
Solutions to Problems and Projects for Chapter 11

11.1. Since y = tanx+sec x, we know that dy
dx

= sec2 x+(sec x)(tanx) by facts from Section 7.7. The
restriction −π

2
< x < π

2
insures the continuity and differentiability of the functions y = tanx

and y = secx (see Figures 4.26 and 4.27).

2 dy
dx
− y2 = 2 sec2 x+ 2(secx)(tanx)− tan2 x− 2(tanx)(secx)− sec2 x

= sec2 x− tan2 x.
The trig identity tan2 +1 = sec2 x informs us that sec2 x− tan2 x = 1.

11.2. Let y = sinx. Since dy
dx

= cosx and sin2 x+ cos2 x = 1, we see that ( dy
dx

)2 = 1− sin2 x = 1−y2.
In the same way, for y = cosx, ( dy

dx
)2 = 1− cos2 x = 1− y2.

The solutions of the differential equations that follow involve a constant of integration C that is
often modified in the course of the solution (by multiplication by a constant for instance). We will
usually continue to denote such a constant by C even after such modifications.

11.3. After separating variables the equation dy
dx

= xy becomes dy
y

= x dx. So
∫

dy
y

=

∫
x dx and

hence ln y = 1
2
x2 + C. Therefore y = eln y = e

1
2
x2+C = e

1
2
x2eC . So the general solution has

the form y = f(x) = Ae
1
2
x2 for a positive constant A. The condition f(0) = 4 provides the

particular solution f(x) = 4e
1
2
x2 .

11.4. By separating the variables the equation dy
dx

= y
x
becomes dy

y
= dx

x
. So

∫
dy
y

=

∫
dx
x

and hence

ln y = ln x + C. So y = eln y = elnx+C = elnxeC = eCx. So the general solution has the form
f(x) = Ax for a positive constant A. The condition f(1) = 2 gives rise to the particular
solution f(x) = 2x. Since all solutions satisfy f(0) = 0, the condition f(0) = 1 cannot arise.

11.5. The equation y′ = y sinx − sinx can be rewritten as dy
dx

= (sin x)(y − 1) and hence as dy
y−1 =

sinx dx. So
∫

dy
y−1 =

∫
sinx dx and therefore ln(y − 1) = − cosx + C. It follows that

y − 1 = eln(y−1) = e− cosx+C = eCe− cosx. It follows that the general solution is y = f(x) =

Ae− cosx + 1 for a positive constant A. With the initial condition f(π) = 3, we get 3 =

Ae− cosπ + 1 = Ae1 + 1. So Ae = 2 and hence A = 2e−1. Therefore the particular solution is
f(x) = 2e−1e− cosx + 1 = 2e−(cosx+1) + 1.

11.6. The equation dy
dx
− x2y2 = 0 can be rearranged to dy

dx
= x2y2 and hence to dy

y2
= x2 dx. So∫

y−2 dy =

∫
x2 dx. Therefore −y−1 = 1

3
x3 + C so that the general solution is y = f(x) =

− 1
1
3
x3+C

for a constant C. The initial condition f(0) = 8 means that 8 = − 1
C
. So C = −1

8
.

Therefore the particular solution is f(x) = − 1
1
3
x3− 1

8

= 8
1− 8

3
x3
.

11.7. The equation x dy
dx

= 3y + x2 can be rewritten as dy
dx

= 3
x
y + x and hence as y′ + p(x)y = q(x)

with p(x) = − 3
x
and q(x) = x. This is an equation to which the method of integrating factors

applies. The function P (x) = −3 lnx = lnx−3 is an antiderivative of p(x) and eP (x) = elnx
−3

=

x−3. It follows that



∫
eP (x)q(x) dx =

∫
x−3x dx =

∫
x−2 dx.

Therefore by the method of integrating factors,

y · x−3 + C = y · eP (x) + C =

∫
eP (x)q(x) dx =

∫
x−2 dx = −x−1 + C ′.

So yx−3 + C = −x−1. Replacing C with −C, we get the general solution y = −x2 + Cx3.

11.8. After dividing through by 3x, the equation 3xy′ − y = ln x + 1 is in the form y′ + p(x)y =

q(x) with p(x) = − 1
3x

and q(x) = lnx+1
3x

, so that it can be approached with the method of
integrating factors. Noting that P (x) = −1

3
lnx = lnx−

1
3 is antiderivative of p(x) and that

and eP (x) = x−
1
3 , we get∫

eP (x)q(x) dx =

∫
(x−

1
3 ) lnx+1

3x
dx = 1

3

∫
(x−

4
3 lnx+ x−

4
3 ) dx .

To solve
∫
x−

4
3 lnx dx apply integration by parts with u = lnx and dv = x−

4
3 dx. So du =

1
x
dx, v = −3x−

1
3 and hence∫
x−

4
3 lnx dx =

∫
u dv = uv −

∫
v du = −3x−

1
3 lnx+

∫
3x−

4
3 dx

= −3x−
1
3 lnx− 9x−

1
3 + C.

Since
∫
x−

4
3 dx = −3x−

1
3 + C ′, we get from the earlier equation that∫

eP (x)q(x) dx = 1
3
(−3x−

1
3 lnx− 9x−

1
3 )− 1

3
(3x−

1
3 ) + C ′ = −x− 1

3 lnx− 4x−
1
3 + C ′.

By step 4 of the method of integrating factors,

yx−
1
3 + C = y · eP (x) + C =

∫
eP (x)q(x) dx = −x− 1

3 lnx− 4x−
1
3 + C ′,

so that yx−
1
3 = −x− 1

3 lnx − 4x−
1
3 + C. So the general solution of the differential equation

3xy′ − y = lnx+ 1 is y = f(x) = Cx
1
3 − lnx− 4. With the initial condition f(1) = 5, we get

5 = C−0−4 and hence that C = 9. Therefore the particular solution is f(x) = 9x
1
3 − lnx−4.

11.9. The equation (t2 + 1)y′ − (1 − t)2y = tet can be written as y′ + −(1−t)2
1+t2

y = tet

1+t2
. So the

method of integrating factors applies with p(t) = −(1−t)2
1+t2

and q(t) = tet

1+t2
. The equality

p(t) = −(1−t)2
1+t2

= −1+2t−t2
1+t2

= 2t
1+t2
− 1 and the fact that d

dt
ln(1 + t2) = 2t

1+t2
(see Section

7.11) tells us that P (t) = ln(1 + t2) − t is an antiderivative of p(t) = −(1−t)2
t2+1)

. Since eP (t) =

eln(1+t
2)−t = eln(1+t

2)e−t = (1 + t2)e−t, we get eP (t)q(t) = (1 + t2)e−t tet

1+t2
= t. By step 4 of the

integrating factors strategy
∫
eP (t)q(t) dt = y · eP (t) + C, so that

y(1 + t2)e−t = y · eP (t) =

∫
eP (t)q(t) dt = 1

2
t2 + C.

It follows that the general solution of (t2 + 1)y′ − (1− t)2y = tet is y =
1
2
t2+C

e−t(1+t2)
.
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11.10. After separating variables, we get
∫

(y − 3) dy =

∫
dt and therefore the implicit solution

1
2
y2 − 3y = t+ C. By applying the quadratic formula to 1

2
y2 − 3y − (t− C) = 0 we get

y = 3±
√

9 + 2(t− C).

The particular solution y = f(t) we need satisfies f(0) = 4. So 4 = 3 ±
√

9 + 2(0− C) and
hence 1 = +

√
9− 2C. So 2C = 8 and therefore f(t) = 3 +

√
1 + 2t.

11.11. By separating variables, we get (1 + y) dy = (sinx− cosx) dx, so that∫
(1 + y) dy =

∫
(sinx− cosx) dx.

Therefore y + 1
2
y2 = − cosx − sinx + C and hence 1

2
y2 + y + (cos x + sinx − C) = 0. By

the quadratic formula y = −1 ±
√

1− 2(cosx+ sinx− C). To get the particular solution
y = f(x) that satisfies f(π) = 0, we solve

0 = −1±
√

1− 2(cosπ + sin π − C) = −1 +
√

1− 2((−1) + 1− C) = −1 +
√

1 + 2C

(note that the − option does not arise in this case) so that 2C = 0. Therefore the particular
solution is y = f(x) = −1 +

√
1− 2(cosx+ sinx− C) =

√
1− 2(cosx+ sinx).

11.12. After separating variables,
∫

(ln y)2

y
dy =

∫
x2 dx. To solve the integral on the left we’ll use

integration by parts and let u = (ln y)2 and dv = 1
y
dy. So du = 2(ln y) 1

y
and v = ln y.

Therefore
∫

(ln y)2

y
dy = uv −

∫
v du = (ln y)3 −

∫
2(ln y)2

y
dy. So

∫
3(ln y)2

y
dy = (ln y)3 + C and

hence
∫

(ln y)2

y
dy = 1

3
(ln y)3 +C. Therefore 1

3
(ln y)3 = 1

3
x3 +C. So (ln y)3 = x3 +C and hence

ln y = (x3 + C)
1
3 . We finally arrive at the explicit general solution y = e(x

3+C)
1
3 .

The calculator of the website

https://www.symbolab.com/solver/ordinary-differential-equation-calculator/

presents the solution of the equation 2y′ − y = 4 sin 3x (the site uses the variable x rather
than t) in the form y = −24e−

x
2 cos(3x)−4e−

x
2 sin(3x)+c1

37e−
x
2

.

11.13. We begin “our own” solution of the equation 2y′ − y = 4 sin 3t by recognizing that it can
be put into the form y′ − 1

2
y = 2 sin 3t, so that the method of integrating factors applies.

Accordingly, we’ll let p(t) = −1
2
and q(t) = 2 sin 3t. Taking the antiderivative P (t) = −1

2
t of

p(t), we need—according to step 4 of this method—to solve
∫

2e−
1
2
t sin 3t dt = y · e− 1

2
t + C1.

A look back to Example 9.25 suggests that the integral
∫
e−

1
2
t sin 3t dt might yield to

integration by parts. With u = e−
1
2
t and dv = sin 3t dt, we get du = −1

2
e−

1
2
t and v = −1

3
cos 3t.

So ∫
e−

1
2
t sin 3t dt =

∫
u dv = uv −

∫
v du = −1

3
e−

1
2
t cos 3t−

∫
1
6
e−

1
2
t cos 3t dt.
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As in Example 9.25 we need to go another round, now with the integral
∫
e−

1
2
t cos 3t dt. This

time u = e−
1
2
t and dv = cos 3t dt, so that du = −1

2
e−

1
2
t and v = 1

3
sin 3t. Therefore∫

e−
1
2
t cos 3t dt =

∫
u dv = uv −

∫
v du = 1

3
e−

1
2
t sin 3t+

∫
1
6
e−

1
2
t sin 3t dt.

By combining the solutions of the last two integrals, we get∫
e−

1
2
t sin 3t dt = −1

3
e−

1
2
t cos 3t− 1

6

∫
e−

1
2
t cos 3t dt

= −1
3
e−

1
2
t cos 3t− 1

6

(
1
3
e−

1
2
t sin 3t+

∫
1
6
e−

1
2
t sin 3t dt

)
.

It follows that 37
36

∫
e−

1
2
t sin 3t dt = −1

3
e−

1
2
t cos 3t− 1

18
e−

1
2
t sin 3t+ C2 and therefore that∫

e−
1
2
t sin 3t dt = −12

37
e−

1
2
t cos 3t− 2

37
e−

1
2
t sin 3t+ C3.

By combining all we know,

y · e− 1
2
t = 2

∫
e−

1
2
t sin 3t dt− C1 = −24

37
e−

1
2
t cos 3t− 4

37
e−

1
2
t sin 3t+ 2C3 − C1

and hence y = Ce
1
2
t− 24

37
cos 3t− 4

37
sin 3t. This is equivalent to the solution that the calculator

provided.

The calculator gives the general solution y = f(x) = ±
√
5√

5Cx8+2x3
for the differential equation

y′+ 4
x
y = x2y3. Inserting the initial condition f(1) = 2, we get 2 =

√
5√

5C+2
, so that 2

√
5C + 2 =

√
5. Since 4(5C + 2) = 5, we get C = − 3

20
. So the particular solution is y =

√
5√

2x3− 3
4
x8
.

11.14. Throughout this problem F (x, y) = x− 1
2
y.

i. The slope field for the differential equation y′ = x − 1
2
y corresponding to Table 11.2 is

depicted in the figure above.
y

x
-4      -3      -2       -1                1       2       3        4       

2

1

0

 -1 

 -2 

 -3 

3

4

-4

ii. (a) We’ll follow the recipe described in Section 11.3 with h = 1. The relevant move is
to apply (xi, yi) = (xi−1 + 1, yi−1 + 1 · F (xi−1, yi−1) step by step—note that the equality
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yi = y0 + hF (xi−1, yi−1)h in the text should read yi = yi−1 + hF (xi−1, yi−1)h—starting
with i = 1 and the point (x0, y0) = (0,−1):

the slope at (0,−1) is 0− 1
2
(−1) = 1

2
, so that (x1, y1) = (1,−1 + 1 · (1

2
)) = (1,−1

2
);

the slope at (1,−1
2
) is 1− 1

2
(−1

2
) = 5

4
, so that (x2, y2) = (2,−1

2
+ 1 · (5

4
)) = (2, 3

4
);

the slope at (2, 3
4
) is 2− 1

2
(3
4
) = 13

8
, so that (x3, y3) = (3, 3

4
+ 1 · (13

8
)) = (3, 19

8
);

the slope at (3, 19
8

) is 3− 1
2
(19
8

) = 29
16
, so that (x4, y4) = (4, 19

8
+ 1 · (29

16
)) = (4, 67

16
).

Doing a similar thing going from (x̄0, ȳ0) = (0,−1) in the negative direction using
(x̄i, ȳi) = (x̄i−1 − 1, ȳi−1 − 1 · F (x̄i−1, ȳi−1) starting with i = 1 and the point (x̄0, ȳ0) =

(0,−1) we get:

the slope at (0,−1) is 0− 1
2
(−1) = 1

2
,

so that (x̄1, ȳ1) = (−1,−1− 1 · (1
2
)) = (−1,−3

2
);

the slope at (−1,−3
2
) is −1− 1

2
(−3

2
) = −1

4
,

so that (x̄2, ȳ2) = (−2,−3
2
− 1 · (−1

4
)) = (−2,−5

4
);

the slope at (−2,−5
4
) is −2− 1

2
(−5

4
) = −11

8
,

so that (x̄3, ȳ3) = (−3,−5
4
− 1 · (−11

8
)) = (−3, 1

8
);

the slope at (−3, 1
8
) is −3− 1

2
(1
8
) = −49

16
,

so that (x̄4, ȳ4) = (−4, 1
8
− 1 · (−49

16
)) = (−4, 51

16
).

The resulting approximate solution of the particular solution y = f(x) of the differ-
ential equation with initial condition f(0) = −1 is sketched in figure (a) below.

(b) This time h = 0.5. Now (xi, yi) = (xi−1 + 0.5, yi−1 + 0.5 · F (xi−1, yi−1) step by
step starting with i = 1 and the point (x0, y0) = (0,−1):
the slope at (0,−1) is 0− 1

2
(−1) = 1

2
,

so that (x1, y1) = (0.5,−1 + 0.5 · (1
2
)) = (0.5,−3

4
) = (0.5,−0.75);

the slope at (0.5,−3
4
) is 0.5− 1

2
(−3

4
) = 7

8
,

so that (x2, y2) = (1,−3
4

+ 0.5 · (7
8
)) = (1,− 5

16
) ≈ (1,−0.3125);

the slope at (1,− 5
16

) is 1− 1
2
(− 5

16
) = 37

32
,

so that (x3, y3) = (1.5,− 5
16

+ 0.5 · (37
32

)) = (1.5, 17
64

) ≈ (1.5, 0.2656);
the slope at (1.5, 17

64
) is 1.5− 1

2
(17
64

) = 175
128

,
so that (x4, y4) = (2, 17

64
+ 0.5 · (175

128
)) = (2, 243

256
) ≈ (2, 0.9492);

the slope at (2, 243
256

) is 2− 1
2
(243
256

) = 781
512

,
so that (x5, y5) = (2.5, 243

256
+ 0.5 · (781

512
)) = (2.5, 1753

1024
) ≈ (2.5, 1.7119);

the slope at (2.5, 1753
1024

) is 2.5− 1
2
(1753
1024

) = 3367
2048

,
so that (x6, y6) = (3, 1753

1024
+ 0.5 · (3367

2048
)) = (3, 10379

4096
) ≈ (3, 2.5339);

the slope at (3, 10379
4096

) is 3− 1
2
(10379
4096

) = 14197
8192

,
so that (x7, y7) = (3.5, 10379

4096
+ 0.5 · (14197

8192
)) = (3.5, 55713

16384
) ≈ (3.5, 3.4005);

the slope at (3.5, 55713
16384

) is 3.5− 1
2
(55713
16384

) = 58975
32768

,
so that (x8, y8) = (4, 55713

16384
+ 0.5 · (58975

32768
)) = (4, 281827

65536
) ≈ (4, 4.3003).

We’ll now start from (x̄0, ȳ0) = (0,−1) and go in the negative direction. Using
(x̄i, ȳi) = (x̄i−1 − 0.5, ȳi−1 − 0.5 · F (x̄i−1, ȳi−1) and starting with i = 1 and the point
(x̄0, ȳ0) = (0,−1), we get:
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the slope at (0,−1) is 0− 1
2
(−1) = 1

2
,

so that (x̄1, ȳ1) = (−0.5,−1− 0.5 · (1
2
)) = (−0.5,−5

4
) = (−0.5,−1.25);

the slope at (−0.5,−5
4
) is −0.5− 1

2
(−5

4
) = 1

8
,

so that (x̄2, ȳ2) = (−1,−5
4
− 0.5 · (1

8
)) = (−1,−21

16
) ≈ (−1,−1.3125);

y

x

y

x

(a)          (b)

the slope at (−1,−21
16

) is −1− 1
2
(−21

16
) = −11

32
,

so that (x̄3, ȳ3) = (−1.5,−21
16
− 0.5 · (−11

32
)) = (−1.5,−73

64
) ≈ (−1.5,−1.1406);

the slope at (−1.5,−73
64

) is −1.5− 1
2
(−73

64
) = −119

128
,

so that (x̄4, ȳ4) = (−2,−73
64
− 0.5 · (−119

128
)) = (−2,−173

256
) ≈ (−2,−0.6758);

the slope at (−2,−173
256

) is −2− 1
2
(−173

256
) = −851

512
,

so that (x̄5, ȳ5) = (−2.5,−173
256
− 0.5 · (−851

512
)) = (−2.5, 159

1024
) ≈ (−2.5, 0.1553);

the slope at (−2.5, 159
1024

) is −2.5− 1
2
( 159
1024

) = −5279
2048

,
so that (x̄6, ȳ6) = (−3, 159

1024
− 0.5 · (−5279

2048
)) = (−3, 5915

4096
) ≈ (−3, 1.4448);

the slope at (−3, 5915
4096

) is −3− 1
2
(5915
4096

) = −30491
8192

,
so that (x̄7, ȳ7) = (−3.5, 5915

4096
− 0.5 · (−30491

8192
)) = (−3.5, 54151

16384
) ≈ (−3.5, 3.3051);

the slope at (−3.5, 54151
16384

) is −3.5− 1
2
(54151
16384

) = −168839
32768

,
so that (x̄8, ȳ8) = (−4, 54151

16384
− 0.5 · (−168839

32768
)) = (−4, 385443

65536
) ≈ (−4, 5.8814).

The approximate solution of the particular solution y = f(x) of the differential
equation with initial condition f(0) = −1 that this set of points gives rise to is sketched
in figure (b) above.

iii. We we now turn to the Euler method calculator on the website

http://www.math-cs.gordon.edu/~senning/desolver/.

The variables the site uses are t (instead of x) and y. To use the calculator, feed t−0.5y

into the slot for dy/dt = f(t, y) =. (Note that the choices 1/2 or (1/2) in place of 0.5 lead
to errors.) Note also that for any initial values t0 and y0 of the variables t and y, the
calculator requires the assumption that t satisfies t0 ≤ t ≤ t1 for some t1. In the current
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context this means that the approximate solution y = f(x) of the differential equation
y′ = x − 1

2
y with initial condition f(0) = −1 that the calculator provides is subject to

the restriction x ≥ 0. The calculator uses the same notation h for the step size as the
text. Here the choice is h = 0.1 or h = 0.2. Finally take “Graph and Data points” as
the Output format. Doing this for the current problem with h = 0.1 provides graph (c).
Graph (d) is obtained by stretching graph (c) vertically so that the units of length of

h = 0.1

0 2 3 4

−1

1

2

3

4

(c)              (d)

y

x

the x- and y-axes are the same. The table of numbers (e) lists the y-coordinates of the
points on the graph that correspond to the various x-coordinates between x = 0 to x = 4

(e)

x       y           x       y
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in increasing increments of 0.1. In terms of the procedure involved, the case h = 0.2 is
identical to the case h = 0.1 so that we’ll omit it.

iv. So far we have considered three approximations of the solution y = f(x) of the initial
value problem y′ = x − 1

2
y with f(0) = −1. They are graphed in (a), (b), and (d)

above (in the last case for x ≥ 0). We will now show that the “on the nose” solution of
this problem is given by the function f(x) = 2x − 4 + 3e−

x
2 . Rewriting the differential

equation as y′+ 1
2
y = x suggests that the method of integrating factors should be applied

with p(x) = 1
2
and q(x) = x. This method has already been illustrated in Problems 11.7,

11.8, 11.9, and 11.13. So we’ll use the calculator

https://www.symbolab.com/solver/ordinary-differential-equation-calculator

this time. It supplies the general solution y = 2xe
x
2−4e

x
2 +c1

e
x
2

. This is easily rewritten as
y = f(x) = 2x−4+c1e

− 1
2
x. Inserting the initial condition f(0) = −1, we get −1 = −4+c1

and hence c1 = 3. So the particular solution is f(x) = 2x− 4 + 3e−
1
2
x.

v. The graphing calculator

https://www.desmos.com/calculator

provides the graph of the solution of (iv) for −4 ≤ x ≤ 4 drawn in the figure below.

We’ll consider x = 1 and x = 3 and compare the corresponding y-coordinates supplied by
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the approximations for the step sizes h = 1, 0.5, and h = 0.1 against the y-coordinates
of the precise solution f(x) = 2x − 4 + 3e−

1
2
x. A look at the results in (ii) and (iii)

above tells us that for h = 1, 0.5, and 0.1 the y-coordinates corresponding to x = 1 are
y = −1

2
= −0.5, y = − 5

16
≈ −0.3125 and y = −0.203789, respectively. For the precise

solution it is y = −0.180408 (with an accuracy of six decimal places). For x = 3, the
corresponding values for y are y = 19

8
= 2.375, y ≈ 2.5339 and y = 2.643916, respectively.

For the precise solution y = 2.669390 (accurate up to six decimal places).

11.15. This problem is very similar to Problem 11.14 so that the solution will be skipped.

11.16. To go from polar to Cartesian coordinates we’ll use the two transformation equations

x = r cos θ and y = r sin θ

as well as elementary facts about the sine and cosine. (See Sections 1.4 and 4.4.) Problems
viii to x require a calculator (used in radian mode).

i. x = 3 cos π
4

= 3 ·
√
2
2

= 3
2

√
2 and y = 3 sin π

4
= 3 ·

√
2
2

= 3
2

√
2. So (x, y) =

(
3
2

√
2, 3

2

√
2
)
.

ii. x = −2 cos
(
−π

6

)
= −2 cos π

6
= −2

√
3
2

= −
√

3 and y = −2 sin
(
−π

6

)
= (−2)

(
− sin π

6

)
=

(−2)
(
−1

2

)
= 1. So (x, y) =

(
−
√

3, 1
)
.

iii. x = 3 cos 7π
3

= 3 cos
(
2π + π

3

)
= 3 cos π

3
= 3 · 1

2
= 3

2
and y = 3 sin 7π

3
= 3 sin

(
2π + π

3

)
=

3 sin π
3

= 3 ·
√
3
2

= 3
2

√
3. So (x, y) =

(
3
2
, 3
2

√
3
)
.

iv. x = 5 cos 0 = 5 and y = 5 sin 0 = 0. So (x, y) = (5, 0).

v. x = −4 cos 7π
2

= −4 cos(4π− π
2
) = −4 cos(−π

2
) = 0 and y = −4 sin 7π

2
= −4 sin(4π− π

2
) =

−4 sin(−π
2
) = 4 sin π

2
= 4. So (x, y) = (0, 4).

vi. x = 5 cos(−9π
2

) = 5 cos(−4π− π
2
) = 5 cos(−π

2
) = 0 and y = 5 sin(−9π

2
) = 5 sin(−4π− π

2
) =

5 sin(−π
2
) = −5. So (x, y) = (0,−5).

vii. The fact that r = 0 means that the point is the origin. So (x, y) = (0, 0).

viii. x = 3 cos 8 ≈ 3(−0.145500) ≈ −0.436500 and y = 3 sin 8 ≈ 3(0.989358) ≈ 2.968075. So
(x, y) ≈ (−0.436500, 2.968075).

ix. x = − cos 23 ≈ −(−0.532833) = 0.532833 and y = − sin 23 ≈ −(−0.846220) = 0.846220.

Hence (x, y) ≈ (0.532833, 0.846220).

x. x = 3 cos(−32) ≈ 3(0.834223) ≈ 2.502670 and y = 3 sin(−32) ≈ 3(−0.551427) ≈
−1.654280. Therefore (x, y) ≈ (2.502670,−1.654280).

11.17. i. The point P with Cartesian point (0, 5) lies on the y-axis. Going polar we see that P
lies on the ray θ = π

2
. It follows that (5, π

2
) are polar coordinates of P .

ii. The point P with Cartesian coordinates (−4, 0) is on the negative part of the x-axis.
Since it lies on the ray θ = −π, (4,−π) are polar coordinates of P . Alternatively, we
can reach the point P by considering the ray θ = 0 and going 4 units in the opposite
direction. So (−4, 0) are also polar coordinates of P .
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iii. Let P be the point with Cartesian coordinates (3,−3). Note that the ray θ = −π
4
goes

through P . The distance from the origin to P is
√

32 + (−3)2 =
√

18 = 3
√

2 so that
(3
√

2,−π
4
) are polar coordinates of P .

For the remaining problems we’ll use the fact that for any point P with Cartesian
coordinates (x, y) with x 6= 0 (not on the y-axis) a set of polar coordinates (r, θ) for P
with −π

2
< θ < π

2
is given by θ = tan−1 y

x
and either r =

√
x2 + y2 or r = −

√
x2 + y2.

We will compute with an accuracy of two decimal places.

iv. Let P be the point with Cartesian coordinates (4,−5). A calculator tells us that θ =

tan−1(−5
4

) = tan−1(−1.25) ≈ −51.34◦ ≈ −0.90 radians. Since the ray that θ determines
runs through the fourth quadrant and P is also in the fourth quadrant, the corresponding
r is

√
42 + (−5)2 =

√
41 ≈ 6.40. So (θ, r) = (

√
41, tan−1(−1.25)) ≈ (6.40,−0.90).

In the other direction, it is the case that x =
√

41 cos(tan−1(−1.25)) = 4 and y =√
41 sin(tan−1(−1.25)) = −5, respectively. (Given that is subject to roundoff errors, a

calculator shows that
√

41 cos(tan−1(−1.25)) ≈ 4.00... with eleven 0s followed by a 3 and√
41 sin(tan−1(−1.25)) ≈ −4.99... with twelve 9s followed by an 8.)

v. For the point P with Cartesian coordinates (−3, 7), tan−1(−7
3
) ≈ −66.80◦ ≈ −1.17

radians. Since the ray determined by θ = tan−1(−13
7

) runs through the fourth quadrant
and P is in the second quadrant, r is given by r = −

√
(−3)2 + 72 = −

√
58 ≈ −7.62.

The corresponding polar coordinates are (r, θ) = (−
√

58, tan−1(−7
3
)) ≈ (−7.62,−1.17).

vi. For P with Cartesian coordinates (7,−13), tan−1(−13
7

) ≈ −61.70◦ ≈ −1.08 radians.
Both the ray and P lie in the fourth quadrant so that r =

√
72 + (−13)2 =

√
218 ≈ 14.76.

So the corresponding polar coordinates are (r, θ) = (
√

218, tan−1(−13
7

) ≈ (14.76,−1.08).

vii. For P with Cartesian coordinates (−5, 9), we find that tan−1(−9
5
) ≈ −60.95◦ ≈ −1.06

radians. Since the ray that this angle determines lies in the fourth quadrant and P in
the second, r is given by r = −

√
(−5)2 + 92 = −

√
106 ≈ −10.30. The corresponding

polar coordinates are (r, θ) = (−
√

106, tan−1(−9
5
)) ≈ (−10.30,−1.06).

viii. For P with Cartesian coordinates (−6,−11), tan−1(−11−6 ) = tan−1(11
6

) ≈ 61.39◦ ≈ 1.07

radians. Since the ray that this angle determines lies in the first quadrant and P in the
third, r is given by r = −

√
(−6)2 + (−11)2 = −

√
157 ≈ −12.53. So the corresponding

polar coordinates are (r, θ) = (−
√

157, tan−1(−11
6

)) ≈ (−12.53, 1.07).

ix. With P the point that has Cartesian coordinates (8, 23), tan−1(23
8

) ≈ 70.82◦ ≈ 1.24

radians. Since the ray that this angle determines and the point P both lie in the first
quadrant, r =

√
82 + 232 =

√
593 ≈ 24.35. So the corresponding polar coordinates are

(r, θ) = (
√

593, tan−1(23
8

)) ≈ (24.35, 1.24).

x. For P with Cartesian coordinates (9,−36), tan−1(−36
9

) ≈ −75.96◦ ≈ −1.33 radians. The
ray θ = tan−1(−36

9
) and P both lie in the fourth quadrant so that the corresponding r

is r =
√

92 + (−36)2 =
√

1377 ≈ 37.11. The corresponding polar coordinates of P are
(r, θ) = (

√
1377, tan−1(−36

9
) ≈ (37.11,−1.33).
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11.18. Note first that all sets of polar coordinates of the origin O have the form (0, θ) where any θ
can arise. Let P be any point other than O and let (r, θ) with −π

2
< θ ≤ π

2
be a set of polar

coordinates of P . Then

(r, θ + 2π), (r, θ − 2π), (r, θ + 4π), (r, θ − 4π),

and more generally (r, θ + 2kπ), where k can be any integer (positive or negative), are polar
coordinates of P . Observe that any set of polar coordinates of P with first coordinate r has
the form (r, θ + 2kπ). Note that (−r, θ + π) also represents P and hence that any set polar
coordinates of P with first coordinate −r has the form (−r, (θ+π)+2kπ) = (−r, θ+(2k+1)π),
where, as before, k can be any positive or negative integer. If a single set of polar coordinates
can be determined for P , then all others are given by the “recipe” above.

11.19. The addition of each pair of points is carried out in the diagram below by completing a
parallelogram with the insertion of a pair of dashed lines. For 2P3 = P3 + P3 and 2P3 + P4

O

P2

P1

P3

P4

P  + P1          2

P  + P1          3

P  + P3          4

P  + P1          4

P  + P2          3

this is done with the figure below. Notice that the parallelogram for P3 + P3 = 2P3 is
completely flat.
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O

P3

P4

2P  = P + P
3          3        3

2P + P
3        4

11.20. The points −P1,−P2, and P1 − P2 = P1 + (−P2) are located in the diagram below.

O

P2

P1

P  − P   = P  + (−P )1          2           1               2

Q  = −P1            1

        −P               2

11.21. Let’s concentrate on the product P1P2 first. We know that any point in the polar plane can
be expressed in terms of polar coordinate in many (in fact infinitely many) ways. In the
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figure below (r1, θ1), (−r1, φ1), and (r1, ϕ1) are three pairs of coordinates for P1 and (r2, θ2)

and (−r2, φ2) are two pairs of coordinates for P2. For the definition of the product P1P2 to
make sense it must give the same result no matter how the coordinates for P1 and P2 are
chosen. So

(r1r2, θ1 + θ2) = (r1(−r2), θ1 + φ2) = ((−r1)r2, φ1 + θ2)

= ((−r1)(−r2), φ1 + φ2) = (r1r2, ϕ1 + θ2) = (r1(−r2), ϕ1 + φ2)

should all represent the same point. Notice that φ2 = θ2 − π, so that (r1(−r2), θ1 + φ2) =

(−r1r2, (θ1 + θ2)− π). Since the ray given by (θ1 + θ2)− π points in the direction opposite to
that of θ1 + θ2, it follows that ((−r1)r2, θ1 + φ2) = (r1r2, θ1 + θ2). Also φ1 = θ1 + π, so that
((−r1)r2, φ1 + θ2) = (−r1r2, (θ1 + θ2) +π). As before this is equal to (r1r2, θ1 + θ2). The other
equalities are verified similarly. For the last one, ϕ1 = θ1− 2π and hence (r1(−r2), ϕ1 +φ2) =

(−r1r2, (θ1−2π) + (θ2−π)) = (−r1r2, (θ1 + θ2−3π)) = (−r1r2, (θ1 + θ2−π)) = (r1r2, θ1 + θ2).

P2

P1

1

θ

θ

θ

2

θ1

r1

P P  = (r  r  ,    +     )1   2           1   2     1         2

ϕ1
φ

1

r2

φ
2

The points P1P3 and P2P3, are located in the two diagrams that follow. The fact that the
point 1 (and hence the length 1) is specified tells us that r1 ≈ 2, r2 ≈ 1, and (in the diagrams
below) that r3 ≈ 0.75. The angles θ1, θ2, and θ3 are approximately equal to 40◦, 100◦ and
320◦, respectively.

P2

P1

P3

1

θ

θ

θ

3

θ2

θ1

r2

r1

r3

P P  = (r  r ,    +     )1   2           1   2     1         2

θ θP P  = (r  r ,    +     )1   3           1   3     1         3
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P2

P3

θ3

θ2

r2

r3

1

θ θP P  = (r  r ,    +    )2   3           2   3      2          3

11.22. Check the placement of the points P 2
1 , P

2
2 , and P 2

1P3 in the diagram below.

P2

P1

P3

1

θ3

θ2

θ1

r2

r1

r3

θP   = (r  , 2   )1            1          1   
2            2  

θP   = (r  , 2    )2             2          2   
2            2  

θ θP  P   = (r  r  , 2   +    )1    3             1   3           1       3   

2                     2  

11.23. Consider the point in the complex plane with polar (or Cartesian) coordinates (1, 0). For any
point P = (r, θ), the product P (1, 0) is equal to (r, θ)(1, 0) = (r · 1, θ + 0) = (r, θ) = P. So
1 = (1, 0) is the multiplicative identity in the complex plane. Let (s1, φ1) be the coordinates
of Q1. For P1 = (r1, θ1), the requirement P1Q1 = (r1, θ1)(s1, φ1) = (r1s1, θ1 + φ1) = (1, 0) is
met by taking s1 = r−11 = 1

r1
and φ1 = −θ1. The resulting Q1 = (r−11 ,−θ1) is the multiplicative

inverse P−1 of P1. For any P1 6= O (the origin) r1 6= 0, so that P1 has such an inverse. The
inverses P−11 , P−12 , P−13 and the products P1P

−1
3 and P−11 P3 are placed in the diagram below.

Since r1 ≈ 2 and θ1 ≈ 40◦ ≈ 0.70 radians, the point P−11 ≈ (1
2
,−0.70). Since r2 ≈ 1 and

θ2 ≈ 100◦ ≈ 1.75 radians, the point P−12 ≈ (1,−1.75). Find similar approximations for P−13

and P1P
−1
3 .
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O

P2

P1

P3

1

P3

P3P3

−1

P1

−1

P2P
−1

P1

−1
P3

θ
2

θ
1

P1    3

−1
P

11.24. If b > 0, then (b, π
2
) is the point on the ray θ = π

2
that lies b units above the origin. If b = 0,

(b, π
2
) = (0, π

2
is the origin. If b < 0 then (b, π

2
) is on the ray θ = −π

2
a distance −b below the

origin. So in all cases (b, π
2
) is on the imaginary axis and b is its imaginary coordinate.

11.25. These points (and others) are placed in the figure below.

1 −1

i

0 2

2i

2i

 −1 + i

 1 − 2i

−2 + 2i

 1 +    i
1 −
2 

 −2

  − i

−

i
1 −
2 

3i

 −3

i
5 

2 
−

i
5 

2 
−1 +  −

−3 + i

i

 1 + 3i
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11.26. The sum and product of c1 = −1 + i and c2 = 1− 2i are c1 + c2 = (−1 + 1) + (i− 2i) = −i
and c1c2 = −1 · 1 + (−1)(−2i) + i · 1 + i(−2i) = −1 + 2i+ i− 2i2 = 1 + 3i. For c1 = −2 + 2i

and c2 = 1 + 1
2
i, we get the sum c1 + c2 = (−2 + 1) + (2i + 1

2
i) = −1 + 5

2
i and the product

c1c2 = −2 · 1 + (−2)1
2
i+ 2i · 1 + 2i(1

2
i) = −2 + i2 + i = −3 + i. In each case, the points c1 + c2

and c1c2 are located in the figure above.

11.27. For c1 = 1 + i and c2 = a2 + b2i we get c1c2 = a2 + b2i + a2i + b2i
2 = (a2 − b2) + (a2 + b2)i.

Since 1 = (1, 0), we need to have a2 − b2 = 1 and a2 + b2 = 0. It follows that b2 = −a2 and
2a2 = 1. Therefore a2 = 1

2
, b2 = −1

2
and hence c2 = c−11 = 1

2
− 1

2
i.

For c1 = 2 − i we get c1c2 = 2a2 + 2b2i − i(a2 + b2i) = (2a2 + b2) + (−a2 + 2b2)i. So
2a2 + b2 = 1 and −a2 + 2b2 = 0. Therefore a2 = 2b2, hence 5b2 = 1, b2 = 1

5
, and a2 = 2

5
.

Therefore c2 = c−11 = 2
5

+ 1
5
i.

11.28. For c = 3, we have a = 3 and b = 0, so that c̄ = 3 and N(c) = cc̄ = 3 · 3 = 9. For c = −i, we
get a = 0, b = −1, c̄ = −(−1)i = i and N(c) = (−i)i = 1. With c = 3 + i, we see that a = 3

and b = 1, so that c̄ = 3 − i and N(c) = cc̄ = 32 − i2 = 10. For c = 5 − i finally, a = 5 and
b = −1, so that c̄ = 5 + i and N(c) = 52 − i2 = 26.

11.29. Since c = a + bi 6= 0, one of a or b is not zero. So cc̄ = N(c) = a2 + b2 is a nonzero real
number. Therefore (cc̄) 1

N(c)
= 1, and hence c−1 = 1

N(c)
c̄. In terms of a and b, c−1 = 1

N(c)
c̄ =

1
a2+b2

(a− bi) = a
a2+b2

+ −b
a2+b2

i. The computation

(a+ bi)
(

a
a2+b2

+ −b
a2+b2

i
)

= a
(

a
a2+b2

+ −b
a2+b2

i
)

+ bi
(

a
a2+b2

+ −b
a2+b2

i
)

=
(

a2

a2+b2
+ b2

a2+b2

)
+
( −ab
a2+b2

+ ab
a2+b2

)
i = (1, 0)

confirms this conclusion.

11.30. The solution of x + 7 = 0 requires the negative integer −7. The solutions of 2x − 3 = 0

and 3x + 5 = 0 require the rational numbers 2
3
and −3

5
. The solution of x2 − 3 requires the

real (but irrational) number
√

3. The solutions of the equations 6x2 + 5 = 0, x2 + 1 = 0 and
x2 + 5 = 0 require the complex (and imaginary) numbers

√
5
6
i, i, and

√
5i. The enlargements

that are required are: from the positive integers, to all integers, to the rational numbers, to
the real numbers, and finally to the complex numbers.

11.31. This product is most easily computed in two basic ways. One way is

(1 + 2i+ 3j + 4k)(−3− 2i− 3k)

= 1(−3− 2i− 3k) + 2i(−3− 2i− 3k) + 3j(−3− 2i− 3k) + 4k(−3− 2i− 3k)

= (−3− 2i− 3k) + (−6i+ 4 + 6j) + (−9j + 6k − 9i) + (−12k − 8j + 12)

= (−3 + 4 + 12) + (−2i− 6i− 9i) + (6j − 9j − 8j) + (−3k + 6k − 12k)

= 13− 17i− 11j − 9k.

Another way is

(1 + 2i+ 3j + 4k)(−3− 2i− 3k)

= (1 + 2i+ 3j + 4k)(−3) + (1 + 2i+ 3j + 4k)(−2i) + (1 + 2i+ 3j + 4k)(−3k)

= (−3− 6i− 9j − 12k) + (−2i+ 4 + 6k − 8j) + (−3k + 6j − 9i+ 12)

= 13− 17i− 11j − 9k.
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11.32. Using the first approach of the problem above we get

(a+ bi+ cj + dk)(a′ + b′i+ c′j + d′k)

= a(a′+ b′i+ c′j+d′k) + bi(a′+ b′i+ c′j+d′k) + cj(a′+ b′i+ c′j+d′k) +dk(a′+ b′i+ c′j+d′k)

= (aa′+ab′i+ac′j+ad′k)+(ba′i−bb′+bc′k−bd′j)+(ca′j−cb′k−cc′+cd′i)+(da′k+db′j−dc′i−dd′)
= (aa′− bb′− cc′−dd′)+(ab′+ ba′+ cd′−dc′)i+(ac′− bd′+ ca′+db′)j+(ad′+ bc′− cb′+da′)k.

So a′′, b′′, c′′, and d′′ are given by a′′ = aa′ − bb′ − cc′ − dd′, b′′ = ab′ + ba′ + cd′ − dc′, c′′ =

ac′ − bd′ + ca′ + db′, and d′′ = ad′ + bc′ − cb′ + da′.

11.33. (Note first, that “= q” on the first line should be deleted.) By the formula of the previous
problem

qq̄ = (a2 + b2 + c2 + d2) + (−ab+ ba− cd+ dc)i+ (−ac+ bd+ ca− db)j+ (−ad− bc+ cb+ da)k

= (a2 + b2 + c2 + d2) + 0i+ 0j + 0d = a2 + b2 + c2 + d2.

If q 6= 0, then at least one of the coefficients a, b, c, and d is not zero, so that N(q) = qq̄ =

a2 + b2 + c2 + d2 is a nonzero real number. It follows that (qq̄) 1
N(q)

= 1 and that 1
N(q)

q̄ is a
multiplicative inverse for q. In terms of a, b, c, and d,

q−1 = 1
a2+b2+c2+d2

(a− bi− cj − dk)

= a
a2+b2+c2+d2

− b
a2+b2+c2+d2

i− c
a2+b2+c2+d2

j − d
a2+b2+c2+d2

k.

11.34. Since y′ = 2 cos 2x+ 2 sin 2x and y′′ = −4 sin 2x+ 4 cos 2x, we see that

y′′ + 4y = −4 sin 2x+ 4 cos 2x+ 4(sin 2x− cos 2x) = 0.

Since there are no restrictions on x we can take any x in (−∞,∞).

11.35. By the product rule y′ = e−2x+x(e−2x(−2)) = (1−2x)e−2x and y′′ = −2e−2x+(1−2x)(−2)e−2x

= −2(2− 2x)e−2x. So for any x in (−∞,∞)

y′′ + 4y′ + 4y = −2(2− 2x)e−2x + 4(1− 2x)e−2x + 4xe−2x

= −4e−2x + 4xe−2x + 4e−2x − 8xe−2x + 4xe−2x = 0.

11.36. Since A(a+ bi)2 +B(a+ bi) + C = 0, we get

A(a2 + 2abi− b2) +B(a+ bi) + C =
(
A(a2 − b2) +Ba+ C

)
+ (2Aab+Bb)i = 0,

so that A(a2 − b2) +Ba+ C = 0 and 2Aab+Bb = 0.
By the product rule

y′ = aeax sin bx+ eax(cos bx)b = aeax sin bx+ beax cos bx and

y′′ = a2eax sin bx+ aeax(cos bx)b+
(
abeax cos bx+ beax(− sin bx)b

)
= (a2eax − b2eax) sin bx+ (abeax + abeax) cos bx

= (a2 − b2)eax sin bx+ 2abeax cos bx.

Therefore Ay′′ +By′ + Cy

= A[(a2 − b2)eax sin bx+ 2abeax cos bx] +B[aeax sin bx+ beax cos bx] + Ceax sin bx

= A[(a2 − b2) +Ba+ C]eax sin bx+ [2Aab+Bb]eax cos bx = 0.
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11.37. i. The characteristic polynomial x2−6x+8 factors as (x−2)(x−4). By Case 1, the general
solution of y′′ − 6y′ + 8y = 0 is y = D1e

2x +D2e
4x.

ii. The characteristic polynomial x2 + 2x+ 1 is equal to (x+ 1)2. So Case 2 applies to tell
us that the general solution of y′′ + 2y′ + y = 0 is y = D1e

−x +D2xe
−x.

iii. The characteristic polynomial x2 − 4x + 3 is equal to (x − 1)(x − 3). So by Case 1 the
general solution of y′′ − 4y′ + 3y = 0 is y = D1e

x +D2e
3x.

iv. The characteristic polynomial 9x2 + 1 has the two complex roots 1
3
i and −1

3
i. So Case 3

applies with a = 0 and b = 1
3
. It follows that the general solution of 9y′′ + y = 0 is

y = D1 cos 1
3
x+D2 sin 1

3
x.

v. The characteristic polynomial x2 + 1 has the roots i and −i. So Case 3 applies with
a = 0 and b = 1. Therefore the general solution of y′′ + y = 0 is y = D1 cosx+D2 sinx.

vi. The characteristic polynomial Ax2 + Bx + C = 2x2 + 4x + 7 has B2 − 4AC = 42 −
(4)(2)(7) = −40 < 0. So it has the complex roots a ± bi with a = −B

2A
= −4

4
= −1

and b =
√
4AC−B2

2A
=

√
4(2)(7)−42

4
=
√
40
4

=
√
10
2
. Case 3 applies to tell us that the general

solution of 2y′′ + 4y′ + 7 = 0 is y = e−x(D1 cos
√

10x+D2 sin
√

10x).

11.38. If A = 0 in the equation Ay′′ + By′ = 0, then either B = 0 or y′ = 0. If B is zero, then any
function y = f(x) is a solution. If y′ = 0, the y = f(x) is a constant function.

So we’ll assume that A 6= 0. Let’s first apply the discussion of Section 11.6 to Ay′′+By′ = 0.
The characteristic polynomial Ax2 +Bx has the roots x = 0 and x = −B

A
. If B = 0, then 0 is

a double root and by Case 2, the general solution of Ay′′ + By′ = 0 is D1 + D2x. If B 6= 0,
then Case 1 applies and the general solution is D1 +D2e

−B
A
x.

Let’s solve Ay′′ + By′ = 0 again in a different way. Letting x be the variable and z = y′

this equation becomes A dz
dx

= −Bz. Since A 6= 0, this separable equation can be written as
dz
z

= −B
A
dx. It follows that ln z = −B

A
x + c with c a constant, and hence that z = eln z =

e
−B
A
x+c = ec(e

−B
A
x). Therefore dy

dx
= ec(e

−B
A
x). If B = 0, then dy

dx
= ec = D2 is a constant and

y = D1 +D2x for a constant D1. If B 6= 0, then y = −ec(A
B

)e
−B
A
x +D1, again D1 a constant.

Letting D2 = −ec(A
B

), y = D1 +D2e
−B
A
x. In either case we get what we had before.

11.39. Let y = sin 2x and note that y′ = 2 cos 2x and y′′ = −4 sin 2x. So y′′ + 4y = 0. A similar
computation shows that y = cos 2x is also a solution of this equation. Let y = f(x) be any
solution of y′′ + 4y = 0 and notice that f ′′(x) = −4f(x). Now set

D1(x) = (sin 2x)f(x) + (1
2

cos 2x)f ′(x) and D2(x) = (cos 2x)f(x)− (1
2

sin 2x)f ′(x).

It follows that

D1(x) sin 2x+D2(x) cos 2x

= (sin2 2x)f(x) + (1
2

cos 2x)(sin 2x)f ′(x) + (cos2 2x)f(x)− (1
2

sin 2x)(cos 2x)f ′(x)

= f(x)(sin2 2x+ cos2 2x) = f(x).

We have shown that f(x) = D1(x) sin 2x + D2(x) cos 2x. If we can verify that D′1(x) = 0

and D′2(x) = 0, then both D1(x) and D2(x) are constants and the solution of the problem is
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complete. By the product rule

D′1(x) = (cos 2x)2f(x) + (sin 2x)f ′(x)− (sin 2x)f ′(x) + (1
2

cos 2x)f ′′(x)

= (cos 2x)2f(x) + (1
2

cos 2x)(−4f(x)) = 0 and

D′2(x) = (− sin 2x)2f(x) + (cos 2x)f ′(x)− (cos 2x)f ′(x)− (1
2

sin 2x)f ′′(x)

= (− sin 2x)2f(x)− (1
2

sin 2x)(−4f(x)) = 0.

11.40. For y = cos 3x, we get y′ = −3 sin 3x and y′′ = −9 cos 3x. So y′′ + 9y = 0. In the same way,
y = sin 3x is also a solution. Let y = f(x) be any solution of y′′ + 9y = 0 and notice that
f ′′(x) = −9f(x). Set

D1(x) = (sin 3x)f(x) + (1
3

cos 3x)f ′(x) and D2(x) = (cos 3x)f(x)− (1
3

sin 3x)f ′(x).

Check that

D1(x) sin 3x+D2(x) cos 3x

= (sin2 3x)f(x) + (1
3

cos 3x)(sin 3x)f ′(x) + (cos2 3x)f(x)− (1
3

sin 3x)(cos 3x)f ′(x)

= f(x)(sin2 3x+ cos2 3x) = f(x).

So f(x) = D1(x) sin 3x + D2(x) cos 3x. We need to show that D′1(x) = 0 and D′2(x) = 0, for
then D1(x) and D2(x) are constants and the solution is complete. By the product rule

D′1(x) = (cos 3x)3f(x) + (sin 3x)f ′(x)− (sin 3x)f ′(x) + (1
3

cos 3x)f ′′(x)

= (cos 3x)3f(x) + (1
3

cos 3x)(−9f(x)) = 0 and

D′2(x) = (− sin 3x)3f(x) + (cos 3x)f ′(x)− (cos 3x)f ′(x)− (1
3

sin 3x)f ′′(x)

= (− sin 3x)3f(x)− (1
3

sin 3x)(−9f(x)) = 0.

11.41. Withr y = cos
√
Cx, we see that y′ = −

√
C sin

√
Cx and y′′ = −C cos

√
Cx. So y′′ + Cy = 0.

Similarly, y = sin
√
Cx is also a solution. Let y = f(x) be any solution of y′′ + Cy = 0 and

observe that f ′′(x) = −Cf(x). Set

D1(x) = (sin
√
Cx)f(x) + ( 1√

C
cos
√
Cx)f ′(x) and

D2(x) = (cos
√
Cx)f(x)− ( 1√

C
sin
√
Cx)f ′(x).

It follows that

D1(x) sin
√
Cx+D2(x) cos

√
Cx

= (sin2
√
Cx)f(x) + ( 1√

C
cos
√
Cx)(sin

√
Cx)f ′(x)

+ (cos2
√
Cx)f(x)− ( 1√

C
sin
√
Cx)(cos

√
Cx)f ′(x)

= f(x)(sin2
√
Cx+ cos2

√
Cx) = f(x).

So f(x) = D1(x) sin
√
Cx+D2(x) cos

√
Cx. It remains to verify that D′1(x) = 0 and D′2(x) = 0

and hence that D1(x) and D2(x) are constants. By the product rule

D′1(x) = (cos
√
Cx)
√
Cf(x) + (sin

√
Cx)f ′(x)− (sin

√
Cx)f ′(x) + ( 1√

C
cos
√
Cx)f ′′(x)

= (cos
√
Cx)
√
Cf(x) + ( 1√

C
cos
√
Cx)(−Cf(x)) = 0 and
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D′2(x) = (− sin
√
Cx)
√
Cf(x) + (cos

√
Cx)f ′(x)− (cos

√
Cx)f ′(x)− ( 1√

C
sin
√
Cx)f ′′(x)

= (− sin
√
Cx)
√
Cf(x)− ( 1√

C
sin
√
Cx)(−Cf(x)) = 0.

11.42. Following the strategy of the example, we’ll let y = f(x) = E1 sin(3t) + E2 cos(3t) where E1

and E2 are constants. The assumption that y = f(t) is a solution of 2y′′− 3y′+ 5y = 4 sin(3t)

lets us solve for E1 and E2. Computing y′ and y′′, we get

y′ = 3E1 cos(3t)− 3E2 sin(3t) and y′′ = −9E1 sin(3t)− 9E2 cos(3t).

It follows that

2y′′ − 3y′ + 5y

= 2
(
−9E1 sin(3t)− 9E2 cos(3t)

)
− 3
(
3E1 cos(3t)− 3E2 sin(3t)

)
+ 5
(
E1 sin(3t) +E2 cos(3t)

)
= (−18E1 + 9E2 + 5E1) sin(3t) + (−18E2 − 9E1 + 5E2) cos(3t).

= (−13E1 + 9E2) sin(3t) + (−9E1 − 13E2) cos(3t).

Since 2y′′− 3y′+ 5y = 4 sin(3t), we get −13E1 + 9E2 = 4 and −9E1− 13E2 = 0. Therefore
E2 = − 9

13
E1 and −13E1 − 81

13
E1 = 4. Hence 169+81

13
E1 = −4 so that E1 = −4·13

250
= − 26

125
and

E2 = (− 9
13

)(− 26
125

) = 18
125
. The specific solution of 2y′′−3y′+5y = 4 sin(3t) that we have found

is
y = − 26

125
sin(3t) + 18

125
cos(3t).

To find the general solution of 2y′′−3y′+5y = 4 sin(3t) we still need to find—as the earlier
example demonstrated—the general solution of 2y′′−3y′+5y = 0 and add the specific solution
− 26

125
sin(3t) + 18

125
cos(3t) to it. This general solution can be obtained by applying the results

of Section 11.6. Having already illustrated these results, we’ll use the differential equations
solver of the site

https://www.symbolab.com/solver/ordinary-differential-equation-calculator/

instead. Turn to this site and start by clicking on
d

dx
twice to place

d

dx

(
d

dx

( ))
into the

box provided. Then use the cursor and insert a 2 and a y to get 2
d

dx

(
d

dx

(
y
))

. This is an

expression for 2
d2

dx2
(y) = 2y′′. Continue in this way to write 2y′′ − 3y′ + 5y = 0 as

2
d

dx

(
d

dx

(
y
))
− 3

d

dx

(
y
)

+ 5y = 0.

Then push on the white Go in the red field. Very quickly the calculator will come up with the
answer y = e

3
4
x
(
c1 cos

(√
31
4
x
)

+ c2 sin
(√

31
4
x
))

. (The default variable of the calculator is x
but it is possible to replace x by t.)

With regard to the next several problems recall that the radius of convergence R of a power

series
∞∑
k=1

ak(x−x0)k is determined by the limit lim
k→∞

∣∣ak+1

ak

∣∣ that the ratio test provides. If this limit

is L (finite or infinite), then R = 1
L
(with the understanding that R is infinite, if L = 0).
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11.43. i. Here ak = 1
k2

so that ak+1

ak
= 1

(k+1)2
· k2

1
=
(

k
k+1

)2. After dividing the numerator and

denominator by k we get
∣∣ak+1

ak

∣∣ =
(

1
1+ 1

k

)2. Therefore lim
k→∞

∣∣ak+1

ak

∣∣ = lim
k→∞

(
1

1+ 1
k

)2
= 1. It

follows that R = 1.

ii. For this power series ak = 1
k
so that ak+1

ak
= 1

k+1
· k
1

= k
k+1

. Dividing the numerator and
denominator by k we get

∣∣ak+1

ak

∣∣ = 1
1+ 1

k

. Therefore lim
k→∞

∣∣ak+1

ak

∣∣ = lim
k→∞

1
1+ 1

k

= 1 and hence
R = 1.

iii. Here ak = (−1)kk
3k

so that ak+1

ak
= (−1)k+1(k+1)

3k+1 · 3k

(−1)kk = (−1)(k+1)
3k

= −1
3
(1 + 1

k
). It follows

that lim
k→∞

∣∣ak+1

ak

∣∣ = 1
3
and hence that R = 3.

iv. Since 2k

k
(2x−4)k = 2k

k
(2(x−2))k = 2k

k
2k(x−2)k = (2k)2

k
(x−2)k = 22k

k
(x−2)k = 4k

k
(x−2)k,

the series
∞∑
k=0

2k

k
(2x − 4)k (which is not formally a power series) can be written as the

power series
∞∑
k=0

4k

k
(x − 2)k. With ak = 4k

k
, we get ak+1

ak
= 4k+1

k+1
· k
4k

= 4 k
k+1

= 4 1
1+ 1

k

. It

follows that lim
k→∞

∣∣ak+1

ak

∣∣ = 4 and hence that R = 1
4
.

v. The fact that k!(2x + 3)k = k!(2(x + 3
2
))k = 2kk!(x + 3

2
)k means that the series can be

written as the power series
∞∑
k=0

2kk!(x + 3
2
)k. With ak = 2kk! we get ak+1

ak
= 2k+1(k+1)!

2kk!
=

2(k + 1). So lim
k→∞

∣∣ak+1

ak

∣∣ = +∞ and hence R = 0.

vi. For this power series, ak = 1
kk
. So ak+1

ak
= kk

(k+1)k+1 = kk

(k+1)(k+1)k
= 1

k+1

(
k
k+1

)k
=

1
k+1

( k+1
k

)k
.

Since lim
k→∞

(
k+1
k

)k
= e (see Section 7.10) and lim

k→∞
1

k+1
= 0, we see that lim

k→∞

∣∣ak+1

ak

∣∣ = 0.
Therefore R =∞.

vii. Here ak = kk

k!
so that so that ak+1

ak
= (k+1)k+1

(k+1)!
· k!
kk

= (k+1)k

k!
· k!
kk

= (k+1)k

kk
= (k+1

k
)k. From

the definition of e (in Section 7.10) lim
k→∞

∣∣ak+1

ak

∣∣ = lim
k→∞

(k+1
k

)k = e. Therefore R = 1
e
.

11.44. For the power series S =
∞∑
k=1

(−1)k(k+1)
5k

(x − 2)k the kth coefficient is ak = (−1)k(k+1)
5k

. So

ak+1

ak
= (−1)k+1(k+2)

5k+1 · 5k

(−1)k(k+1)
= −(k+2)

5(k+1)
. After dividing the numerator and denominator by k,

we get ak+1

ak
=
−(1+ 2

k
)

5(1+ 1
k
)
. So lim

k→∞

∣∣ak+1

ak

∣∣ = lim
k→∞

1+ 2
k

5(1+ 1
k
)

= 1
5
and hence R = 5.

i. This is the power series
∞∑
k=1

ak(x − 2)k where ak = (−1)k(k+1)
5k

for k odd and ak = 0 for k

even. Consider the power series
∞∑
j=0

(−1)2j+1(2j+2)
52j+1 (x− 2)2j+1 = (−1)1(2)

51
(x− 2)1 + (−1)(4)

53
(x− 2)3 + (−1)(6)

55
(x− 2)5 + · · ·

and notice that it is the series just described. The ratio of consecutive terms is
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(−1)2j+3(2j+4)

52j+3 (x−2)2j+3

(−1)2j+1(2j+2)

52j+1 (x−2)2j+1
= (2j+4)

52j+3
52j+1

(2j+2)
(x− 2)2 = (j+2)

(j+1)
1
52

(x− 2)2 =
(1+ 2

j
)

(1+ 1
j
)
1
52

(x− 2)2.

Since
lim
j→∞

∣∣ (1+ 2
j
)

(1+ 1
j
)
1
52

(x− 2)2
∣∣ = 1

52
(x− 2)2

we know that this power series converges if 1
52

(x− 2)2 < 1 and diverges if 1
52

(x− 2)2 > 1.
So it converges for |x − 2| < 5 and diverges for |x − 2| > 5. Therefore its radius of
convergence is 5.

ii. This is the power series
∞∑
k=1

ak(x− 2)k where ak = (−1)k(k+1)
5k

for k equal to 1, 4, 7, . . . and

ak = 0 for all other k. Similarly to the previous situation, the power series
∞∑
j=0

(−1)3j+1(3j+2)
53j+1 (x− 2)3j+1 = (−1)1(2)

51
(x− 2)1 + (−1)4(5)

54
(x− 2)4 + (−1)7(8)

57
(x− 2)7 + · · ·

is exactly the series being considered. The ratio of consecutive coefficients is
(−1)3j+4(3j+5)

53j+4 (x−2)3j+4

(−1)3j+1(3j+2)

53j+1 (x−2)3j+1
= −(3j+5)

53j+4
53j+1

(3j+2)
(x− 2)3 = −(3j+5)

(3j+2)
1
53

(x− 2)3 =
−(3+ 5

j
)

(3+ 2
j
)

1
53

(x− 2)3.

The fact that
lim
j→∞

∣∣ (3+ 5
j
)

(3+ 2
j
)
1
53

(x− 2)3
∣∣ = 1

53
|x− 2|3

tells us that the power series converges if 1
53
|x − 2|3 < 1 and diverges if 1

53
|x − 2|3 > 1.

Therefore it converges for |x − 2| < 5 and diverges for |x − 2| > 5. So as before, the
radius of convergence is 5.

11.45. The interval of convergence of a power series is centered around the center x0 of the series. In
the case of the series

x
1
2

1 + x
= x

1
2 − x

3
2 + x

5
2 − x

7
2 + x

9
2 − . . .

and its interval of convergence [0, 1) this means that x0 = 1
2
. But when the center of a power

series is substituted into the series a sum of zeros 0 + 0 + 0 + · · · results. This is not what
happens when x = 1

2
is substituted into the series above. What has gone wrong is simple.

The series above is not a power series.

11.46. The Taylor series of a function y = f(x) centered at x0 = 0 is given by

T∞(x) = f(0) + f ′(0)x+ f (2)(0)
2!

x2 + f (3)(0)
3!

x3 + f (4)(0)
3!

x4 + · · ·+ f (k)(0)
k!

xk + · · · .

Let f(x) = sin x and x0 = 0. Since f ′(x) = cos x, f (2)(x) = − sinx, f (3)(x) = − cosx, f (4)(x) =

sinx, f (5)(x) = cosx, . . . we get f(0) = 0, f ′(0) = 1, f (2)(0) = 0, f (3)(0) = −1, f (4)(0) = 0, . . .

with the pattern 0, 1, 0,−1, 0, 1, . . . repeating. So

T∞(x) = x+ −1
2!
x3 + 1

5!
x5 + −1

7!
x7 + · · · .

Given the pattern, we see that the general term is (−1)k
(2k+1)!

x2k+1. Taylor’s remainder theorem

tells us for any n that the nth remainder Rn(x) = f(x)−Tn(x) satisfies Rn(x) = f (n+1)(z)
(n+1)!

xn+1

for some z between x and 0. Since f (n+1)(z) is equal to ± sin z or ± cos z, we know that
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|f (n+1)(z)| ≤ 1 and hence that |Rn(x)| ≤ 1
(n+1)!

|xn+1|. Since lim
n→∞

|xn|
n!

= 0 for any x (see the
discussion preceding Example 11.23), it follows that lim

n→∞
Rn(x) = 0 for any x. Therefore the

Taylor series of f(x) = sinx centered at x0 = 0 converges to sinx for all x in (−∞,∞).

11.47. The kth coefficient of the binomial series is ak =
(
r
k

)
= r(r−1)(r−2)···(r−(k−1))

k!
. So ak+1

ak
=

r(r−1)(r−2)···(r−k)
(k+1)!

r(r−1)(r−2)···(r−(k−1))
k!

= r(r−1)(r−2)···(r−k)
(k+1)!

· k!
r(r−1)(r−2)···(r−(k−1)) = r−k

k+1
. It follows that

lim
k→∞

∣∣ak+1

ak

∣∣ =
∣∣k−r
k+1

∣∣ =
∣∣1− rk
1+ 1

k

∣∣ = 1.

11.48. For r = −1, the binomial coefficient
(
r
k

)
= r(r−1)(r−2)···(r−(k−1))

k!
is equal to(−1

k

)
= (−1)((−1)−1)((−1)−2)···((−1)−(k−1))

k!
= (−1)(−2)(−3)···(−k)

k!
= (−1)kk!

k!
= (−1)k.

11.49. The function g(x) is defined to be equal to
∞∑
k=1

(
r
k

)
xk for all x in the interval of convergence

of this series. The fact that h(x) = (1− x)−rg(x) = 1 tells us that g(x) = (1− x)r all such x.

So
∞∑
k=1

(
r
k

)
xk = (1− x)−r for all x in the interval of convergence.

11.50. Let
∞∑
k=0

akx
k be any power series centered at 0 with a positive radius of convergence R. Define

the function y = f(x) by setting y = f(x) =
∞∑
k=0

akx
k for any x satisfying |x| < R. (Note that

any such x is in the interval of convergence of the series.) By Theorem 4, f ′(x) =
∞∑
k=1

kakx
k−1.

Now assume that y = f(x) is a solution of the differential equation y′ = y. Notice that
y = f(x) satisfies the initial condition f(0) = a0. Since f ′(x) = f(x),

∞∑
k=1

kakx
k−1 −

∞∑
k=0

akx
k = f ′(x)− f(x) = 0

for all x with |x| < R. Let i = k − 1 and rewrite the first of these series as
∞∑
i=0

(i + 1)ai+1x
i.

After changing the notation for the index back to k, we get
∞∑
k=0

[(k + 1)ak+1 − ak]xk =
∞∑
k=0

(k + 1)ak+1x
k −

∞∑
k=0

akx
k = 0.

It follows by the corollary of Theorem 4 that (k + 1)ak+1 − ak = 0 for all k ≥ 0. For
k = 0, 1, 2, 3, . . . , we get a1 = a0, 2a2 = a1, 3a3 = a2, 4a4 = a3, 5a5 = a4, . . . , so that a1 =

a0, a2 = 1
2
a0, a3 = 1

3
a2 = 1

3·2a0, a4 = 1
4
a3 = 1

4·3·2a0, a5 = 1
5
a4 = 1

5·4·3·2a0, . . . . Assuming that
ak = 1

k!
a0, we get ak+1 = 1

k+1
ak = 1

(k+1)k!
a0 = 1

(k+1)!
a0 and therefore by the principle of

induction (refer to Section 3.8) that ak = 1
k!
a0 for all k ≥ 0.

Therefore the solution of y′ = y is given by f(x) =
∞∑
k=0

( 1
k!
a0)x

k = a0

∞∑
k=0

1
k!
xk. By Exam-

ple 11.23, f(x) = a0e
x. (This problem was already solved at the end of Section 7.10.)
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11.51. As in the solution of the previous problem, we’ll et
∞∑
k=0

akx
k be a power series centered at 0

with a positive radius of convergence R and define y = f(x) by setting y = f(x) =
∞∑
k=0

akx
k for

any x with |x| < R (in particular, any such x is in the interval of convergence of the series).
Let’s suppose that y = f(x) satisfies the differential equation y′′ − 2xy′ + y = 0. By two

applications of Theorem 4,

f ′(x) =
∞∑
k=1

kakx
k−1 and f ′′(x) =

∞∑
k=2

(k − 1)kakx
k−2

both for all x with |x| < R. Note the initial conditions f(0) = a0 and f ′(0) = a1. The fact
that y = f(x) satisfies y′′ − 2xy′ + y = 0 tells us that

∞∑
k=2

(k − 1)kakx
k−2 − 2x

∞∑
k=1

kakx
k−1 +

∞∑
k=0

akx
k = 0

and hence that
∞∑
k=2

(k − 1)kakx
k−2 −

∞∑
k=1

2kakx
k +

∞∑
k=0

akx
k = 0. In order to extract the

implications of this, we’ll rewrite the first power series to align it with the other two. With

i = k − 2 this series becomes
∞∑
i=0

(i+ 1)(i+ 2)ai+2x
i. Switching back to k we get

∞∑
k=0

(k + 1)(k + 2)ak+2x
k −

∞∑
k=1

2kakx
k +

∞∑
k=0

akx
k = 0.

After pulling out the constant term (it corresponds to k = 0) and combining the rest, we get

(2a2 + a0) +
∞∑
k=1

[
(k + 1)(k + 2)ak+2 − (2k − 1)ak

]
xk = 0.

By the corollary to Theorem 4, we get 2a2 + a0 = 0 and (k + 1)(k + 2)ak+2 − (2k − 1)ak = 0

for all k ≥ 1. So a2 = −1
2
a0 and ak+2 = 2k−1

(k+1)(k+2)
ak for k ≥ 1. Making use of this last formula

again and again, we see that

a3 = 1
2·3a1, a4 = 3

3·4a2, a5 = 5
4·5a3, a6 = 7

5·6a4, a7 = 9
6·7a5, . . . .

We now get

a2 = −1
2
a0, a3 = 1

2·3a1, a4 = − 1·3
2·3·4a0, a5 = 1·5

2·3·4·5a1, a6 = − 1·3·7
3·4·5·6a0, a7 = 1·5·9

2·3·4·5·6·7a1,

a8 = − 1·3·7·11
3·4·5·6·7·8a0, a9 = 1·5·9·13

2·3·4·5·6·7·8·9a1, a10 = − 1·3·7·11·15
3·4·5·6·7·8·9·10a0, a11 = 1·5·9·13·17

2·3·4·5·6·7·8·9·10·11a1, . . . .

The emerging pattern suggests that when k is even ak = −3·7·11···(2k−5)
k!

a0 and when k is odd
ak = 5·9·13···(2k−5)

k!
a1. That this is so, namely that for any even index 2j and any odd index

2j + 1 both with j ≥ 1,

a2j = −1·3·7·11···(4j−5)
(2j)!

a0 and a2j+1 = 1·5·9·13···(4j−3)
(2j+1)!

a1

respectively, can be verified using the principle of induction (of Section 3.8). Substituting this
back into the series for f(x) we get
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f(x) =
∞∑
j=0

a2jx
2j +

∞∑
j=0

a2j+1x
2j+1

= a0 −
∞∑
j=1

1·3·7·11···(4j−5)
(2j)!

a0x
2j + a1x+

∞∑
j=1

1·5·9·13···(4j−3)
(2j+1)!

a1x
2j+1

= a0 − a0
∞∑
j=1

1·3·7·11···(4j−5)
(2j)!

x2j + a1x+ a1

∞∑
j=1

1·5·9·13···(4j−3)
(2j+1)!

x2j+1.

Let’s consider the special case f(0) = a0 = 0 and f ′(0) = a1 = 1. Now

f(x) = x+
∞∑
j=1

1·5·9·13···(4j−3)
(2j+1)!

x2j+1.

By the concluding remark of Section 11.8 this is the Taylor series for the function f(x). Let’s
consider the approximate graphs of y = f(x) that the first few Taylor polynomials provide.
The polynomial T17(x) is

T17(x) = x+ 1
6
x3 + 1

24
x5 + 1

112
x7 + 13

8064
x9 + 221

887040
x11 + 17

126720
x13 + 17

1064448
x15 + 29

17031168
x17.

Dropping terms provides T13(x), T9(x), T5(x), and T3 = x + 1
6x3

. Their graphs are sketched
below. Notice the essential shape of the graph is retained from one Taylor polynomial to the

T   (x)17T   (x)13T  (x)9T  (x)5T  (x)3

next. Not surprisingly, the graphs get steeper as more terms are added in.
It is worth noting that the solution of y′′− 2xy′ + y = 0 (or d

dx

(
d
dx

(y)
)
− 2x d

dx
(y) + y = 0)

is beyond the capacity of the differential equation calculator

https://www.symbolab.com/solver/ordinary-differential-equation-calculator/ .

11.52. We’ll start by solving x2

a2
+ y2

b2
= 1 for y to get the function y = f(x) that has the upper

half of the ellipse as its graph. Since y2

b2
= a2−x2

a2
and hence y2 = b2

a2
(a2 − x2), it follows that
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f(x) = b
a

√
a2 − x2 = b

a
(a2 − x2) 1

2 . It follows from Section 9.3 and the symmetry of the graph
of the ellipse that the length of the upper half of the ellipse is given by∫ a

−a

√
1 + f ′(x)2 dx = 2

∫ a

0

√
1 + f ′(x)2 dx.

Note that f ′(x) = b
a
1
2
(a2 − x2)− 1

2 (−2x) = −bx
a

(a2 − x2)− 1
2 and hence that f ′(x)2 = b2x2

a2(a2−x2) .

Therefore∫ a

0

√
1 + f ′(x)2 dx =

∫ a

0

√
1 + b2x2

a2(a2−x2) dx =

∫ a

0

√
a4−a2x2+b2x2
a2(a2−x2) dx =

∫ a

0

√
a4−(a2−b2)x2
a2(a2−x2) dx.

A review of the basic facts about the ellipse from Section 4.4 tells us that a2 − b2 = c2 with
c = aε and ε the eccentricity of the ellipse. It follows that∫ a

0

√
1 + f ′(x)2 dx =

∫ a

0

√
a4−(a2−b2)x2
a2(a2−x2) dx =

∫ a

0

√
a4−a2ε2x2
a2(a2−x2) dx =

∫ a

0

√
a2−ε2x2
a2−x2 dx.

We now let x = a sin θ with −π
2
≤ θ ≤ π

2
. Since sin2 θ + cos2 θ = 1 and a cos θ ≥ 0 over

−π
2
≤ θ ≤ π

2
, we see that

√
a2 − a2 sin2 θ2 = a cos θ. The fact that dx

dθ
= a cos θ and the

equalities a sin 0 = 0 and a = a sin π
2
imply that∫ a

0

√
1 + f ′(x)2 dx =

∫ a

0

√
a2−ε2a2 sin2 θ
a2−a2 sin2 θ2 a cos θ dθ =

∫ a

0

√
a2 − ε2a2 sin2 θ dθ

= a

∫ a

0

√
1− ε2 sin2 θ dθ.

So the length of the upper half of the ellipse is and 2a

∫ a

0

√
1− ε2 sin2 θ dθ and the circumfer-

ence of the full ellipse is 4a

∫ a

0

√
1− ε2 sin2 θ dθ.

11.53. By integration by parts with u = sinn−1 θ and dv = sin θ dθ, we get du = (n−1)(sinn−2 θ) cos θ dθ

and v = − cos θ, and therefore∫
sinn θ dθ =

∫
u dv = uv −

∫
v du = −(sinn−1 θ) cos θ +

∫
(n−1)(sinn−2 θ) cos2 θ dθ.

Since cos2 θ = 1− sin2 θ, it follows that∫
sinn θ dθ = −(sinn−1 θ) cos θ +

∫
(n−1)(sinn−2 θ)(1− sin2 θ) dθ

= − cos θ · sinn−1 θ + (n−1)

∫
sinn−2 θ dθ − (n−1)

∫
sinn θ dθ,

and therefore that n
∫

sinn θ dθ = − cos θ · sinn−1 θ + (n−1)

∫
sinn−2 θ dθ. The formula∫

sinn θ dθ = − 1
n

cos θ · sinn−1 θ + n−1
n

∫
sinn−2 θ dθ

follows.
Let’s turn to the integral

∫ π
2

0

sin2k θ dθ. If k = 0, then
∫ π

2

0

sin2k θ dθ =

∫ π
2

0

1 dθ = θ
∣∣π2
0

= π
2
.

If k ≥ 1, then
∫ π

2

0

sin2k θ dθ = − 1
2k

[
cos θ · sin2k−1 θ

∣∣π2
0

]
+ 2k−1

2k

∫ π
2

0

sin2k−2 θ dθ. Because
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− 1
2k

[
cos θ · sin2k−1 θ

∣∣π2
0

]
= − 1

2k

[
cos π

2
· sin2k−1 π

2
− cos 0 · sin2k−1 0

]
= − 1

2k
(0− 0) = 0,

we get ∫ π
2

0

sin2k θ dθ = 2k−1
2k

∫ π
2

0

sin2k−2 θ dθ.

By applying this formula k times we obtain∫ π
2

0

sin2k θ dθ = 2k−1
2k

2k−3
2k−2 · · ·

3
4
· 1
2

∫ π
2

0

sin0 θ dθ = 2k−1
2k

2k−3
2k−2 · · ·

3
4
· 1
2
· π
2
.

11.54. Combining the equality∫ π
2

0

√
1− ε2 sin2 θ dθ = π

2
−
∞∑
k=1

1·3·5···(2k−3)ε2k
2kk!

∫ π
2

0

sin2kθ dθ

derived in the text prior to Problem 11.53 with the conclusion
∫ π

2

0

sin2kθ dθ = 1
2
· 3
4
· 5
6
· · · 2k−1

2k
· π
2

of Problem 11.53, we get∫ π
2

0

√
1− ε2 sin2 θ dθ = π

2
− π

2

∞∑
k=1

[
1·3·5···(2k−3)ε2k

2kk!

][
1·3·5···(2k−1)
2·4·6···(2k)

]
= π

2

(
1−

∞∑
k=1

[1·3·5···(2k−3)(2k−1)ε2k
(2k−1)2kk!

][1·3·5···(2k−1)
2kk!

])
= π

2

(
1−

∞∑
k=1

[1·3·5···(2k−1)]2
[2kk!]2

· ε2k

2k−1

)
.

Therefore

4a

∫ π
2

0

√
1− ε2 sin2 θ dθ = 2πa

[
1−

∞∑
k=1

[1·3···(2k−1)]2
[2k(k!)]2

ε2k

2k−1

]
= 2πa

[
1−

(
1
2

)2 ε2
1
−
(
1·3
2·4

)2 ε4
3
−
(
1·3·5
2·4·6

)2 ε6
5
−
(
1·3·5·7
2·4·6·8

)2 ε8
7
− · · ·

]
.

11.55. This is a matter of plugging a ≈ 149,598,000 km and ε ≈ 0.016711 into the formula of
Problem 11.54.

11.56. Simply plug a ≈ 17.83 au and ε ≈ 0.967 into the formula of Problem 11.54.

11.57. Equalities (i) and (ii) are derived in exactly the same way as the analogous equalities for sin θ

in the discussion that precedes Problem 11.53.

11.58. Integrating by parts with u = cosn−1 θ and dv = cos θ dθ, we get du = −(n−1)(cosn−2 θ) sin θ dθ

and v = sin θ, and therefore∫
cosn θ dθ =

∫
u dv = uv −

∫
v du = (cosn−1 θ) sin θ +

∫
(n−1)(cosn−2 θ) sin2 θ dθ.

Since sin2 θ = 1− cos2 θ, we see that∫
cosn θ dθ = (cosn−1 θ) sin θ +

∫
(n−1)(cosn−2 θ)(1− cos2 θ) dθ

= sin θ · cosn−1 θ + (n−1)

∫
cosn−2 θ dθ − (n−1)

∫
cosn θ dθ,
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so that n
∫

cosn θ dθ = sin θ · cosn−1 θ + (n−1)

∫
cosn−2 θ dθ. Hence∫

cosn θ dθ = 1
n

sin θ · cosn−1 θ + n−1
n

∫
cosn−2 θ dθ.

The second equality follows quickly from this (refer to the solution of Problem 11.53).

That the values of the integrals for cos2k θ and sin2k θ over 0 ≤ θ ≤ π
2
are the same should

not come as a surprise. A look at Figures 4.23 and 4.24 tells us how tightly the graphs of
y = sin θ and y = cos θ over 0 ≤ θ ≤ π

2
are related. One graph is simply a reflection of the

other about the line x = π
4
.

11.59. Compare the conclusions of Problems 11.53 and 11.58.

11.60. There is not much to do here. Just plug in the numbers.

11.61. Here too, just plug in the numbers.

11.62. This is a continuation of the “Galileo’s Cannonballs” segment. The cannonball is the same.
The only difference is the height y0 from which it is dropped. For the fall in a vacuum the
relevant equations are vvac(t) = −gt and yvac(t) = −1

2
gt2 + y0. For the fall in air they are

vair(t) = −s∞ tanh g
s∞
t and yair(t) = y0 − s2∞

g
ln cosh( g

s∞
t). In each case, g = 9.81m/sec2. As

in the previous segment s∞ ≈ 178.868827m/sec, g
s∞
≈ 0.054845 1

s , and
s2∞
g
≈ 3261.371791m.

i. Here y0 = 381m. For the fall in a vacuum the time t1 of impact satisfies 1
2
(9.81)t21 = 381

and hence t1 ≈
√

2·381
9.81

≈ 8.813390 sec. At impact vvac(t1) ≈ (−9.81)(8.813390) ≈
−86.46m/sec, so that the speed at impact is 86.46m/sec.

For the fall in air the time t1 of impact satisfies y0 − s2∞
g

ln cosh( g
s∞
t1) = 0 so that

ln cosh( g
s∞
t1) = g

s2∞
y0. Hence g

s∞
t1 = cosh−1 e

g

s2∞
y0 and t1 = s∞

g
cosh−1 e

g

s2∞
y0 . (This

derives the formula for timp anew.) Since g
s2∞
≈ (3261.371791)−1 ≈ 3.066194 × 10−4 we

get t1 ≈ (0.054845)−1cosh−1(e(3.066194×10
−4)381) ≈ 8.985893 sec. The velocity at impact is

vair(t1) = −s∞ tanh g
s∞
t1 = (−178.868827) tanh(0.054845 · 8.985893) ≈ −81.65m/sec, so

that the speed at impact is 81.65m/sec.

ii. Now y0 = 2000m. For the fall in a vacuum the time t1 of impact satisfies 1
2
(9.81)t21 = 2000

and hence t1 ≈
√

2·2000
9.81

≈ 20.192751 sec. At impact vvac(t1) ≈ (−9.81)(20.192751) ≈
−198.09m/sec.

For the fall in air the time t1 of impact satisfies t1 = s∞
g

cosh−1 e
g

s2∞
y0 . Hence

t1 ≈ (0.054845)−1cosh−1(e(3.066194×10
−4)2000) ≈ 22.305630 sec. The velocity at impact is

vair(t1) = −s∞ tanh g
s∞
t1 = (−178.868827) tanh(0.054845 · 22.305630) ≈ −150.36m/sec.

The cannonball’s speed at impact is 150.36m/sec.

11.63. Since y↓(tret) = y0 we get that s2∞
g

ln
[ √

( v0
s∞ )

2
+1

cosh( g
s∞

(tret−ttop))

]
= 0 by evaluating the expression

y↓(t) at t = tret. Hence ln
[ √

( v0
s∞ )

2
+1

cosh( g
s∞

(tret−ttop))

]
= 0. Since lnx is zero only for x = 1 (refer
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to Section 7.11),
√

( v0
s∞ )

2
+1

cosh( g
s∞

(tret−ttop))
= 1. So cosh( g

s∞
(tret − ttop)) =

√
( v0
s∞

)2 + 1 and therefore

tret − ttop = s∞
g

cosh−1
√

( v0
s∞

)2 + 1.

11.64. i. By a formula from Section 9.9.1, d
dx

tan−1x = 1
x2+1

and by another from Section 9.9.2
d
dx

cosh−1x = 1√
x2−1 for x > 1. By the chain rule,

d
dx

cosh−1
√
x2 + 1 = 1√

(
√
x2+1)2−1

· 1
2
(x2 + 1)−

1
2 2x = 1√

x2+1−1 ·
x√
x2+1

= 1√
x2+1

.

ii. For x > 0, x2+1 > 1, so that x2+1 >
√
x2 + 1 and hence 1√

x2+1
> 1

x2+1
. Therefore by (i),

d
dx

cosh−1
√
x2 + 1 > d

dx
tan−1x for x > 0 and hence d

dx

(
cosh−1

√
x2 + 1− tan−1x

)
> 0 for

x > 0. So cosh−1
√
x2 + 1 − tan−1x is an increasing function over the interval (0,∞).

Since cosh−1
√

0 + 1 = 0 = tan−1(0), it follows that cosh−1
√
x2 + 1 > tan−1x for x > 0.

iii. By letting x = v0
s∞

in (ii), we get tdown = s∞
g

cosh−1
√

( v0
s∞

)2 + 1 > s∞
g

tan−1 v0
s∞

= tup.

11.65. i. Inserting the conclusion of Problem 11.63 into the formula v↓(t) = −s∞ tanh
(
g
s∞

(t−ttop)
)

of Section 11.10.2, we get

v↓(tret) = −s∞ tanh
(
g
s∞

(tret − ttop)
)

= −s∞tanh
(
cosh−1

√
( v0
s∞

)2 + 1
)
.

ii. The identity cosh2 x − sinh2 x = 1 implies that 1 − sinh2 x
cosh2 x

= 1
cosh2 x

and hence that
tanh2 x = 1− 1

cosh2 x
. A look at Section 9.9.2 tells us that tanhx ≥ 0 when x ≥ 0, so that

tanhx =
√

1− 1
(coshx)2

and tanh(cosh−1x) =
√

1− 1
x2

=
√

x2−1
x2

for x > 0.

iii. By using (i) and inserting x =
√

( v0
s∞

)2 + 1 into (ii) we can conclude that

v↓(tret) = −s∞ tanh
(
cosh−1

√
( v0
s∞

)2 + 1
)

= −s∞
√

(
√

(
v0
s∞

)2+1 )2−1

(
√

(
v0
s∞

)2+1 )2

= −s∞
√

(
v0
s∞

)2+1−1
(
v0
s∞

)2+1
= −s∞

v0
s∞√

(
v0
s∞

)2+1
= −v0√

(
v0
s∞

)2+1
.

11.66. With the block in the position described in Figure 11.33 the upward pull of kh balances the
weight mg of the block, so that kh = mg.

i. Suppose that the block is moved so that the position of its center is at d0. It is released
from there at time t = 0 with an initial velocity of v0. The block’s center is in position
y(t) and its velocity is v(t) = y′(t) at any time t ≥ 0 thereafter. Note that y(0) = d0
and v(0) = v0. If y(t) < 0 then the spring is stretched h + (−y(t)) = h − y(t) beyond
its natural length and the force exerted by the spring on the block is k(h − y(t)). The
fact that this is positive reflects the fact that the force acts in the upward or positive
direction. If y(t) ≥ 0 then the displacement of the spring is y(t) less than the h of the
equilibrium position (of Figure 11.33), so that the spring is displaced by h− y(t) in this
case also. If y(t) = h then the spring is at its natural length so that the force it exerts on
the block is 0. If y(t) > h then the spring is compressed by a distance of y(t)−h so that
the force the spring exerts on the block is downward and hence the negative quantity
k(h − y(t)). In all cases the force exerted by the spring on the block is k(h − y(t)). It
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follows that the net force on the block is F (t) = k(h − y(t)) − mg. Since y′′(t) is the
acceleration of the block,

my′′(t) = k(h− y(t))−mg = kh− ky(t)−mg = −ky(t),

so that y′′(t) = −k
m
y(t) as asserted.

ii. Section 11.6 applies to the differential equation y′′ + k
m
y = 0. The two roots of the

characteristic polynomial x2 + k
m

are ±
√

k
m
i so that Case 3 applies with a = 0 and

b =
√

k
m
. It follows that the function y(t) has the form

y(t) = D1 cos
(√

k
m
t
)

+D2 sin
(√

k
m
t
)

with D1 and D2 constants. Since y(0) = d0, d0 = D1 cos 0 +D2 sin 0 = D1. Since

y′(t) = −
(
D1 sin

√
k
m
t
)√

k
m

+
(
D2 cos

√
k
m
t
)√

k
m

and v0 = y′(0) = −
(
D1 sin 0

)√
k
m

+
(
D2 cos 0

)√
k
m

= D2

√
k
m
, it follows that D2 = v0

√
m
k

and hence that y(t) = d0 cos
(√

k
m
t
)

+ v0
√

m
k

sin
(√

k
m
t
)
.

iii. If v0 = 0, then y(t) = d0 cos
(√

k
m
t
)
. A look at Figure 4.24 shows that if

√
k
m
t varies

from 0 to 2π then the block moves through exactly one complete up-and-down cycle.
Dividing 0 ≤

√
k
m
t ≤ 2π through by

√
k
m

this corresponds to 0 ≤ t ≤ 2π√
k
m

= 2π
√

m
k
.

So the time required for one complete cycle is 2π
√

m
k
.

11.67. Since a force of 40N is necessary to keep the spring extended 0.05m beyond its natural length,
40 = k(0.05), so that the spring constant is k = 800N/m. Since m = 0.5 kg,

√
k
m

=
√

1600 =

40. At the instant t = 0 that the block is released, y = d0 = 0.1m and its velocity is
v0 = −2m/s. Inserting this into the expression for y(t) derived in Problem 11.66(ii), we get

y(t) = (0.1) cos(40 t)− 1
20

sin(40 t) meters.

11.68. The study considers the responses of the front and rear suspensions under the assumption that
the chassis reaches the top of its displacement at time t = 0 and that the position function
z(t) satisfies z(0) = 0.05 m and z′(0) = 0 m/s.

i. For the front wheels, m = 118.0 kg, k = 525,000N/m, and d = 2ζ
√
mk = 11,019 N-s

m . For
the rear wheels, m = 186.0 kg, k = 612,000N/m, and d = 2ζ

√
mk = 19,205 N-s

m .

ii. In either case, Section 11.11.1 tells us that the position function z(t) is given by

z(t) = eat(D1 cos bt+D2 sin bt)

where a = − d
2m
, b =

√
4mk−d2
2m

, D1 = z(0), and D2 = 1
b
(z′(0)− az(0)).

For each front wheel, a ≈ −46.69, b ≈ 47.64, D1 = 0.05 and D2 ≈ 0.049 so that the
particular solution is

z(t) = e−46.69t(0.05 cos 47.64t+ 0.049 sin 47.64t).

For each rear wheel, a ≈ −51.63, b ≈ 25.00, D1 = 0.05 and D2 ≈ 0.103 and the particular
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solution is

z(t) = e−51.63t(0.05 cos 25.00t+ 0.103 sin 25.00t).

iii. The results of https://www.desmos.com/calculator are provided below with the response
of the front suspension at the top and that of the rear suspension at the bottom.

meters

seconds

meters

seconds

0

0.05

0

0.05

iv. Compared to the suspension of the family sedan and the stock car studied in Section
11.11.1, the suspensions of the race car—both front and rear—are hard. The rear sus-
pension with its large damping ratio of ζ = 0.90 is so hard that it almost seems to lead
to a critically damped response. The graph of this response reflects this. However, a
careful analysis of the function z(t) shows that its graph dips below the time axis from
about 0.108 seconds to about 0.126 seconds before rising above it again.

11.69. We saw that with b = c
T0

and (d, s) on the graph, that s = 1
b
(cosh bd − 1) and hence that

ebd + e−bd = 2(1 + bs). Multiplying this last equation through by ebd we get

ebd · ebd + ebd · e−bd = 2ebd(1 + bs).
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Since ebd · ebd + ebd · e−bd = ebd+bd + ebd−bd = e2bd + 1 = (ebd)2 + 1, we get

(ebd)2 − 2(1 + bs)ebd + 1 = 0.

The quadratic formula applied to X2 − 2(1 + bs)X + 1 = 0 tells us that

ebd =
2(1+bs)±

√
4(1+bs)2−4·1·1
2

= 1 + bs±
√

(bs)2 + 2bs.

i. Since bd > 0, ebd > 1. So bs±
√

(bs)2 + 2bs > 0. Since
√

(bs)2 + 2bs >
√

(bs)2 = bs only
the + option can arise. Therefore ebd = 1 + bs +

√
(bs)2 + 2bs. Letting x = bs, we get

e
d
s
x = 1 + x+

√
x2 + 2x.

ii. It follows directly from (i) that x = bs = cs
T0

is the x-coordinate of a point of intersection
of the curves y = e

d
s
x and y = 1 + x+

√
x2 + 2x.

11.70. We’ll start the analysis of the function g(x) = 1 + x+
√
x2 + 2x for x ≥ 0 with its derivative.

i. Since g(x) = 1 + x+ (x2 + 2x)
1
2 we see that

g′(x) = 1 + 1
2
(x2 + 2x)−

1
2 (2x+ 2) = 1 + x+1

(x2+2x)
1
2

= 1 + x+1√
x2+2x

= 1 +
√

x2+2x+1
x2+2x

.

Clearly x2+2x+1 > x2+2x and hence
√
x2 + 2x+ 1 >

√
x2 + 2x. So 1+

√
x2+2x+1
x2+2x

> 2.
It follows that the graph of y = g(x) is increasing over [0,∞). Notice that lim

x→0+
g′(x) =

+∞ and hence that the graph has a vertical tangent at the point (0, 1).

ii. Starting with g′(x) = 1 + x+1

(x2+2x)
1
2
and using the quotient rule, we get

g′′(x) =
1·(x2+2x)

1
2−(x+1)· 1

2
(x2+2x)−

1
2 (2x+2)

(x2+2x)
= (x2+2x)

1
2

(x2+2x)
1
2

[
(x2+2x)

1
2−(x+1)(x2+2x)−

1
2 (x+1)

(x2+2x)

]
= (x2+2x)−(x+1)(x+1)

(x2+2x)
3
2

= (x2+2x)−(x2+2x+1)

(x2+2x)
3
2

= −1
(x2+2x)

3
2
.

Since this is negative for all x > 0 the graph of y = g(x) is concave down.

iii. Since g(x) = 1 + x+
√
x2 + 2x, we get that

2x+ 2− g(x) = 2x+ 2− (1 + x+
√
x2 + 2x) = 1 + x−

√
x2 + 2x

By rationalizing,

1 + x−
√
x2 + 2x = (1 + x−

√
x2 + 2x) · 1+x+

√
x2+2x

1+x+
√
x2+2x

= (1+x)2−(x2+2x)

1+x+
√
x2+2x

= 1
1+x+

√
x2+2x

.

Since this last term is positive for all x ≥ 0, it follows that 2x + 2 − g(x) > 0 and
hence that 2x+ 2 > g(x) for all x ≥ 0. The fact that lim

x→+∞
1

1+x+
√
x2+2x

= 0 tells us that

lim
x→+∞

(
(2x− 2)− g(x)

)
= 0 so that that the line y = 2x+ 2 is an asymptote of the graph

of y = g(x).

iv. The graph of y = g(x) depicted on the next page was provided by the graphing calculator
https://www.desmos.com/calculator. The slanting black line is the asymptote y = 2x+2.

11.71. The function g(x) = 1 + x+
√
x2 + 2x is also defined for x ≤ −2 (but not for −2 < x < 0) as

the graph shows. The strategies of Problem 11.70 can be used to confirm that the graph is
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g(x) = 1+x+√x  +2x2

decreasing over (−∞,−2], that it is concave down, that it lies below the x-axis, and that the
x-axis is a horizontal asymptote. Since none of these conclusions are used in the discussion
that follows we’ll skip the details.

The final three problems deal with a chain that weighs c = 1.47N/m. The two supporting posts
of the chain have the same height and are a distance 2d = 20m apart. The solutions rely on
Table 11.4 as well as the formulas L = L(d) = T0

c
sinh( cd

T0
) and T (d) =

√
T 2
0 + c2L2 for the length

of the chain and the maximal tension it is subject to.

11.72. i. Suppose that the sag in the chain is s = 10m. Since d
s

= 1, Table 11.4 tells us that
cs
T0
≈ 1.616. So T0 ≈ 1

1.616
cs ≈ (1.47)(10)

1.616
≈ 9.10N.

ii. The length of the chain is 2L = 2T0
c

sinh( cd
T0

) ≈ 2(9.10)
1.47

sinh(1.47·10
9.10

) ≈ 29.91 m. The weight
of the chain is approximately (29.91)(1.47) ≈ 43.96N and the maximal tension that the
chain is under is T (d) =

√
T 2
0 + c2L2 ≈

√
9.102 + (1.47)2(29.91

2
)2 ≈ 23.79N.

11.73. i. Let’s shorten the chain so that its sag is s = 1 m. Now d
s

= 10 and Table 11.4 tells us
that cs

T0
≈ 0.0199. So T0 ≈ 1

0.0199
cs ≈ (1.47)(1)

0.0199
≈ 73.87N.

ii The length of the chain is 2L = 2T0
c

sinh( cd
T0

) ≈ 2(73.87)
1.47

sinh(1.47·10
73.87

) ≈ 20.13 m. Hence the
weight of the chain is approximately (20.13)(1.47) ≈ 29N and the maximal tension that
the chain is under is T (d) =

√
T 2
0 + c2L2 ≈

√
73.872 + (1.47)2(20.13

2
)2 ≈ 75.34N.
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11.74. i. Let’s shorten the chain some more so that its sag is s = 0.1 m. Since d
s

= 100 the table
tells us that cs

T0
≈ 0.0002. It follows that T0 ≈ 1

0.0002
cs ≈ (1.47)(0.1)

0.0002
≈ 735N.

ii. The length of the chain is 2L = 2T0
c

sinh( cd
T0

) ≈ 2(735)
1.47

sinh(1.47·10
735

) ≈ 20.00m. So the
weight of the chain is approximately (20.00)(1.47) ≈ 29.40 N, and the maximal tension
that the chain is under is T (d) =

√
T 2
0 + c2L2 ≈

√
7352 + (1.47)2(20.00

2
)2 ≈ 735.15N.
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