θ) is

0
π
6

π
4

π
2

π
3

`

0

2

0

1+ √
2

2

θ

f  (  )θ

θf (  )

`

f  (  )θ

/ θf (  )

−
2

1 − √
2

2 − √
2

3 −1

1+ √
2

3 1+
2

1 1

√3

−1

1+ √2

−1

1+ √3

−1
−1

defined for these angles, γ 6= 0 and hence γ = tan−1 f
′(θ)
f(θ)

+π
2
for each of them. The values

of tan−1 f
′(θ)
f(θ)

for the numbers in the last row of the table are 0,−0.3509,−0.3927,−π
6
,

and −π
4
with the second and third being approximations. (Use the inverse tan button

of a calculator or the definition of tan). After adding π
2
≈ 1.5708, we find that γ is

equal to π
2

= 90◦, 1.2199 ≈ 69.90◦, 1.1781 ≈ 67.50◦, π
3

= 60◦, and π
4

= 45◦ for θ equal to
0, π

6
, π

4
, π

3
, and π

2
, respectively. Since f(θ) 6= 0 for these angles, case (i) of Problem 12.20

applies to tell us that corresponding values of tanϕ = tan(θ − γ) are the undefined
tan(−π

2
), tan(π

6
− 1.2199) ≈ −0.84, tan(π

4
− 1.1781) ≈ −0.41, tan(π

3
− π

3
) = 0 and

tan(π
2
− π

4
) = 1, respectively. These numbers are the slopes of the tangent lines to
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the graph of f(θ) = 1 + cos θ for θ equal to 0, π
6
, π

4
, π

3
, and π

2
, respectively. Check that

they are consistent with the way the graph of f(θ) = 1 + cos θ in Figure 12.38 rises
and falls. Notice that the tangent is vertical for θ = 0 and horizontal for θ = π

3
.

Finally to the slope of the graph at the origin (0, π). For θ < π and close to π the
graph lies above the polar axis and we’ll study how it flows into the point (0, π) with
a look at lim

θ→π−
. Since sin θ > 0 for θ < π and close to π, we know that

lim
θ→π−

f ′(θ)
f(θ)

= lim
θ→π−

( − sin θ
1+cos θ

· 1−cos θ
1−cos θ

)
= lim

θ→π−
cos θ−1

sin θ
= −∞.

A look at Figure 9.33 tells us that lim
θ→π−

tan−1 f
′(θ)
f(θ)

= −π
2
and hence that lim

θ→π−
γ(θ) = 0.

The figure below illustrates what we can conclude. As θ is pushed to π the segment
from the origin O to the point P = (f(θ), θ) flows into horizontal position and the angle

O OO

θ θ θ

 P = (f (  ),   )θ θ

 P = (f (  ),   )θ θ

 P = (f (  ),   )θ θ

between the tangent at P and the segment OP goes to zero. It follows that the tangent
at O is the horizontal line θ = π. (An analysis of lim

θ→π+
shows that this is also the case

for the graph below the polar axis.)

12.22. The graph of r = 1 + 2 cos θ is sketched below with

https://www.desmos.com/calculator/ms3eghkkgz (polar graphing calculator)

r = 1 + 2 cos θ
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12.23. Since f(θ) = sin 2θ and f ′(θ) = 2 cos 2θ, we get the table

0
π
6

π
4

π
2

π
3

`

2

0

undefined

1 0

undefined

θ

f  (  )θ

θf (  )

`

f  (  )θ

/ θf (  )

−1

0

−2

√
2

3 1
√
2

3

√

2

3 0 √

2

3
−

We’ll study γ(θ) = tan−1 f
′(θ)
f(θ)

+ π
2
and tan(θ − γ(θ)) for the specified angles θ.

Start with θ = 0. Since f ′(θ)
f(θ)

is not defined, we’ll consider lim
θ→0+

tan−1 f
′(θ)
f(θ)

. The fact

that lim
θ→0+

cos 2θ
sin 2θ

= +∞ in combination with Figure 9.33 tells us that

lim
θ→0+

tan−1 f
′(θ)
f(θ)

= lim
θ→0+

tan−1
(

cos 2θ
sin 2θ

)
= π

2

and hence that lim
θ→0+

γ(θ) = lim
θ→0+

tan−1 f
′(θ)
f(θ)

+ π
2

= π. So lim
θ→0+

tan(θ − γ(θ)) = 0 and it

follows that the tangent to the graph at (0, 0) is horizontal. This is in agreement with
the depiction of the graph in Figure 12.40.

We take θ = π
6
next. A calculator tells us that tan−1( 2√

3
) ≈ 0.8571, so that γ(π

6
) ≈

0.8571 + 1.5708 = 2.4279 and tan(π
6
− γ(π

6
)) ≈ tan(−1.9043) ≈ 2.8865. Moving to

θ = π
4
, we get tan−1(0) = 0 so that γ(π

4
) = 0 + π

2
and hence that tan(π

4
− γ(π

4
)) =

tan(π
4
− π

2
) = tan(−π

4
) = −1. For θ = π

3
we see that tan−1(− 2√

3
) ≈ −0.8571 so that

γ(π
3
) ≈ −0.8571 + 1.5708 = 0.7137 and tan(π

3
− γ(π

3
)) ≈ tan 0.3335 ≈ 0.3464.

Finally to θ = π
2
. Here too f ′(θ)

f(θ)
is undefined, so that we’ll consider lim

θ→π
2
−

tan−1 f
′(θ)
f(θ)

.

The limit lim
θ→π

2
−

cos 2θ
sin 2θ

= −∞ and the graph of Figure 9.33 inform us that

lim
θ→π

2
−

tan−1 f
′(θ)
f(θ)

= lim
θ→π

2
−
tan−1

(
cos 2θ
sin 2θ

)
= −π

2

and hence that lim
θ→π

2
−
γ(θ) = lim

θ→π
2
−

tan−1 f
′(θ)
f(θ)

+ π
2

= 0. So lim
θ→π

2
−

tan(θ − γ(θ)) = +∞.

This time the tangent to the graph at (0, 0) is vertical just as the graph of Figure 12.40
indicates. Check the values for the slopes of the graph at the points corresponding to
the angles θ = π

6
, π

4
, and π

3
against Figure 12.40.

12.24. The double angle formula tells us that r = sin 2θ = 2 sin θ cos θ. So r3 = r2 sin 2θ =

2(r sin θ)(r cos θ) = 2xy. Since r = ±
√
x2 + y2, it follows that (x2 + y2)

3
2 = ±2xy.

12.25. The graphs below were drawn by https://www.desmos.com/calculator/ms3eghkkgz.

i. The graph of r = 2 cos 2θ is similar to the graph of r = sin 2θ. It is obtained
by the same strategy and is also a four-leaf rose. The coefficient 2 stretches the
leaves by a factor of 2. The fact that the Cartesian graph of r = cos 2θ is gotten
by shifting the Cartesian graph of r = sin 2θ by π

4
units to the left explains the

fact that the rose of r = 2 cos 2θ is obtained by rotating the rose of the sine by π
4
.
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r = 2 cos 2   θ

ii. We turn to r = −4 sin 3θ. As the ray θ rotates from 0 to π
6
, r slides from 0 to −4

and as θ goes from π
6
to π

3
, r goes from −4 back to 0. The loop on the lower left of

the graph below is traced out in the process. Similarly, as the ray θ rotates from
π
3
to 2π

3
, r slides from 0 to 4 (at θ = π

2
) and back to 0 tracing out the upper loop.

Next, as the ray θ rotates from 2π
3
to π, r slides from 0 to −4 (at θ = 5π

6
) back to

0. This traces out the loop on the lower right. As the rotation of θ continues the
graph we already have is repeated. For example, as θ moves from 0 to −π

3
, the

r = −4 sin 3θ

loop on the lower right is traced out again. As θ moves from π to 4π
3
, the loop on

the lower left is repeated.
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iii. Finally to the polar graph of r2 = 9 sin 2θ. Note that 9 sin 2θ ≥ 0, so that θ must
fall into one of the intervals [0, π

2
], [π, 3π

2
], [2π, 5π

2
], . . . or [−π

2
,−π], [−3π

2
,−2π], . . . .

As the ray θ rotates from 0 to π
2
, r = +3

√
sin 2θ slides from 0 to 3 (at θ = π

4
)

and back to 0. In the process, the loop on the upper right of the graph below
is traced out. But r = −3

√
sin 2θ is also possible. This time as θ varies from 0

to π
2
the loop on the lower left is traced out. Similar considerations show that as

θ varies from π to 3π
2
, r = +3

√
sin 2θ traces out the loop on the lower left again

and r = −3
√

sin 2θ repeats the loop on the upper right. As θ varies from −π
2
to

−π, r = +3
√

sin 2θ and r = −3
√

sin 2θ trace these loops once more. The same

 

r   = 9 sin 2      θ2

is the case as θ sweeps from −3π
2
to −2π. The fact that the values of sin 2θ repeat

tells us that the graph of r2 = 9 sin 2θ is complete as sketched.

12.26. The relevant formulas are sin 2θ = 2 sin θ cos θ, cos 2θ = cos2 θ− sin2 θ and sin(θ+φ) =

sin θ cosφ+ cos θ sinφ. By taking φ = 2θ in the last formula, we get
sin 3θ = sin θ(cos2 θ − sin2 θ) + cos θ(2 sin θ cos θ) = 3 sin θ cos2 θ − sin3 θ.

i. For r = 2 cos 2θ we get r = 2(cos2 θ − sin2 θ) and hence

r3 = 2(r2 cos2 θ − r2 sin2 θ) = 2(x2 − y2).

Therefore ±(x2 + y2)
3
2 = 2(x2 − y2).

ii. For r = −4 sin 3θ we get r = −4(3 sin θ cos2 θ − sin3 θ). So

r4 = −4((3r sin θ)(r2 cos2 θ)− r3 sin3 θ) = −4(3yx2 − y3) = 4(y3 − 3yx2).

Therefore (x2 + y2)2 = 4(y3 − 3yx2).

iii. Since sin 2θ = 2 sin θ cos θ, we get r2 = 9(2 sin θ cos θ), and hence

r4 = 9r2(2 sin θ cos θ) = 18(r sin θ)(r cos θ) = 18yx.

Therefore (x2 + y2)2 = 18yx.
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12.27. The Archimedean spiral r = f(θ) = 3θ satisfies f ′(θ)
f(θ)

= 1
θ
. Since f ′(θ) > 0, r =

f(θ) = 3θ is an increasing function of θ. So π
2
< γ(θ) throughout. It follows that

0 < (γ(θ)− π
2
) < π

2
throughout. For θ small and positive f ′(θ)

f(θ)
= tan(γ(θ)− π

2
) is large

and positive. So the graph of the tangent tells us (see Figure 9.32) that γ(θ) − π
2
is

close to π
2
. So γ(θ) is close to π and hence (see Figure 12.9) the expansion of the spiral

is rapid. For θ large and positive γ(θ)− π
2
is close to 0. By the same argument γ(θ) is

r = 3θ

close to π
2
and the expansion of the spiral is slow. A look at the graph of r = f(θ) = 3θ

confirms what we have observed.

12.28. For the equiangular spiral f(θ) = 2e
θ√
3 we see that tan(γ(θ) − π

2
) = f ′(θ)

f(θ)
= 1√

3
. It

follows that γ(θ)− π
2

= π
6
and hence that γ(θ) = 2π

3
. The graph of this spiral is

r = 2e

θ
√3

-10 70

sketched above. Since f ′(θ) = 2√
3
e
θ√
3 we see that the length of the spiral from θ = 0

to θ = 2π is given by
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∫ 2π

0

√
f(θ)2 + f ′(θ)2 dθ =

∫ 2π

0

√
4e

2√
3
θ

+ 4
3
e

2√
3
θ
dθ =

√
4 + 4

3

∫ 2π

0

√
e

2√
3
θ
dθ

=
√

16
3

∫ 2π

0

e
1√
3
θ
dθ = 4√

3

(√
3e

1√
3
θ
∣∣2π
0

)
= 4(e

2π√
3−1

)
≈ 146.

The area that the spiral (along with the polar axis) encloses is∫ 2π

0

1
2
f(θ)2 dθ =

∫ 2π

0

1
2

(
4e

2√
3
θ)
dθ =

∫ 2π

0

2e
2√
3
θ
dθ =

(√
3e

2√
3
θ)∣∣2π

0
=
√

3(e
4π√
3 − 1) ≈ 2450.

The fact that the two shorter sides plus the bottom side of the rectangle determined
by the intervals [−10, 70] on the x-axis and [0,−30] on the y-axis (see the figure) add
to 30 + 80 + 30 = 140 and that its area is 80 · 30 = 2400 confirms the reasonableness
of the two answers.

12.29. Since y = r sin θ, the graph of the polar function r = f(θ) = 1
sin θ

is the line y = 1. It

follows that the integral
∫ 3π

4

π
4

1
2

1
sin2 θ

dθ is the area of the triangle of Figure (a) below.

O

(a)            (b)    (c)

y = 1

O x = 4

h

O

y = −2x + 3

60
o

Since this area is equal to 1
2
(2 · 1) = 1, it follows that

∫ 3π
4

π
4

1
sin2 θ

dθ = 2.

12.30. Since x = r cos θ, the graph of the function r = f(θ) = 4
cos θ

is the line x = 4. It

follows that
∫ π

3

0

1
2

(
4

cos θ

)2
dθ is the area of the triangle with base 4 and height h shown in

Figure (b) above. Since h
4

= tan 60◦ =
√

3, h = 4
√

3 and
∫ π

3

0

8
cos2 θ

dθ = 1
2
4 ·4
√

3 = 8
√

3.

12.31. After writing r = f(θ) = 3
sin θ+2 cos θ

as r sin θ + 2r cos θ = 3, we see that the graph of

this polar function is the line y = −2x+ 3 with slope -2 and y-intercept 3 sketched in

Figure (c) above. The integral
∫ π

2

0

1
2
f(θ)2 dθ is the area of the right triangle bounded

by the graph of y = −2x+ 3 and the x- and y-axes. It follows that∫ π
2

0

1
2
f(θ)2 dθ = 1

2
(3

2
· 3) = 9

4
.
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Similarly,
∫ π

2

0

√
f(θ)2 + f ′(θ)2 dθ is the length of the hypotenuse of this triangle. So

by the Pythagorean theorem,∫ π
2

0

√
f(θ)2 + f ′(θ)2 dθ =

√
(3

2
)2 + 32 =

√
45
4

= 3
2

√
5.

In terms of the particulars it turns out that these area and length integrals are essen-

tially the same. From the area integral we get 1
2

∫ π
2

0

32

(sin θ+2 cos θ)2
dθ = 9

4
and hence that∫ π

2

0

1
(sin θ+2 cos θ)2

dθ = 1
2
.

Let’s turn to the length integral. Since f(θ) = 3(sin θ + 2 cos θ)−1, we see that

f ′(θ) = −3((sin θ + 2 cos θ)−2(cos θ − 2 sin θ) = 3(2 sin θ−cos θ)
(sin θ+2 cos θ)2

.

Hence
f(θ)2 + f ′(θ)2 = 32

(sin θ+2 cos θ)2
+ 32(2 sin θ−cos θ)2

(sin θ+2 cos θ)4
= 32[(sin θ+2 cos θ)2+(2 sin θ−cos θ)2]

(sin θ+2 cos θ)4

= 32(5 sin2 θ+5 cos2 θ)
(sin θ+2 cos θ)4

= 325
(sin θ+2 cos θ)4

.

Therefore
∫ π

2

0

√
f(θ)2 + f ′(θ)2 dθ =

∫ π
2

0

3
√

5
(sin θ+2 cos θ)2

dθ. Because this integral is equal

to 3
2

√
5, we see again that ∫ π

2

0

1
(sin θ+2 cos θ)2

dθ = 1
2
.

12.32. With f(θ) = sin θ, we get f ′(θ) = cos θ, so that
√
f(θ)2 + f ′(θ)2 =

√
sin2 θ + cos2 θ = 1.

It follows that these lengths are equal to∫ 3π
4

π
4

1 dθ = (3π
4
− π

4
) = π

2
,

∫ π

0

1 dθ = π, and
∫ 2π

0

1 dx = 2π,

respectively. By Figure 12.4 the graph of r = sin θ in is a circle of radius 1
2
. A look at the

limits of integration tells us that the first, second, and third integral are equal to one-
half the circumference of this circe, the full circumference of this circle, and twice the
circumference of this circle, respectively. These lengths are 1

2
(2π(1

2
)) = π

2
, 2π(1

2
) = π,

and 2(2π(1
2
)) = 2π respectively, as before.

12.33. We see from the graph of r = f(θ) = sin θ of Figure 12.4 that the integral
∫ π

0

1
2

sin2 θ dθ

is equal to the area of a circle of radius 1
2
. So its value is π(1

2
)2 = π

4
. Letting α = θ

in the equality cos 2α = 1 − 2 sin2 α of Problem 1.26ii, and solving for sin2 θ, we get
sin2 θ = 1

2
(1− cos 2θ). Using this equality, we get∫ π

0

1
2

sin2 θ dθ =

∫ π

0

1
4
(1− cos 2θ) dθ = 1

4
(θ − 1

2
sin 2θ)

∣∣π
0

= π
4
.
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12.34. Section 12.2 tells us that the graph of r = f(θ) = 4
1+ 2

3
cos θ

is an ellipse with eccentricity
ε = 2

3
and d = 4. By part (ii) of Section 12.2 the semimajor and semiminor axes of

this ellipse are a = d
1−ε2 = 4

1−( 2
3

)2
= 4

5
9

= 36
5

and b = d√
1−ε2 = 4√

1−( 2
3

)2
= 4√

5
9

= 12√
5
.

Recall from Section 5.7 that the area of an ellipse with semimajor and semiminor axes

a and b is abπ. Since
∫ π

0

1
2

(
4

1+ 2
3

cos θ

)2
dθ is one-half the area of the ellipse it follows that∫ π

0

1
2

(
4

1+ 2
3

cos θ

)2
dθ = 1

2
(36

5
)( 12√

5
)π = 216

5
√

5
π.

12.35. The derivative of r = f(θ) = d
1+ε cos θ

= d(1 + ε cos θ)−1 is

f ′(θ) = −d(1 + ε cos θ)−2(−ε sin θ) = dε sin θ
(1+ε cos θ)2

.

Therefore

f(θ)2 + f ′(θ)2 = d2

(1+ε cos θ)2
+ d2ε2 sin2 θ

(1+ε cos θ)4
= d2(1+ε cos θ)2 + d2ε2 sin2 θ

(1+ε cos θ)4
= d2+2εd2 cos θ+d2ε2

(1+ε cos θ)4
.

Since
√
f(θ)2 + f ′(θ)2 = d

√
1+ε2+2ε cos θ
(1+ε cos θ)2

, the integral d
∫ b

a

√
1+ε2+2ε cos θ
(1+ε cos θ)2

dθ expresses the

length of the conic section f(θ) = d
1+ε cos θ

between the rays θ = a to θ = b.

In the parabolic case ε = 1 and
√

1 + ε2 + 2ε cos θ =
√

2 + 2 cos θ =
√

2(1 + cos θ)
1
2

and the integral is
√

2d

∫ b

a

1

(1+cos θ)
3
2
dθ.

12.36. A study of the solution of Problem 12.30 tells us that
∫ π

4

0

1
2

(
4

cos θ

)2
dθ = 1

2
(4 · 4) = 8.

After changing notation from θ to x we get
∫ π

4

0

3
cos2 x

dx = 3
8

∫ π
4

0

8
cos2 x

dx = 3.

By looking at the solution of Problem 12.33 and Figure 12.4 we see that
∫ π

2

0

1
2

sin2 θ dθ =

1
2
π(1

2
)2 = π

8
. After changing the variable we see that

∫ π
2

0

sin2 x dx = π
4
.

After studying the solution of 12.34 we see that
∫ 2π

0

1
2

(
4

1+ 2
3

cos θ

)2
dθ is the area of the

entire ellipse with semimajor and semiminor axes a = 36
5
and b = 12√

5
. So the value of

this integral is (36
5

)( 12√
5
)π = 432

5
√

5
π. It follows that

∫ 2π

0

2
(1+ 2

3
cosx)2

dx = 1
4
( 432

5
√

5
π) = 108

5
√

5
π.

12.37. The circle (x−1)2 + (y−1)2 = 2 has center (1, 1) and radius
√

2. Its graph is sketched
in the figure below. The Cartesian points (2, 0) and (0, 2) are on the circle and the
segment joining them is on the line y = −x+ 2. It follows that (1, 1) is on this line as
well so that the segment is a diameter of the circle.

Since x = r cos θ and y = r sin θ, we get

(x− 1)2 + (y − 1)2 = (r cos θ − 1)2 + (r sin θ − 1)2
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= (r2 cos2 θ − 2r cos θ + 1) + (r2 sin2 θ − 2r sin θ + 1)

= r2 − 2r(cos θ + sin θ) + 2

and hence r2 − 2r(cos θ + sin θ) = 0. Assuming that r 6= 0, we get r = 2(cos θ + sin θ).
For θ = 3π

4
, r = 2(−

√
2

2
+
√

2
2

) = 0 so that the origin is on the graph of the polar

0 2

(1, 1)

2

function r = f(θ) = 2(cos θ + sin θ). Hence its graph is the entire circle.

A look at the figure tells us that
∫ π

2

0

1
2
f(θ)2 dθ is the area consisting of half the circle

plus the triangle with base and height equal to 2. So∫ π
2

0

1
2
f(θ)2 dθ = 1

2
π(
√

2)2 + 1
2
(2 · 2) = π + 2.

It also follows from the figure that
∫ π

2

0

√
f(θ)2 + f ′(θ)2 dθ = 1

2
(2π
√

2) =
√

2π.

The two integrals can be solved directly. Since f(θ) = 2(cos θ + sin θ),

f(θ)2 = 4(cos2 θ + 2 cos θ sin θ + sin2 θ) = 4(1 + 2 sin θ cos θ).

Hence
∫ π

2

0

1
2
f(θ)2 dθ =

∫ π
2

0

2(1 + 2 cos θ sin θ) dθ = (2θ + 2 sin2 θ)
∣∣π2
0

= π + 2 as before.

Since f ′(θ) = 2(− sin θ + cos θ), we get

f ′(θ)2 = 4(sin2 θ − 2 sin θ cos θ + cos2 θ) = 4(1− 2 sin θ cos θ).

So f(θ)2 + f ′(θ)2 = 8 and
∫ π

2

0

√
f(θ)2 + f ′(θ)2 dθ = 2

√
2θ
∣∣π2
0

=
√

2π.

12.38. i. The area of the cardioid r = f(θ) = 1 + cos θ of Figure 12.38 is equal to∫ 2π

0

1
2
f(θ)2 dθ =

∫ 2π

0

1
2
(1 + cos θ)2 dθ.

With the equality cos2 θ = 1
2
(1 + cos 2θ) this integral is easily solved. Since

(1+cos θ)2 = 1+2 cos θ+cos2 θ = 1+2 cos θ+ 1
2
(1+cos 2θ) = 3

2
+2 cos θ+ 1

2
cos 2θ,

we get

18



∫ 2π

0

1
2
(1 + cos θ)2 dθ = 1

2

(
3
2
θ + 2 sin θ + 1

4
sin 2θ

)∣∣2π
0

= 3
2
π.

ii. The derivative of f(θ) = 1 + cos θ is f ′(θ) = − sin θ. Therefore
f(θ)2 + f ′(θ)2 = 1 + 2 cos θ + cos2 θ + sin2 θ = 2 + 2 cos θ and hence∫ π

0

√
f(θ)2 + f ′(θ)2 dθ =

∫ π

0

√
2 + 2 cos θ dθ =

√
2

∫ π

0

√
1 + cos θ dθ.

As θ moves from 0 to π one-half of the cardioid is traced out, so that this integral
represents one-half of the length of the cardioid.

iii. With u = 1 + cos θ, we get du
dθ

= − sin θ and du = − sin θ dθ. From the fact that
sin2 θ + cos2 θ = 1 and sin θ ≥ 0 over 0 ≤ θ ≤ π we get that sin θ = (1− cos2 θ)

1
2 ,

and hence that

sin θ = (1− cos2 θ)
1
2 = (1− (u− 1)2)

1
2 = (1− u2 + 2u− 1)

1
2 = (2u− u2)

1
2 .

So
√

1 + cos θ dθ = − u
1
2

(2u−u2)
1
2
du = −

(
u

2u−u2
) 1

2du = −
(

1
2−u

) 1
2du = −1√

2−u du, and

√
2

∫ π

0

√
1 + cos θ dθ =

√
2

∫ 0

2

−1√
2−u du =

√
2

∫ 2

0

1√
2−u du.

Observe that the integral
∫ 2

0

1√
2−u du = lim

c→2−

∫ c

0

1√
2−u du is improper.

iv. Let’s try v = 2− u and dv = −du. So

lim
c→2−

∫ c

0

1√
2−u du = lim

c→2−

∫ 2−c

2

−1√
v
dv = lim

c→2−

∫ 2

2−c
v−

1
2 dv = lim

c→2−
(2v

1
2

∣∣2
2−c)

= lim
c→2−

2(
√

2−
√

2− c) = 2
√

2.

Combining the conclusions of (ii), (iii), and (iv), we get that one-half the length
of the cardioid is∫ π

0

√
f(θ)2 + f ′(θ)2 dθ =

√
2

∫ π

0

√
1 + cos θ dθ =

√
2(2
√

2) = 4.

v. So the length of the cardioid r = 1 + cos θ is 8.

12.39. With regard to Figure 12.41 the simple fact is that for some graphs (or parts of graphs)
the length f(θi) dθ of the circular arc does not approximate the length of the graph
between the rays determined by θi and θi+1 with sufficient accuracy.

Consider the function r = f(θ) = sin θ. Its graph is the circle sketched in Fig-
ure 12.4. Notice that as θ moves from 0 through small positive angles, the point (r, θ)

on the graph recedes quickly from the origin. This part of the graph illustrates the
problem of “sufficient accuracy.” Consider the rays θ = π

12
and θ = π

9
. The ray θ = π

12

cuts the graph at the point (sin π
12
, π

12
) ≈ (0.26, 0.26). By the length formula for a

circular arc, the circular arc centered at O from this point to the ray θ = π
9
has length
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f( π
12

)(π
9
− π

12
) = (sin π

12
)(π

9
− π

12
) = (sin π

12
)( π

36
) ≈ 0.0226.

Let’s compare this against the length of the graph of the function between these two

πθ = 
12

πθ = 
9

πθ = 
4

θ = 0 O

rays. This length is∫ π
9

π
12

√
f(θ)2 + f ′(θ)2 dθ =

∫ π
9

π
12

√
sin2 θ + cos2 θ dθ = θ

∣∣π9
π
12

= (π
9
− π

12
) = π

36
≈ 0.0873,

or about 4 times the length of the circular arc.

A comparison of the correct and incorrect formulas for one-half the length of the
circle of Figure 12.4 shows how these differences accumulate. The incorrect formula

tells us that
∫ π

2

0

f(θ) dθ =

∫ π
2

0

sin θ dθ = − cos θ
∣∣π2
0

= −(0−1) = 1, whereas the correct

result is
∫ π

2

0

√
f(θ)2 + f ′(θ)2 dθ =

∫ π
2

0

√
sin2 θ + cos2 θ dθ = θ

∣∣π2
0

= π
2
≈ 1.57.

12.40. i. Putting the equations for x(t) and Fx(t) together tells us that Fx(t) = −mx(t)

where m is the mass of the point. So when for a given time t one of x(t) or Fx(t) is
positive, the other is negative. Since Fy(t) = −my(t) there is a similar connection
between y(t) and Fy(t). It follows that Fx(t) always points in the direction of the
y-axis and that Fy(t) points in the direction of the y-axis.

ii. The slope of the slanting segment in Figure 12.42a connecting P and O is y(t)−0
x(t)−0

=
y(t)
x(t)

. Turn to Figure 12.42b and assume that P is in either the first of third
quadrant. Since the parallelogram law holds, the resultant runs in the direction
of the diagonal of the rectangle in each case. The slope of the diagonal is tanϕ =
|Fy(t)|
|Fx(t)| in each case. Since Fx(t) = −mx(t) and Fy(t) = −my(t) and x(t) and y(t)

ϕ

P

ϕ

PF  (t)x| |

F  (t)y| |

F  (t)x| |

F  (t)y| |
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have the same sign, tanϕ = y(t)
x(t)

is also equal to the slope of the slanting line of
Figure 12.42b. It follows that the resultant of the forces Fx(t) and Fy(t) lies on
the line joining P and O. A similar argument works when P is in the second or
fourth quadrants.

iii. A combination of (i) and (ii) shows that the resultant of Fx(t) and Fy(t) is a
centripetal force on P acting in the direction of the origin O.

iv. This is confirmed by the computation

F (t) =
√
Fx(t)2 + Fy(t)2 = m

√
a2 cos2 t+ b2 sin2 t = m

√
x(t)2 + y(t)2 = mr(t).

12.41. If the angle θ(t) of Figure 12.23 increases at a constant rate, then the formula r(t)2θ′(t) =

2κ of Section 12.8 informs us that r(t)2 is constant and hence that r(t) is constant as
well. This means that the orbit is a circle. Since r = f(θ) is constant and g(θ) = f(θ)−1,

it follows that g(θ) is constant and hence that g′(θ) and g′′(θ) are both zero. In turn,
F (t) = 4mκ2g(θ(t))3 is constant.

12.42. Since a(r sin θ) + b(r cos θ) = c, the Cartesian version of the equation r = f(θ) is
the line ay + bx = c. Since c 6= 0, the origin is not on the line. Note that g(θ) =
1
c
(a sin θ + b cos θ). So g′(θ) = 1

c
(a cos θ − b sin θ) and g′′(θ) = 1

c
(−a sin θ − b sin θ). It

follows that g′′(θ) = −g(θ). An application of the centripetal force equation tells us
that F (t) = 0.

12.43. The assumption that the magnitude of the centripetal force satisfies the inverse cube
law F (t) = K m

r(t)3
= Kmg(θ(t))3 for a constant K combined with the centripetal force

equation F (t) = 4mκ2g(θ(t))2
[
g(θ(t)) + g′′(θ(t))

]
implies that 4κ2[g(θ(t)) + g′′(θ(t))] =

Kg(θ(t)) and hence g′′(θ(t)) +
[
1 − K

4κ2

]
g(θ(t)) = 0. It follows that the function g(θ)

satisfies

g′′(θ) +
[
1− K

4κ2

]
g(θ) = 0.

So y = g(θ) is a solution of a second-order differential equation of the form studied in
Section 11.6. With respect to the constants A,B, and C introduced there, observe that
A = 1, B = 0, and C = 1− K

4κ2
. Therefore B2− 4AC = −4

(
1− K

4κ2

)
= K

κ2
− 4 = K−4κ2

κ2
.

Case 1. If K > 4κ2, then B2 − 4AC > 0 and Case 1 of Section 11.6 applies. So g(θ)

is given by

g(θ) = D1e
√
K−4κ2

2κ
θ + D2e

−
√
K−4κ2

2κ
θ

for some real constants D1 and D2.

Case 2. If K = 4κ2, then B2− 4AC = 0 so that Case 2 of Section 11.6 applies. Since
A = 1, and B = C = 0, the only root of the characteristic polynomial x2 is zero, and
hence g(θ) is given by

g(θ) = D1 + D2θ
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for some real constants D1 and D2.

Case 3. If K < 4κ2, then Case 3 of Section 11.6 applies, so that

g(θ) = D1 sin
(√

4κ2−K
2κ

θ
)

+ D2 cos
(√

4κ2−K
2κ

θ
)

where D1 and D2 are real constants.

12.44. i. Since r = f(θ) = 1
aθ+c

, we know that g(θ) = aθ + c. So g′(θ) = a, g′′(θ) = 0, and

F (t) = 4mκ2g(θ(t))2
[
g(θ(t))

]
= 4mκ2g(θ(t))3 = 4κ2 m

r(t))3
.

ii. For r = f(θ) = 1
a cos(bθ+c)

, we get g(θ) = a cos(bθ + c). So g′(θ) = −ab sin(bθ + c)

and g′′(θ) = −ab2 cos(bθ + c) = −b2g(θ). Hence g(θ) + g′′(θ) = g(θ) − b2g(θ) =

(1− b2)g(θ) and therefore

F (t) = 4mκ2g(θ(t))2
[
g(θ(t))+g′′(θ(t))

]
= 4mκ2(1−b2)g(θ(t))3 = 4κ2(1−b2) m

r(t)3
.

iii. Given r = f(θ) = 1
a cosh(bθ+c)

, we know that g(θ) = a cosh(bθ + c). Hence g′(θ) =

ab sinh(bθ + c) and g′′(θ) = ab2 cosh(bθ + c) = b2g(θ). Therefore g(θ) + g′′(θ) =

g(θ) + b2g(θ) = (1 + b2)g(θ) and

F (t) = 4mκ2g(θ(t))2
[
g(θ(t))+g′′(θ(t))

]
= 4mκ2(1+ b2)g(θ(t))3 = 4κ2(1+ b2) m

r(t)3
.

Let’s look at the conclusions of Problems 12.43 and 12.44 side by side. Problem 12.43
describes all orbits of point-masses driven by a centripetal force that satisfies an inverse cube
law. It classifies all the polar functions r = f(θ) that have such orbits as graphs by showing
that they belong to one of three basic types. Problem 12.44 goes on to provide three examples
of functions with graphs that describe orbits of point-masses that are pushed by a centripetal
force satisfying an inverse cube law. The logical implication is that these three examples
should all appear in the classification that Problem 12.43 provides. Example (i) appears
as Case 2 of the conclusion of Problem 12.43. But what about examples (ii) and (iii)? It
turns out they belong to Cases 3 and 1 of this classification, respectively. In the situation of
example (ii) this is a consequence of the addition formula for the cosine (Problem 1.25). For
example (iii) it follows from the addition formula for the hyperbolic cosine (Example 7.47).

12.45. It was shown in Part 3 of Section 12.10 that the mass Mi of the typical spherical shell
within the sphere of radius R (as depicted in Figure 12.29) is approximately

Mi ≈ (4πc2
i∆xi)ρ(ci) = 4πc2

i ρ(ci)∆xi.

Since the sum of the masses of the n shells is the mass M of the sphere, we see that

M =
n−1∑
i=0

Mi ≈
n−1∑
i=0

4πc2
i ρ(ci) ∆xi.

By repeating this computation again and again for partitions P of smaller and smaller
norm ‖P‖ the approximations involved get tighter and tighter so that in the limit,
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M = lim
‖P‖→0

n−1∑
i=0

4πc2
i ρ(ci) ∆xi.

Since this limit is nothing but
∫ R

0

4πx2ρ(x) dx we have verified that the mass M of the

sphere is given by this integral.

The last two problems show that the inverse square law—that correctly expresses the
magnitude of the gravitational force between point-masses and homogeneous spheres—is the
exception rather than the rule. For instance, it fails to describe the magnitude of the force
with which a homogeneous disc or cylinder attracts a point-mass.

12.46. The solution will make use of the short-hand approach to integration (rather than the
longer and more detailed path using partitions, norms, and limits). Since the disc D
is homogeneous with radius R and mass M it has constant density equal to ρ = M

πR2

(given by mass over area). Let’s focus on the typical thin circular ring of radius x and
thickness dx shown in Figure 12.43. Cut the ring and straighten it out to form a thin
rectangle of height dx and length equal to the circumference 2πx of the ring. The area
of this rectangle is (2πx)dx so that it has mass 2πρx dx. By applying the conclusion
of Part 1 of Section 12.10, the gravitational force with which this ring attracts the
point-mass m acts in the direction of its center O with magnitude Gm(2πρx dx)c

(c2+x2)
3
2

. Since

this is so for each of these circular rings as x varies from 0 to R, it follows that the
resultant of these forces (that is to say the force with which the entire disc D attracts
the point-mass m) acts in the direction of O with magnitude equal to the sum of the
magnitudes Gm(2πρx dx)c

(c2+x2)
3
2

(as x varies from 0 to R). By arguing as we have so many
times before we know that this sum is given by the integral

F =

∫ R

0

Gm(2πρx dx)c

(c2+x2)
3
2

dx = Gmc

∫ R

0

2π( M
πR2 )x

(x2+c2)
3
2
dx = GmMc

R2

∫ R

0

2x

(x2+c2)
3
2
dx.

The integral
∫ R

0

2x

(x2+c2)
3
2
dx is easy to evaluate. With u = x2 + c2 and du = 2x dx,

∫ R

0

2x

(x2+c2)
3
2
dx =

∫ R2+c2

c2
u−

3
2 du = −2u−

1
2

∣∣R2+c2

c2
= −2( 1√

R2+c2
− 1√

c2
) = 2(1

c
− 1√

R2+c2
).

We have shown that the gravitational force of the disc on the point-mass is directed
to the center O of the disc with a magnitude F = G2mM

R2

(
1− c√

R2+c2

)
.

12.47. Since the mass of the cylinder is homogeneously distributed its density ρ is the constant
obtained by dividing its mass M by its volume πR2h. So ρ = M

πR2h
. Let’s focus on

one of the typical thin discs of thickness dx that the cylinder has been sliced into. See
Figure 12.44. The volume of the disc is πR2dx so that its mass is πR2dx · ρ. The
point-mass m lies on the central axis of the cylinder at a distance c−x from the disc’s
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center. By the conclusion of the previous problem, the gravitational force with which
the disc attracts the point-mass acts in the direction of the center of the disc with a
magnitude of

G2m(πR2dx·ρ)
R2

(
1− c−x√

R2+(c−x)2

)
= G · 2mπ( M

πR2h
)dx
(
1− c−x

(R2+(c−x)2)
1
2

)
= G2mM

R2h

(
1− c−x

(R2+(c−x)2)
1
2

)
dx.

Summing things up over all the discs from x = 0 to x = h, we find that the force
with which the cylinder attracts the point mass is directed along the central axis of
the cylinder with a magnitude of

F =

∫ h

0

G2mM
R2h

(
1− c−x

(R2+(c−x)2)
1
2

)
dx = G2mM

R2h

∫ h

0

(
1 + x−c

(R2+(c−x)2)
1
2

)
dx.

Since
∫ h

0

(
1 + x−c

(R2+(c−x)2)
1
2

)
dx = h+

∫ h

0

x−c
(R2+(c−x)2)

1
2
dx, it remains to solve the integral∫ h

0

x−c
(R2+(c−x)2)

1
2
dx. To this end, we’ll start with the substitution u = x−c and du = dx

to get
∫ h

0

x−c
(R2+(c−x)2)

1
2
dx =

∫ h−c

−c

u

(R2+u2)
1
2
du. Next, we’ll let v = R2 +u2 and dv = 2u du

so that∫ h−c

−c

u

(R2+u2)
1
2
du =

∫ R2+(h−c)2

R2+c2

1
2
v−

1
2 dv = v

1
2

∣∣R2+(h−c)2

R2+c2
= (R2 + (h− c)2)

1
2 − (R2 + c2)

1
2 .

Putting things together, we finally see that F = G2mM
R2h

(
h−(R2+c2)

1
2 +(R2+(c−h)2)

1
2

)
.
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