
Solutions to Problems and Projects for Chapter 7

7.1. For
√

7− x to make sense, we need 7−x ≥ 0 or 7 ≥ x. So the domain of f(x) is {x | x ≤ 7}.
For
√
x+ 5 to make sense, x + 5 ≥ 0. So the domain of g(x) is {x | x ≥ −5}. For h(x) to

make sense, both f(x) and g(x) must make sense. So the domain of h(x) is {x |−5 ≤ x ≤ 7}.

7.2. These expression make sense as long as the denominators are not zero. By the quadratic

formula, x2 − 3x + 2 = 0 precisely when x =
3±
√

(−3)2−4·1·2
2

= 3±1
2
. So x = 1 or x = 2. Since

x3 + x2 − 2x = x(x2 + x − 2), we need to check when x2 + x − 2 = 0. Using the quadratic

formula again, we see that this is so for x =
−1±
√

12−4·1·(−2)

2
= −1±3

2
. So x = −2 or x = 1.

7.3. For
√

3x− 4 to be defined, we must have 3x − 4 ≥ 0. So x ≥ 4
3

and hence the domain of

f(x) is {x | x ≥ 4
3
}. For

√
2x− 3 to make sense, 2x− 3 needs to be greater than or equal to

0. So 2x− 3 ≥ 0 and hence the domain of g(x) is {x | x ≥ 3
2
}. Note that for x ≥ 3

2
, both f(x)

and g(x) are defined. For k(x) to make sense, we also need g(x) 6= 0. So the domain of k(x)

is {x | x > 3
2
}.

7.4. In the case of f(x), we need both x+ 6 ≥ 0 and 3 ≥
√
x+ 6. So x ≥ −6 and 9 ≥ x+ 6. Hence

x ≥ −6 and 3 ≥ x. So the domain of f(x) is {x | − 6 ≤ x ≤ 3}. For g(x) to make sense, we

have to have x−5
x+3
≥ 0. So either x + 3 > 0 and x − 5 ≥ 0; or x + 3 < 0 and x − 5 ≤ 0. So

x ≥ 5 or x < −3. Hence the domain of g(x) is {x | x < −3 or x ≥ 5}.

7.5. i. lim
x→2

(x2 + 1)(x2 + 4x) = (5)(12) = 60.

ii. lim
x→1

x−2
x2+4x−3

= −1
1+4−3

= −1
2
.

iii. lim
x→4

√
x+
√
x =
√

4 + 2 =
√

6.

iv. lim
x→3

x2−x+12
x+3

= 9−3+12
3+3

= 18
6

= 3.

7.6. i. Notice that in the limit lim
x→−3

x2−x+12
x+3

, the numerator goes to 24 while the denominator

goes to 0. So the ratio becomes larger and larger. It does not close in on a finite

number, so that there is no limit. Because the numerator goes to 24 in each case,

lim
x→−3−

x2−x+12
x+3

= −∞ and lim
x→−3+

x2−x+12
x+3

= +∞.

ii. This is a limit of “0
0
” type. So we are looking for a cancellation. Because x2 − x− 12 =

(x + 3)(x − 4), we see that lim
x→−3

x2−x−12
x+3

= lim
x→−3

(x+3)(x−4)
x+3

= lim
x→−3

(x − 4) = −7. The

observation that lim
x→−3

2x−1
1

= −7 tells us that L’Hospital’s rule gives the same answer.

iii. This is another limit of “0
0
” type. It is solved with a cancellation: lim

t→−1

t3−t
t2−1

= lim
t→−1

t(t2−1)
(t2−1)

=

lim
t→−1

t = −1. Since lim
t→−1

3t2−1
2t

= 2
−2

= −1, L’Hospital’s rule provides the same answer.

iv. This is a limit of “0
0
” type. By L’Hospital’s rule, lim

x→1

x3−1
x2−1

= lim
x→1

3x2

2x
= 3

2
. This limit can

also be determined via a cancellation. After checking that x3 − 1 = (x− 1)(x2 + x+ 1),

observe that lim
x→1

(x−1)(x2+x+1)
(x−1)(x+1)

= lim
x→1

x2+x+1
x+1

= 3
2
.



v. By rationalizing, factoring, and canceling,

x2−81√
x−3

= x2−81√
x−3
·
√
x+3√
x+3

= x2−81
x−9

(
√
x+ 3) = (x−9)(x+9)

x−9
(
√
x+ 3) = (x+ 9)(

√
x+ 3) .

So lim
x→9

x2−81√
x−3

= lim
x→9

(x + 9)(
√
x + 3) = 108. Because lim

x→9

2x
1
2
x−

1
2

= lim
x→9

4x
3
2 = 4(33) = 108,

L’Hospital’s rule gives the same result.

vi. By rationalizing, x√
1+3x−1

= x√
1+3x−1

·
√

1+3x+1√
1+3x+1

= x(
√

1+3x+1)
(1+3x)−1

=
√

1+3x+1
3

. So lim
x→0

x√
1+3x−1

=

lim
x→0

√
1+3x+1

3
= 2

3
. Since lim

x→0

1
1
2

(1+3x)−
1
2 (3)

= lim
x→0

2
3
(1 + 3x)

1
2 = 2

3
, we get the same thing

with L’Hospital’s rule.

vii. By rationalizing, 4−
√
s

s−16
= 4−

√
s

s−16
· 4+

√
s

4+
√
s

= 16−s
(s−16)(4+

√
s)

= −1
4+
√
s
. So lim

s→16

4−
√
s

s−16
= lim

s→16

−1
4+
√
s

=

−1
8
. What answer does L’Hospital’s rule provide?

viii. The limit lim
x→2

|x−2|
x−2

does not exist. To see this, check that lim
x→2−

|x−2|
x−2

= lim
x→2−

−(x−2)
x−2

= −1.

This is so, because for x < 2, we get x− 2 < 0, so that |x− 2| = −(x− 2). Show in a

2 x2x

similar way that lim
x→2+

|x−2|
x−2

= 1. Since the limit from the left is not equal to the limit

from the right, lim
x→2

|x−2|
x−2

does not exist.

ix. This limit is a “0
0
” limit that can be solved by a cancellation:

lim
h→0

(h−5)2−25
h

= lim
h→0

h2−10h+25−25
h

= lim
h→0

h(h−10)
h

= lim
h→0

(h− 10) = −10 .

Replacing h by ∆x we see that (h−5)2−25
∆x

= (∆x−5)2−25
∆x

. It follows that lim
h→0

(h−5)2−25
∆x

=

lim
∆x→0

(−5+∆x)2−25
∆x

. For f(x) = x2, we see that f ′(x) = lim
∆x→0

f(x+∆x)−f(x)
∆x

= lim
∆x→0

(x+∆x)2−x2

∆x
.

It follows that the earlier limit is equal to the derivative f ′(x) = 2x evaluated at x = −5.

So it is f ′(−5) = −10.

x. After letting π = x and h = ∆x, notice that this limit is the derivative of the function

f(x) = sinx evaluated at x = π. Since f ′(x) = cosx and f ′(π) = cosπ = −1, the value

of this limit is −1.

7.7. Because lim
x→a

f(x) = 5 and lim
x→a

g(x) = 3, we see that lim
x→a

f(x)
g(x)

= 5
3
. Similarly, lim

x→a
2f(x)

g(x)−f(x)
=

2·5
3−5

= 10
−2

= −5. In the situation lim
x→a

2f(x)
5g(x)−3f(x)

= 2·5
3−5

= 10
−2

= −5, notice that the numerator

goes to 10 and the denominator goes to zero. So the limit does not exist.

7.8. For (i), we need to check that the continuity criterion is satisfied for c = 5. Because f(5) =

1 +
√

52 − 9 = 1 +
√

16 = 5, we know that f(5) makes sense. In view of the fact that

lim
x→c

f(x) = lim
x→5

(1 +
√
x2 − 9) = 1 +

√
16 = 5 = f(5), the continuity criterion is satisfied. So

f(x) is continuous at c = 5. In case (ii), we need to check the continuity criterion for c = 4.

Because g(4) = 5
2·16−1

= 5
31
, g(x) is defined at x = 4. Since lim

x→4
g(x) = lim

x→4

x+1
2x2−1

= 5
31

= g(4),

the criterion is met. So g(x) is continuous at c = 4.
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7.9. For x4+17
6x2+x−1

to make sense we need only for 6x2 + x − 1 to be non-zero. By the quadratic

formula, 6x2 + x − 1 = 0 when x = −1±
√

1+24
12

= −1±5
12

= −1
2

or 1
3
. So the domain of

G(x) = x4+17
6x2+x−1

is {x | x 6= −1
2

and x 6= 1
3
}. For 1√

x+1
to make sense we need x > −1. So

the domain of H(x) = 1√
x+1

is {x | x > −1}. That G(x) is continuous on its domain follows

from Remark 7.2. That H(x) is continuous on its domain follows from Example 7.8 and two

applications of the continuity theorem. First to the composite of the functions f(x) =
√
x

and g(x) = x+ 1, and then to the quotient f(x)
g(x)

with f(x) = 1 and g(x) =
√
x+ 1.

7.10. That the functions cx + 1 and cx2 − 11 are continuous for any constant c follows from Re-

mark 7.1. (Notice that the constant c plays different roles in the remark and in the statement

of the problem.) For the function f(x) to be continuous, its graph must be in one connected

piece. In view of what was already said, this will be so precisely if the graphs of cx + 1 and

cx2 − 1 meet when x = 3. So we need to have 3c+ 1 = 9c− 1. So 6c = 2 and c = 1
3
.

7.11. We know from Remark 7.2 that the function x2−2x−8
x−4

is continuous, except when x = 4 where

it is not defined. If lim
x→4

x2−2x−8
x−4

= 6, then the definition f(4) = 6 will close the gap in the

graph. Because lim
x→4

x2−2x−8
x−4

= lim
x→4

(x−4)(x+2)
x−4

= lim
x→4

(x + 2) = 6, the gap is indeed closed. So

f(x) is continuous at x = 4 and hence for all x. Notice that f(x) and g(x) = x+ 2 are exactly

the same function?

7.12. The first and third graphs are most easily sketched after observing that g(x) = x when x 6= −3

and that j(x) = (x−4)(x+3)
x−4

= x + 3 when x 6= 4. The three holes in the graph occur for the

values of x for which the corresponding functions are not defined. By replacing the function

g(x) by g1(x) = x for all x ≤ 0, the function j(x) by j1(x) = x + 3 for all 1 ≤ x, and then

defining the function y = f(x) by f(x) = g1(x) = x for x ≤ 0, f(x) = h(x) for 0 < x < 1, and

x

y

y = x  

1

√  

y = x + 3  

y = 4  x

−3

4

f(x) = j1(x) for 1 ≤ x, the three holes are filled in, so that y = f(x) is continuous for all x.

7.13. Let f(x) = 2x3 + x2 + 2. Because f(−2) = 2(−2)3 + (−2)2 + 2 = −16 + 4 + 2 = −10 < 0 and

f(−1) = 2(−1)3 + (−1)2 + 2 = −2 + 1 + 2 = 1 > 0, it follows from the intermediate value
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theorem that there exists some x in the interval (−2,−1) such that f(x) = 2x3 + x2 + 2 = 0.

7.14. If m and M are the minimum and maximum values of f on [−1, 1], then m ≤ 2 < 3 ≤ M .

So by the intermediate value theorem, there is, for any number v with 2 ≤ v ≤ 3, a number

u between −1 and 1 such that f(u) = v. Since e lies between 2 and 3, we get the x we need.

7.15. Enough detail has already been supplied.

7.16. Enough detail has been supplied.

7.17. i. lim
∆x→0

1
x+∆x

− 1
x

∆x
= lim

∆x→0

1
∆x

(
1

x+∆x
− 1

x

)
= lim

∆x→0

1
∆x

x−(x+∆x)
(x+∆x)x

= lim
∆x→0

1
∆x

−∆x
(x+∆x)x

= lim
∆x→0

−1
(x+∆x)x

= −1
x2 = −x−2

ii. lim
∆x→0

(x+∆x)3−x3

∆x
= lim

∆x→0

x3+3x2∆x+3x(∆x)2+(∆x)3)−x3

∆x
= lim

∆x→0

3x2∆x+3x(∆x)2+(∆x)3

∆x

= lim
∆x→0

(3x2 + 3x∆x+ (∆x)2) = 3x2

iii. lim
∆x→0

1
(x+∆x)2

− 1
x2

∆x
= lim

∆x→0

1
∆x

(
1

(x+∆x)2− 1
x2

)
= lim

∆x→0

1
∆x

x2−(x+∆x)2

(x+∆x)2x2 = lim
∆x→0

1
∆x

x2−x2−2x∆x−(∆x)2

(x+∆x)2x2

= lim
∆x→0

1
∆x
−2x∆x−(∆x)2

(x+∆x)2x2 = lim
∆x→0

−2x−∆x
(x+∆x)2x2 = −2x

x4 = −2x−3

iv. lim
∆x→0

(x+∆x)− 2
x+∆x

−(x− 2
x

)

∆x
= lim

∆x→0

1
∆x

(
∆x− ( 2

x+∆x
− 2

x
)
)

= lim
∆x→0

1
∆x

(
∆x− 2x−2(x+∆x)

(x+∆x)x

)
= lim

∆x→0

1
∆x

(
∆x− −2∆x

(x+∆x)x

)
= lim

∆x→0

(
1+ 2

(x+∆x)x

)
= 1+ 2

x2 = 1+2x−2

v. lim
∆x→0

√
6−(x+∆x)−

√
6−x

∆x
= lim

∆x→0

(
√

6−(x+∆x)−
√

6−x)(
√

6−(x+∆x)+
√

6−x)

∆x(
√

6−(x+∆x)+
√

6−x)

= lim
∆x→0

6−(x+∆x)−(6−x)

∆x(
√

6−(x+∆x)+
√

6−x)
= lim

∆x→0

−∆x

∆x(
√

6−(x+∆x)+
√

6−x)
= lim

∆x→0

−1√
6−(x+∆x)+

√
6−x

= −1
2
√

6−x = −1
2
(x− 6)−

1
2

7.18. We saw in Section 7.4 that the definition of the derivative of a function y = f(x) has the two

formulations

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
and f ′(x) = lim

x→c

f(x)− f(c)

x− c
.

i. Take the function f(x) = x2 and use the first formula to write down what f ′(5) means.

ii. Take the function f(x) =
√
x and use the first formula to write down what f ′(1) means.

iii. Take the function f(x) = x9 and use the second formula to write down what f ′(1) means.

iv. Take the function f(x) =
√

1 + x and use the first formula to write down what f ′(0)

means. Then change notation.

7.19. i. The negative part of the graph of f(x) = x2 − 9 of Figure (a) is made positive by

reflecting it as shown in Figure (b) to obtain the graph of g(x) = |x2−9|. The derivative

of f(x) = x2 − 9 is f ′(x) = 2x. This is also the derivative of y = g(x) for x < −3 and

x > 3. For −3 < x < 3 the function y = g(x) is the same as y = −(x2−9) = −x2 +9. So

the derivative of g(x) = |x2 − 9| for −3 < x < 3 is −2x. The graph of f ′(x) = 2x is the

4



x

y

x  − 9
2

x

y

x  − 9
2

− 9

(a)      (b)

−3 3

the line y = 2x. The graphs of g′(x) is the indicated combination of the lines y = 2x and

y = −2x. The sharp corners at x = −3 and x = 3 tell us that g(x) is not differentiable

there.

ii. The graph of f(x) = |x| coincides with that of y = −x for x < 0 and with y = x for

x > 0. So f ′(x) = −1 for x < 0 and f ′(x) = 1 for x > 0. Since the graph of f(x) = |x|

x

y

y = −1

y = −x

y = x

y

y = 1

comes to a sharp point at x = 0, the function is not differentiable for x = 0.

7.20. i. Since f ′(x) = 3x2, the tangent has slope f ′(−2) = 12 and equation y + 8 = 12(x+ 2).

ii. Since g′(x) = 1
3
x−

2
3 , the tangent has slope g′(−3) = 1

9
1
3

and equation (y−3
1
3 ) = 1

9
1
3

(x+3)

iii. Since f ′(x) = −x−2 = 1
x2 , the tangent has slope f ′(−1

3
) = 9 and equation y+3 = 9(x+ 1

3
).

iv. Since f ′(x) = −2x−3 = − 2
x3 , the tangent has slope f ′(−2) = 1

4
and equation y − 1

4
=

1
4
(x+ 2).
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7.21. i. f ′(x) = 0

ii. For g(x) = x
1
2 − 2x−

1
2 , g′(x) = 1

2
x−

1
2 + x−

3
2

iii. f ′(x) = 14x− 5

iv. For y = h(x) = 1
x4+x2+1

, y′ = 2
3
x−

2
3 + 3πx2.

v. g′(x) = −3x−2 + 3

vi. f ′(x) = 6x2 + 3 + 2x−3

vii. g′(x) = 2x−
1
2 − 5x−2

viii. h′(x) = 18x2 − 7
3
x−

2
3

7.22. i. G′(x) = 2x(2x− 7) + (x2 + 1)2 = 4x2 − 14x+ 2x2 + 2 = 6x2 − 14x+ 2

ii. f ′(x) = d
dx

a−x2

1+x2 = −2x(1+x2)−(a−x2)2x
(1+x2)2 = −2x(1+x2+a−x2)

(1+x2)2 = −2x(1+a)
(1+x2)2

iii. For s = g(t) = t
1
3 (t+ 2) = t

4
3 + 2t

1
3 , ds

dt
= 4

3
t

1
3 + 2

3
t−

2
3 .

iv. For y = h(x) = 1
x4+x2+1

, dy
dx

= d
dx

(x4 + x2 + 1)−1 = −(x4 + x2 + 1)−2(4x3 + 2x).

v. dy
dx

= d
dx

(2x3 + 4x5)6(7x8 + 9x10)11

= [6(2x3+4x5)5(6x2+20x4)](7x8+9x10)11+(2x3+4x5)6[11(7x8+9x10)10(56x7+90x9)]

vi. f ′(x) = 1
2
(1− x2)−

1
2 (2x) = x(1− x2)−

1
2

vii. Because y = x√
9−4x

= x(9 − 4x)−
1
2 , we get dy

dx
= (9 − 4x)−

1
2 + x[−1

2
(9 − 4x)−

3
2 (−4)] =

(9− 4x)−
1
2 + 2x(9− 4x)−

3
2 = (9−4x)+2x

(9−4x)
3
2

= 9−2x

(9−4x)
3
2
.

viii. F ′(x) =
[5(x2+4x+6)4(2x+4)](x3+4x5)

1
2−(x2+4x+6)5[ 1

2
(x3+4x5)−

1
2 (3x2+20x4)]

x3+4x5 .

ix. Because s(t) = 4

√
t3+1
t3−1

=
(
t3+1
t3−1

) 1
4 , we find that

s′(t) = 1
4

(
t3+1
t3−1

)− 3
4
[

3t2(t3−1)−(t3+1)3t2

(t3−1)2

]
= 1

4

(
t3−1
t3+1

) 3
4
[ −6t2

(t3−1)2

]
= −3

2

(
t3−1
t3+1

) 3
4 t2

(t3−1)2 .

x. d
dx
f(g(h(x))) = f ′(g(h(x))) · (g(h(x)))′ = f ′(g(h(x))) · g′(h(x)) · h′(x).

7.23. i. Because g′(x) = −3x2, the slope of the tangent to the graph at the point (0, 1) is

g′(0) = 0. By the point-slope form of the equation of a line, the equation of the tangent

line is y − 1 = 0(x− 0) or y = 1.

ii. Because h′(x) = −1(2x − 1)−2(2) = −2
(2x−1)2 , we see that h′(−1) = −2

(−3)2 = −2
9
. By the

point-slope form, the equation of the tangent line is y+ 1
3

= −2
9
(x+ 1) or y = −2

9
x− 5

9
.

iii. Because y′ = 1(x−3)−x(1)
(x−3)2 = −3

(x−3)2 , we see that the slope of the tangent line is −3
(6−3)2 =

−3
9

= −1
3
. By the point-slope form of the equation of a line, we get that the equation of

the tangent is y − 2 = −1
3
(x− 6) or y = −1

3
x+ 4.

7.24. Converting the equation x−2y = 1 into slope-intercept form, we get 2y = x−1 or y = 1
2
x− 1

2
.

So 1
2

is the slope of the line. Next, we need the point on the graph of f(x) = x2 − 1 with the

property that the tangent at that point has slope 1
2
. Because f ′(x) = 2x, this occurs when

x = 1
4
. So the point is

(
1
4
, f(1

4
)
)

=
(

1
4
,−15

16

)
. The equation we are looking for is that of the
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line through
(

1
4
,−15

16

)
with slope 1

2
. By the point-slope form of the equation of a line we get

y −
(
−15

16

)
= 1

2
(x− 1

4
) or y + 15

16
= 1

2
x− 1

8
or, finally, y = 1

2
x− 17

16
.

7.25. For the graph of f(x) = 2x3 − 3x2 − 6x + 87 to have a horizontal tangent, we need to have

f ′(x) = 6x2 − 6x− 6 = 0. By the quadratic formula, 6(x2 − x− 1) = 0 for x = 1±
√

5
2

.

7.26. For y = 6x3 + 5x− 3 to have a tangent line of slope 4, the derivative y′ = 18x2 + 5 must be

equal to 4. But 4 = 18x2 + 5 implies that x2 = − 1
18

and this is impossible.

7.27. A reformulation of the question is this: For what point on the graph of y = 1
10
x2 will the

tangent line hit the point (10, 5)? Let this point be (x1, y1). Because the slope of the

tangent line is 1
5
x1 and the point (x1, y1) lies on it, we see that the equation of the tangent is

y − y1 = 1
5
x1(x− x1). Since (10, 5) must be on this line, 5− y1 = 1

5
x1(10− x1). Since (x1, y1)

x

y

(10, 5)(x , y )  11

is also on the parabola, y1 = 1
10
x2

1. Therefore, 5− 1
10
x2

1 = 1
5
x1(10−x1). Multiplying by 10 gives

50− x2
1 = 20x1 − 2x2

1. So x2
1 − 20x1 + 50 = 0, and by the quadratic formula, x1 = 10± 5

√
2.

It follows that there are two such points. Both are shown in the figure.

7.28. The goal is to find the points where the tangencies occur. See the figure below. Let y = mx+b

be one of the two lines and let (x1, y1) and (x2, y2) be the two points of tangency on the graphs

x

y

y = x  +12

y = −x  −12
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of f(x) = x2+1 and g(x) = −x2−1, respectively. Observe that f ′(x1) = m = g′(x2) and hence

that 2x1 = m = −2x2. So x2 = −x1. Therefore, y2 = −x2
2−1 = −(−x1)2−1 = −x2

1−1 = −y1.

Because y1 = mx1 + b and y2 = mx2 + b, we get y1 = mx1 + b and −y1 = −mx1 + b, and hence

that 2b = 0 and b = 0. Because m = 2x1, and (x1, y1) lies on the graphs of both y = mx and

y = x2 + 1, we get x2
1 + 1 = y1 = mx1 = 2x2

1. So x2
1 = 1 and hence x1 = ±1. When x1 = 1,

we get y1 = 12 + 1 = 2, x2 = −1 and y2 = −(−1)2 − 1 = −2. So the two points are (1, 2) and

(−1,−2), the points in the figure. When x1 = −1, we get y1 = (−1)2 + 1 = 2, x2 = 1, and

y2 = −12 − 1 = −2. So the other two points are (−1, 2) and (1,−2).

7.29. The facts to remember are these: If f ′(x) > 0 for all x in an interval I, then f(x) is increasing

over I; and if f ′(x) < 0 for all x in I, then f(x) is decreasing over I. If f ′(x) = 0, then

the graph of f has a horizontal tangent. Going from left to right: We see that the function

whose derivative has graph a is increasing, then suddenly decreasing, then suddenly increasing,

and then suddenly decreasing again. This is the pattern of graph (ii). The function whose

derivative has graph b is increasing, then has a horizontal tangent, then is decreasing, has

another horizontal tangent, then increases until it has another horizontal tangent, and it is

decreasing thereafter. This is the pattern of graph (iv). Similar considerations match graph

c with graph (iii) and graph d with graph (i).

7.30. i. It’s best to separate the two cases y0 > 0 and y0 < 0. We’ll do the second. The first is

similar. For y < 0, y = −(r2 − x2)
1
2 . So y′ = −1

2
(r2 − x2)−

1
2 (−2x) = x

(r2−x2)
1
2

. So the

slope of the circle at (x0, y0) is x0

(r2−x2
0)

1
2

= −x0

y0
.

ii. Let (x0, y0) be a point of tangency. Applying the answer above, we see that −x0

y0
= −1

3
.

So y0 = 3x0. Since (x0, y0) satisfies x2
0 + y2

0 = 1, we get x2
0 + (3x0)2 = 1 and hence

x0 = ± 1√
10

. Since (x0, 3x0) is on the tangent line, 3( ±1√
10

) = −1
3
( ±1√

10
) + b and it follows

that b = 3( ±1√
10

) + 1
3
( ±1√

10
) = 10

3
±1√

10
= ±

√
10
3

.

7.31. i. Because y = sin(x−1), we get y′ = cos(x−1) · (−x−2) = − cosx−1

x2 .

ii. Because sin2(cos 4x) = [sin(cos 4x)]2, we get

y′ = 2[sin(cos(4x))] · cos(cos 4x) · (− sin 4x) · 4 = −8(sin(cos 4x))(cos(cos 4x))(sin 4x).

iii. y′ = [(2 sinx)(cosx)] cosx−(sin2 x)(− sinx)
cos2 x

= 2 sinx cos2 x+sin3 x
cos2 x

iv. Because y = x sin(x−1), we get

y′ = sin(x−1) + x · cos(x−1) · (−x−2) = sin(x−1)− x−1 cos(x−1).

vi. y′ = sec2(3x) · 3 = 3 sec2(3x)

vii. y′ = −5(cos
√
x2 + 1)−6(− sin

√
x2 + 1)(1

2
)(x2 + 1)−

1
2 (2x) = 5x sin

√
x2+1

(x2+1)
1
2 cos6(

√
x2+1)

viii. y′ = 6(1 + sec3 x)5(3 sec2 x)(secx tanx) = 18 tanx(sec3 x)(1 + sec3 x)5

ix. y′ = sec2(x2) · (2x) + 2 tanx sec2 x = 2x sec2(x2) + 2 tanx sec2 x

x. y′ = 1
2
(1 + 2 tanx)−

1
2 (2 sec2 x) = sec2 x√

1+2 tanx

8



7.32. i. 6x cos(3x2 + 1)

ii. 2 sin(
√
t) · cos(

√
t) · 1

2
t−

1
2 + 2 cos(

√
t) · (− sin(

√
t)) · 1

2
t−

1
2 = 0

iii. sec2
√
u2 + 27u · 1

2
(u2 + 27u)−

1
2 · (2u+ 27)

iv. d
dx

sec2 x = 2(secx) · (secx)(tanx) = 2 sec2 x tanx

7.33. i. (cosα(t))α′(t)

ii. (− sin β(t))β′(t)

7.34. Note first that lim
θ→π

3

cos θ−0.5
θ−π

3
= lim

θ→π
3

cos θ−cos π
3

θ−π
3

. Since this is the derivative of the function cos θ

evaluated at θ = π
3
, this limit is equal to − sin π

3
= −

√
3

2
.

7.35. Because y′ = sec2 x, the slope of the tangent line is sec2 π
3

= 4. So its equation is y −
√

3 =

4(x− π
3
) or y = 4x− 4π

3
+
√

3.

7.36. i. Since x(t)2 = t2 = y(t), every point on the path of the point lies on the parabola

y = x2. This is a standard parabola rising from the origin. Since x(t) = t ≥ 0, the

point starts at the origin and moves up along the right side of the parabola with speed√
x′(t)2 + y′(t)2 =

√
1 + (2t)2 =

√
1 + 4t2. It’s initial speed is 1 and it moves faster and

faster with increasing t.

ii. Squaring both x(t) and y(t) we get x(t)2 = t2 and y(t)2 = 1 − t2 = 1 − x(t)2. So

x(t)2 + y(t)2 = 1 and it follows that the point moves on the circle x2 + y2 = 1. With

t = 0, x(0) = 0 and y(0) = 1. So the point starts at (0, 1) on the circle and moves

in the direction of the point (1, 0), arriving there when t = 1. Since x′(t) = 1 and

y′(t) = 1
2
(1 − t2)−

1
2 (−2t), the speed of the point at any time t with 0 ≤ t ≤ 1 is√

x′(t)2 + y′(t)2 =
√

1 + t2

1−t2 =
√

1
1−t2 . So the speed is 1 and time t = 0. The point

increases its speed and slams into the point (1, 0) with infinite speed.

iii. Since y(t) = cosx(t), for any t ≥ 0, the point moves on the curve y = cos x with x ≥ 0.

Since x′(t) = 1 its x-coordinate moves with constant speed. Since
√
x′(t)2 + y′(t)2 =√

1 + sin2 t. It follows that the speed of the point varies between 1 and
√

2.

7.37. i. Since x(t)2 + y(t)2 = 1, the point moves on the circle x2 + y2 = 1. When t = 0 the

point is at (1, 0). Since y(t) = sin t increases from 0 to 1 as t flows from t = 0 to

t = π
2
, the point moves from (1, 0) to (0, 1) during this time. The point continues its

counterclockwise motion around the circle. The speed of the point is constant because√
x′(t)2 + y′(t)2 =

√
sin2 t+ cos2 t = 1.

ii. This motion is a combination of the circular motion described in (i) and an outward

motion. Think of it this way. For any time t consider the point (x, y) given by x = cos t

and y = sin t as well as the ray from the origin through this point. To locate the position

(x(t), y(t)) of the moving point at time t observe that the distance between (x(t), y(t))

and the origin (0, 0) is
√

(x(t)− 0)2 + (y(t)− 0)2 =
√

(t cos t)2 + (t sin t)2 =
√
t2 = t. It

follows form (i) that the ray rotates counterclockwise at a constant rotational speed of

1. At the same time, the point moves outward on the ray, so that at any time t it is

9



a distance t from the origin. So the speed of the point on the ray is also constant and

equal to 1. The point’s path is the composite of the two motions: an outward spiral that

opens in a counterclockwise way. See figure (a). The speed of the point along this spiral

at any time t ≥ 0 is√
x′(t)2 + y′(t)2 =

√
(cos t− t sin t)2 + (sin t+ t cos t)2 =

√
1 + t2.

So at time t = 0, the point is at (0, 0) and has an initial speed of 1.

x

y

x

y

(a)            (b)

iii. The point’s motion is also a combination of two components. The ray behaves ex-

actly as before: it rotates counterclockwise at a constant rotational speed of 1. At the

start t = π, the point is positioned at ( 1
π
(−1), 0) and the ray goes through it (and

the origin). This time the distance from the point to the origin at any time t ≥ π is√
(x(t)− 0)2 + (y(t)− 0)2 =

√
(1
t

cos t)2 + (1
t

sin t)2 = 1
t
. So as the ray rotates, the point

moves closer and closer to the origin. See figure (b). So it moves toward the origin in a

spiral that grows ever smaller. The speed of the point along the rotating ray at any time

t ≥ π is
∣∣d
dt

1
t

∣∣ =
∣∣− 1

t2

∣∣ = 1
t2

. The speed of the point along its spiral is√
x′(t)2 + y′(t)2 =

√
(− 1

t2
cos t− 1

t
sin t)2 + (− 1

t2
sin t+ 1

t
cos t)2 =

√
1
t4

+ 1
t2

.

As our discussion already suggests, the point’s speed approaches 0 with increasing time.

7.38. Because y = (x2 + 2x+ 3)2, we get dy
dx

= 2(x2 + 2x+ 3)(2x+ 2). On the other hand, dy
du

= 2u

and du
dx

= 2x+ 2, so that

dy
dx

= dy
du
· du
dx

= 2u(2x+ 2) = 2(x2 + 2x+ 3)(2x+ 2)

as before. Finally, dy
dx

∣∣
x=1

= 2(1 + 2 + 3)(2 + 2) = (2)(6)(4) = 48.

7.39. Since the equation of the tangent line also involves an x and a y, let’s change the notation for

the coordinates of the point P to (x0, y0). Since f ′(x) = 10x−6x2, the slope of the tangent to

the curve at this point is 10x0 − 6x2
0. Since P = (x0, y0) is on the tangent line, the equation

of the tangent line is y − y0 = (10x0 − 6x2
0)(x− x0).
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7.40. Let (x, y) be a possible point of intersection. Since x and y satisfy both equations, x2 = 3x−4

so that x2 − 3x+ 4 = 0. By the quadratic formula, x = 3±
√

32−4·4
2

. Since
√
−7 does not exist

as a real number there can be no such x and hence there is no point of intersection. Since

the point (0,−4) is on the line, it follows that the line lies entirely below the parabola. Any

line parallel to the given line has an equation of the form y = 3x+ b. By moving it up, it will

touch the parabola at a point where the tangent of the parabola has slope 3. This happens

for 2x = 3 and hence x = 3
2
. The corresponding y coordinate is y = (3

2
)2 = 9

4
. So (3

2
, 9

4
) is the

point where the line touches the parabola.

7.41. The distance between any point (x, y) on the line y = 1
2
x+ 5 and the point (−4, 3) is√

(x− (−4))2 + (y − 3)2 =
√

(x+ 4)2 + ((−1
2
x+ 5)− 3)2 =

√
(x+ 4)2 + (−1

2
x+ 2)2

=
√

(x2 + 8x+ 16) + (1
4
x2 − 2x+ 4) =

√
5
4
x2 + 6x+ 20.

This expresses the distance between the points (x, y) and (−4, 3) as a function d(x) =√
5
4
x2 + 6x+ 20 of the x-coordinate of (x, y). The distance between (−4, 3) and the line

is determined by that point (x, y) on the line for which d(x) is a minimum. So we need to

find the x for which d(x) =
√

5
4
x2 + 6x+ 20 = (5

4
x2 + 6x + 20)

1
2 attains its minimum value.

This task involves the derivative

d′(x) = 1
2
(5

4
x2 + 6x+ 20)−

1
2 (5

2
x+ 6) =

2( 5
2
x+6)

( 5
4
x2+6x+20)

1
2

= 5x+12

( 5
4
x2+6x+20)

1
2
.

Since (−4, 3) is not on the line, (5
4
x2 + 6x+ 20)

1
2 is always positive. Notice that 5x+ 12 = 0

when x = −12
5

, and that this term is negative for x = −12
5

and positive for x > −12
5

. This

information about d′(x) tells us that d(x) reaches its minimum value at x = −12
5

. It follows

that the distance between (−4, 3) and the line y = −1
2
x+ 5 is

d(−12
5

) =
√

5
4
(−12

5
)2 + 6(−12

5
) + 20 =

√
36
5
− 72

5
+ 20 =

√
64
5

= 8√
5
.

The x that minimizes the function d(x) is also the x that minimizes the function d(x)2 =
5
4
x2 + 6x + 20. In terms of the calculus involved this function is more easily dealt with than

d(x). (This explains the last part of the hint.)

7.42. The term
(
f
g

)′
(3) is the derivative of the quotient of f(x)

g(x)
evaluated at x = 3. Since d

dx

(f(x)
g(x)

)
=

f ′(x)g(x)−f(x)g′(x)
g(x)2 , it follows that

(
f
g

)′
(3) = f ′(3)g(3)−f(3)g′(3)

g(3)2 = (−6)(2)−(4)(5)
4

= −8. By the chain

rule, (f(g(x)))′ = f ′(g(x)) · g′(x). Evaluating this at x = 3, we get f ′(g(3)) · g′(3) = f ′(2) · 5 =

(−3)(5) = −15.

7.43. This problem was already considered. See Problem 7.19i .

7.44. For the graphs of f(x) = sinx and f ′(x) = cos x refer to Figures 4.23 and 4.24 and ex-

tend/restrict the pattern to the interval [0, 4π]. The graph of g(x) = | sinx| is sketched below.

Its shape is explained by the fact that the absolute value makes things positive. The per-

haps instinctive response to say that g′(x) = | cosx| is wrong! Since g(x) = | sinx| = sinx

over the interval (0, π), it follows that g′(x) = cos x over (0, π). The fact that the graph of

g(x) = | sinx| repeats itself over the intervals (π, 2π), (2π, 3π), and (3π, 4π) means that the

11



4ππ 3π2π

g(x) =  sin x

x0

1

same is true for g′(x) as the graph below illustrates. Notice that g(x) = | sinx| is not differ-

π
–
2

5π
––
2

7π
––
2

g (x)

`

0 3π
––
2

x4ππ 3π2π

entiable at 0, π, 2π, 3π, and 4π.

7.45. As the question is phrased, the answer is that there are no such c and d because the d
√
x+ c

is differentiable only for x > 0. So we’ll add the condition x > 0 to the assumptions.

The discussion in Section 7.5 about the rules of differentiation tells us that y = cx2 + 12 is

differentiable for all x no matter what the constant c is. By the same discussion, y = d
√
x+ c

is differentiable for all x > 0 no matter what d is (but not for x ≤ 0). The remaining question

is this: For which c and d do the graphs of y = cx2 + 12 and y = d
√
x + c fit together in

such a way that the graph of f(x) is smooth at x = 1? The first thing we need is that the

two graphs are connected when x = 1 because the condition of differentiability implies that of

continuity. So we need to have lim
x→1+

(d
√
x+ c) = c ·12 +12. But this means that d+ c = c+12

and hence that d = 12. To ensure that the two pieces connect smoothly for x = 1, we’ll take

the derivatives y′ = 2cx of y = cx2 + 12 and y′ = 1
2
dx−

1
2 of y = d

√
x+ c and set them equal to

each other with x = 1. This gives us 2c = 1
2
d = 6 and hence c = 3. With c = 3 and d = 12,

the function f(x) is differentiable for all x with x > 0.

7.46. The graphs of the two functions y = x + 1 for x ≤ −1 and y = x− 1 for 1 ≤ x are sketched

in the figure below. Any function f(x) with −1 ≤ x ≤ 1 that completes these two functions

to one that is differentiable for all x needs to satisfy: Its graph must connect smoothly to

the graph of y = x + 1 at (−1, 0) and to the graph of y = x − 1 at (1, 0) and it must be

x

y

1−1

differentiable over the interval −1 < x < 1.
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i. There are infinitely many curves that can be drawn between the points (−1, 0) and (1, 0)

that have slope 1 at these two endpoints and that are smooth with nonvertical tangents

over −1 ≤ x ≤ 1. There is no limit on the number and variation of wiggles that such a

curve can have. One such curve is drawn into the figure above.

ii. A function of the form f(x) = ax3 + bx2 + cx + d with a, b, c, and d constants, has

derivative f ′(x) = 3ax2 + 2bx+ c. Other than the observation that polynomial functions

are differentiable, we need for f(x) to satisfy the four equations:

f(−1) = −a+ b− c+ d = 0, f(1) = a+ b+ c+ d = 0,

f ′(−1) = 3a− 2b+ c = 1, and f ′(1) = 3a+ 2b+ c = 1.

What’s left is to solve these equations for a, b, c, and d. Subtracting the third equation

from the fourth, tells us that 4b = 0 and hence that b = 0. So 3a + c = 1. Subtracting

the first equation from the second, gives us 2a+ 2c = 0, so that c = −a. It follows that

2a = 1, and hence that a = 1
2
. So c = −1

2
. Inserting the values for a, b, and c into the

second equation, we get 1
2

+ 0− 1
2

+ d = 0, so that d = 0. So f(x) = 1
2
x3 − 1

2
x.

iii. The graph of y = 0 lies on the x-axis. So instead of having a slope of 1 at (1, 0), the

graph of f(x) needs to have slope 0 at (1, 0). All the other requirements are the same

as before. In terms of a function of the form f(x) = ax3 + bx2 + cx + d with derivative

f ′(x) = 3ax2 + 2bx+ c, only the last equation is different. We now need to solve:

f(−1) = −a+ b− c+ d = 0, f(1) = a+ b+ c+ d = 0,

f ′(−1) = 3a− 2b+ c = 1, and f ′(1) = 3a+ 2b+ c = 0.

Subtracting the fourth equation from the third, we get −4b = 1, so that b = −1
4
. So

3a + c = 1
2
. As in the previous example, 2a + 2c = 0 so that a + c = 0. By another

subtraction, 2a = 1
2

and a = 1
4
. So c = −1

4
and using the second equation, 1

4
− 1

4
− 1

4
+d = 0.

Since d = 1
4
, the function f(x) is given by f(x) = 1

4
x3 − 1

4
x2 − 1

4
x+ 1

4
.

7.47. i. Note first that any polynomial function is continuous for all real numbers. So for the two

functions f(x) = x2 + x for x < 0 and g(x) = ax2 + bx + c where x ≥ 0 and a, b, and c

constants to splice together to a continuous functions for all real numbers, we only need

have lim
x→0−

(x2 + x) = g(0) = c and therefore that c = 0.

ii. The rules of differentiation referred to in Section 7.5 imply that any polynomial functions

is differentiable for all real numbers. So we only need to see to it that the two functions

splice smoothly at (0, 0). The derivative of y = x2 + x is dy
dx

= 2x+ 1 and the derivative

of y = ax2 + bx + c is dy
dx

= 2ax + b. For the two functions to splice smoothly at x = 0,

we need—in addition to c = 0—only that 2a · 0 + b = 1, so b = 1. Therefore any function

of the form g(x) = ax2 + x will satisfy the required differentiability. Since a can be any

constant, there are infinitely many such functions.

7.48. A typical graph of a differentiable function y = f(x) is sketched in the figure below. For a

given x and ∆x, the interval [x − ∆x, x + ∆x] is in the domain of the function. We have

assumed that ∆x > 0, but this is not essential. (By interchanging some minuses and pluses

13



the case ∆x < 0 can be handled in the same way.) Consider the two points (x−∆x, f(x−∆x))

and (x+ ∆x, f(x+ ∆x)) on the graph of the function and the line that they determine. The

slope of this line is equal to f(x+∆x)−f(x−∆x)
x+∆x−(x−∆x)

= f(x+∆x)−f(x−∆x)
2∆x

. Refer to the figure and let

∆x shrink to zero. It seems intuitively clear that in the process the line that the two points

x

y

xx−Δ x x+Δ x

y = f (x) (x−Δ x, f (x−Δ x))

(x+Δ x, f (x+Δ x))

determine should close in on the tangent line to the graph at (x, f(x)), so that

lim
∆x→0

f(x+∆x)−f(x−∆x)
2∆x

= f ′(x).

This equality can be verified analytically as well. Since f ′(x) = lim
∆x→0

f(x+∆x)−f(x)
∆x

and f ′(x) =

lim
∆x→0

f(x−∆x)−f(x)
−∆x

, it follows that

1
2
f ′(x) = lim

∆x→0

f(x+∆x)−f(x)
2∆x

and 1
2
f ′(x) = lim

∆x→0

f(x−∆x)−f(x)
−2∆x

= lim
∆x→0

−f(x−∆x)+f(x)
2∆x

,

so that f ′(x) = 1
2
f ′(x) + 1

2
f ′(x) = lim

∆x→0

f(x+∆x)−f(x)−f(x−∆x)+f(x)
2∆x

= lim
∆x→0

f(x+∆x)−f(x−∆x)
2∆x

.

Therefore f ′(x) = lim
∆x→0

f(x+∆x)−f(x−∆x)
2∆x

as asserted earlier.

7.49. This is done by rationalizing as follows:

lim
x→a

f(x)−f(a)√
x−
√
a

= lim
x→a

(f(x)−f(a))(
√
x+
√
a)

(
√
x−
√
a)(
√
x+
√
a)

= lim
x→a

(
√
x+
√
a)
(
f(x)−f(a)

x−a

)
= 2
√
af ′(a).

7.50. i. lim
x→−3

x2−x−12
x+3

= lim
x→−3

2x−1
1

= −7 .

ii. lim
x→1

x3−1
x2−1

= lim
x→1

3x2

2x
= 3

2
.

iii. lim
x→9

x2−81√
x−3

= lim
x→9

x2−81

x
1
2−3

= lim
x→9

2x
1
2
x−

1
2

= lim
x→9

4x · x 1
2 = (4)(9)(3) = 108.

iv. lim
s→4

s3−7s2+17s−20
s2−5s+4

= lim
s→4

3s2−14s+17
2s−5

= 9
3

= 3.

7.51. From the example, f(x) = x5 + x4 − x − 1 and g(x) = x3 + x2 − x − 1. Notice that 1 is a

root of both of these polynomials so that x− 1 divides both of them. (See segment 4E of the

Problems and Projects section of Chapter 4.) Dividing x− 1 into x5 + x4 − x− 1, we get the

result x4 + 2x3 + 2x2 + 2x + 1 and dividing x − 1 into x3 + x2 − x − 1, we get x2 + 2x + 1.
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After canceling the term x− 1 we see that x5+x4−x−1
x3+x2−x−1

= 2x4+2x3+2x2+2x+1
x2+2x+1

and hence that

lim
x→1

x5+x4−x−1
x3+x2−x−1

= lim
x→1

x4+2x3+2x2+2x+1
x2+2x+1

= 8
4

= 2.

7.52. By the Mean Value Theorem we know that there is a number c between 0 and 9 such that

f ′(c) = f(9)−f(0)
9−0

= 12
9

= 4
3
. Because f ′(x) = 1 + 1

2
√
x
, we need to solve 4

3
= 1 + 1

2
√
x

for x.

Doing so, we get 1
3

= 1
2
√
x
, so 2

√
x = 3, and hence x =

(
3
2

)2
= 9

4
.

7.53. i. Note that f(3) = 17 and f(7) = 9. Combining the fact that a differentiable function is

continuous with the intermediate value theorem (in Section 7.3) tells us that for every

number v with m ≤ v ≤M , where m and M are the minimum and maximum values of

f on [3, 7], there is a number u in the interval [3, 7] such that f(u) = v. Since m ≤ 9

and 17 ≤M , m ≤ 4π ≤M , there is a d in [3, 7] such that f(d) = 4π,

ii. The mean value theorem (of Section 7.6) with a = 3 and b = 7 informs us that there is

a c between 3 and 7 such that f(7) − f(3) = f ′(c)(7 − 3). Since 9 − 17 = −8 we get

4f ′(c) = −8 and hencef ′(c) = −2.

7.54. Treating y as a function of x and using some of the standard rules for differentiating, we get

i. g′(x) = y3 + x(3y2y′) = y3 + 3xy2y′

ii. h′(x) = 3
2
y−

1
2y′ + y + xy′

iii. k′(x) = 4y2−4x(2yy′)
y4 = 4y−2 − 8xy−3y′

iv. g′(x) = 4(4x+ y−
3
2 )3(4− 3

2
y−

5
2y′)

v. g′(x) = 2(2x2 + 3y
1
2 )(4x+ 3

2
y−

1
2y′).

7.55. i. Because f ′(x) = 3x2 − 3, the critical numbers are those x for which 3x2 − 3 = 0 for x.

So x = ±1.

ii. F ′(x) = 4
5
x−

1
5 (x−4)2 +x

4
5 (2(x−4)) =

4
5

(x−4)2+x(2x−8)

x
1
5

=
4
5

(x−4)2+2x(x−4)

x
1
5

=
(x−4)[ 4

5
(x−4)+2x]

x
1
5

=
(x−4) 1

5
(4x−16+10x)

x
1
5

= (x−4)(14x−16)

5x
1
5

.

It follows that the critical numbers are 0, 4, and 16
14

= 8
7
.

iii. Note that

T ′(x) = 2x(2x− 1)
2
3 + x2 2

3
(2x− 1)−

1
3 (2) = 2x(2x− 1)

2
3 + 4x2

3(2x−1)
1
3

= 6x(2x−1)+4x2

3(2x−1)
1
3

= 16x2−6x

3(2x−1)
1
3

=
16x(x− 6

16
)

3(2x−1)
1
3
.

So the critical numbers are 1
2
, 0, and 6

16
= 3

8
.

7.56. i. Because f ′(x) = 3x2 − 4x+ 1, the critical numbers are 4±
√

16−4·3
6

= 4±2
6

and hence x = 1
3

and x = 1. Take 0, 1
2
, and 2 as test points. Since f ′(0) = 1, f ′(1

2
) = 3

4
− 1 = −1

4
,

and f ′(2) = 5, we find that f is increasing over the intervals (−∞, 1
3
) and (1,∞) and

decreasing over (1
3
, 1). It follows that f has a local maximum value at 1

3
and a local

minimum value at 1.

ii. Check that f ′(x) = 4x3 − 12x2 − 16x = 4x(x2 − 3x − 4) = 4x(x − 4)(x + 1). So the
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critical numbers are −1, 0 and 4. Take −2,−1
2
, 1, and 5 to be the test points. Check that

f ′(−2) = (−8)(−6)(−1) = −48; f ′(−1
2
) = −2(−9

2
)(1

2
) = 9

2
, f ′(1) = 4(−3)(2) = −24,

and f ′(5) = 20(1)6 = 120. It follows that f is increasing over (−1, 0) and (4,∞), and

decreasing over (−∞,−1) and (0, 4). So f has local minima at −1 and 4 and a local

maximum at 0.

iii. Observe first that f(x) is defined only when 1 ≥ x2 or for −1 ≤ x ≤ 1. Note that

f ′(x) = (1− x2)
1
2 + x1

2
(1− x2)−

1
2 (−2x) = (1− x2)

1
2 − x2

(1−x2)
1
2

= 1−x2−x2

(1−x2)
1
2

= 1−2x2

(1−x2)
1
2
.

It follows that the critical numbers are ±1 and ± 1√
2
, so they are in increasing order:

−1, −1√
2
, 1√

2
, and 1. Because 1√

2
≈ 0.71 and −1 ≤ x ≤ 1, we take −0.8, 0, and 0.8 as test

points. Check that f ′(−0.8) < 0, f ′(0) > 0, and f ′(0.8) < 0. So f is decreasing over

(−1,− 1√
2
) and ( 1√

2
, 1) and increasing over (− 1√

2
, 1√

2
). Notice that f has a local minimum

at − 1√
2

and a local maximum at 1√
2
.

iv. For f(x) to be defined we need x ≥ x2. Observe that x < 0 is not possible and that

1 ≥ x if x ≥ 0. So the domain of f consists of the interval 0 ≤ x ≤ 1. Check that

f ′(x) = (x− x2)
1
2 + x1

2
(x− x2)−

1
2 (1− 2x) = (x− x2)

1
2 + x(1−2x)

2(x−x2)
1
2

= 2(x−x2)+x(1−2x)

2(x−x2)
1
2

= −4x2+3x

2(x−x2)
1
2

=
−4x(x− 3

4
)

2(x−x2)
1
2
.

So the critical numbers are 0, 3
4
, and 1. Because 0 ≤ x ≤ 1, we only need the test points

1
2

and 4
5
. Check that f ′(1

2
) > 0 and f ′(4

5
) < 0. Therefore f is increasing over (0, 3

4
) and

decreasing over (3
4
, 1). Hence f has a local maximum at 3

4
.

7.57. Let f(x) = x+ 1
x
. Check that f ′(x) = 1− 1

x2 . When x > 1, 1
x2 < 1, and hence f ′(x) = 1− 1

x2 > 0.

So f is increasing for x > 1. Because f ′(1) = 0, the graph of f has a horizontal tangent at

the point (1, 2). It follows that f is increasing over [1,∞). The verification of the inequality

follows from the definition of increasing function.

7.58. Consider the function f(x) = (1 + x)n − (1 + nx) for x ≥ 0. Differentiating, we get f ′(x) =

n(1 + x)n−1 − n = n[(1 + x)n−1 − 1]. So f ′(x) > 0 whenever x > 0. Therefore f(x) is an

increasing function for x > 0. Since f(0) = 0 it follows that f(x) > 0 for x > 0.

7.59. i. Since f ′(x) = 1− 2 cosx, the critical points are those x with 1− 2 cosx = 0 or cos x = 1
2
.

A look at Figure 4.24 tells us that x = π
3
. Take π

4
and π

2
as test points. Since f ′(π

4
) =

1 − 2
√

2
2

= 1 −
√

2 < 0 and f ′(π
2
) = 1 > 0, we know that f(x) is decreasing over (0, π

3
)

and increasing over (π
3
, π). There is a local minimum at π

3
.

ii. Check that f ′(x) = sinx + x cosx − sinx = x cosx. Because −π ≤ x ≤ π, the critical

numbers are −π
2
, 0, and π

2
. Take −3π

4
,−π

4
, π

4
, and 3π

4
as test points. By Figure 4.24,

f ′(−3π
4

) > 0, f ′(−π
4
) < 0, f ′(π

4
) > 0, and f ′(3π

4
) < 0. So the function f(x) is increasing

on (−π,−π
2
), decreasing on (−π

2
, 0), increasing on (0, π

2
), and decreasing on (π

2
, π). There

are local maxima at −π
2

and π
2
, and there is a local minimum at 0.

iii. Refer to Figure 4.26 and notice that f is not defined for x = −π
2

and x = π
2
. Check

that f ′(x) = 2 sec2 x − 2 tanx sec2 x = 2 sec2 x(1 − tanx) = 2(1−tanx)
cos2 x

. So the critical
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points occur when tanx = 1 and cosx = 0. Since tanπ
4

=
sinπ

4

cosπ
4

= 1, the graphs in

Figures 4.24 and 4.26 tell us that the only critical number is π
4
. (While cos π

2
= 0, π

2
is

not a critical number because f(x) is not defined at π
2
.) Take 0 and π

3
as test points.

Since f ′(0) = 1 > 0 and f ′(π
3
) =

2(1−tanπ
3

)

cos2 π
3

= 2(1−
√

3)

( 1
2

)2 < 0, f is increasing over (−π
2
, π

3
)

and decreasing over (π
3
, π

2
). There is a local maximum at π

3
.

iv. The derivative is g′(x) = cos x− sinx. By the discussion in Section 4.6, x = π
4

is the only

x with −π
2
≤ x ≤ π

2
such that cosx = sin x. So x = π

4
is the only critical number. Take

0 and π
3

as test points to see that g(x) is increasing on (−π
2
, π

4
) and decreasing on (π

4
, π

2
).

So f has a local maximum at π
4
.

7.60. i. Since f ′(x) = 2(x + 1), x = −1 is the only critical number. The values of f(x) at −1

and at the endpoints −2, 5 are f(−2) = 2, f(−1) = 1, and f(5) = 37. So the maximum

value of f is f(5) = 37 and the minimum value is f(−1) = 1.

ii. The derivative is f ′(x) = 3x2−12 = 3(x2−4). So the critical numbers are ±2. Evaluating

f at the critical numbers and also at −3 and 5, we get f(−3) = 10, f(−2) = 17, f(2) =

−15, and f(5) = 66. So the maximum value is f(5) = 66 and the minimum value is

f(2) = −15.

iii. The derivative is f ′(x) = 15x4 − 15x2 = 15x2(x2 − 1). So the critical numbers are −1, 0,

and 1. Evaluating f at the required points, we get f(−2) = −57, f(−1) = 1, f(0) =

−1, f(1) = −3, and f(2) = 55. So the maximum value is f(2) = 55 and the minimum

value is f(−2) = −57.

iv. Check that the derivative is f ′(x) = −x√
9−x2 . So the only critical number in [−1, 2] is

0. Evaluating the function at x = −1, 0 and 2, we get f(−1) =
√

8, f(0) = 3, and

f(2) =
√

5. So the maximum value is f(0) = 3 and the minimum value is f(2) =
√

5.

7.61. The derivative of f(x) = x2 − x + 6 is f ′(x) = 2x − 1 = 2(x − 1
2
). So f ′(x) = 0 only when

x = 1
2
. Notice that f ′(x) < 0 for x < 1

2
and f ′(x) > 0 for x > 1

2
. It follows that the minimum

value of f(x) = x2− x+ 6 occurs when x = 1
2
. This minimum value is f(1

2
) = 1

4
− 1

2
+ 6 = 53

4
.

By completing the square for x2 − x+ 6, we get x2 − x+ (1
2
)2 − (1

2
)2 + 6 = (x− 1

2
)2 + 53

4
. A

look at this last expression confirms that it attains its smallest value when x = 1
2

and that

this smallest value is 53
4
.

7.62. Because y2 = b2

a2 (a2 − x2), the upper right corner of the rectangle is the point (x, b
a

√
a2 − x2)

with x > 0. The area of the rectangle is equal to A(x) = (2x)
(
2 b
a

√
a2 − x2

)
= 4 b

a
x(a2− x2)

1
2 .

We are looking for the value of x for which the function A(x) attains its maximum value.

Differentiating A(x), we get A′(x) = 4 b
a

[
(a2 − x2)

1
2 + x · 1

2
(a2 − x2)

− 1
2 (−2x)

]
. By taking

common denominators, A′(x) = 4b
a

[
a2−x2−x2

(a2−x2)
1
2

]
= 4b(a2−2x2)

a(a2−x2)
1
2
. The value x = a can be ignored

because A(x) = 0 in this case. Notice that A′(x) = 0 when x = a√
2
. When x < a√

2
, then

x2 < a2

2
. So 2x2 < a2 and hence A′(x) > 0. When x > a√

2
, then x2 > a2

2
. So 2x2 > a2, and this

time A′(x) < 0. It follows that A(x) is increasing to the left of x = a√
2

and decreasing to the

right. Therefore x = a√
2

gives us the maximum we are looking for. This maximal rectangle
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has base 2 · a√
2

=
√

2a and height 2 b
a

√
a2 − a2

2
= 2 b

a

√
a2

2
= 2√

2
b =
√

2 b. Its area is 2ab.

7.63. The y-coordinate of the point in the first quadrant where the circle and the rectangle meet

y =
√
r2 − x2.

i. The volume of a cylinder is equal to the area of its circular base times its height, so that

the volume is V (x) = (πx2)(2y) = 2πx2
√
r2 − x2. The domain of this function is [0, r].

ii. The derivative of V (x) is

V ′(x) = 2π
(
2x(r2 − x2)

1
2 + x2 1

2
(r2 − x2)−

1
2 (−2x)

)
= 2π

(
2x(r2 − x2)

1
2 − x3

(r2−x2)
1
2

)
= 2π

(2x(r2−x2)−x3

(r2−x2)
1
2

)
= 2πx

(
2r2−3x2

(r2−x2)
1
2

)
.

Since neither x = 0 nor x = r provides a maximum (because V (x) = 0 in either case),

the only remaining possibility occurs when 3x2 = 2r2, or x =
√

2
3
r. So x =

√
2
3
r gives

us the maximum volume.

iii. Because V
(√

2
3
r
)

= 2π 2
3
r2
√
r2 − 2

3
r2 = 4

3
πr2
√

1
3
r2 = 4

3
√

3
πr3, this is the maximum

volume that an inscribed cylinder has. So the ratio of the volumes is
4
3
πr3

4
3
√

3
πr3 =

√
3.

7.64. Let d be the length of the segment. The large right triangle has base x + a and hypotenuse

d and the lower right triangle has base x and hypotenuse
√
x2 + b2. By similar triangles,

d
a+x

=
√
x2+b2

x
. So

d = (a+ x) 1
x
(x
√

1 + b2x−2) = (a+ x)
√

1 + b2

x2

and we have expressed d = d(x) as a function of x with x > 0. Let D(x) = d(x)2 =

(a+ x)2
(
1 + b2

x2

)
. Differentiating, we get

D′(x) = 2(a+ x)
(
1 + b2

x2

)
+ (a+ x)2(−2b2

x3 )

= 2(a+ x)
(x3+xb2−(a+x)b2

x3

)
= 2(x+a)(x3−ab2)

x3 .

So D′(x) = 0 only when x = (ab2)
1
3 . The fact that D′(x) is not defined at x = 0 can be

ignored. (Why?) That x = (ab2)
1
3 gives us the minimal D(x) can be confirmed by noticing

that D′(x) < 0 when x < (ab2)
1
3 and that D′(x) > 0 when x > (ab2)

1
3 . It remains to notice

that the x that provides the minimal D(x) also provides the minimal d(x). For x = (ab2)
1
3 ,

we get

d(x) = (a+ (ab2)
1
3 )
√

1 + b2

(ab2)
2
3

= (a+ (ab2)
1
3 )

√
1 + b(2−

4
3 )

a
2
3

= (a+ (ab2)
1
3 )
√

1 + ( b
a
)

2
3 .

This is the shortest that d can be.

7.65. Refer to Figure 7.56. With x and y the dimensions of the base and h the height of the box, of

and note that xyh = a3. So y = a3

hx
= a3

h
x−1. Refer to Figure 8.34 and note that the surface

area of the box is 2hx + 2hy + 2yx. Substituting y = a3

h
x−1, gives the surface area as the

function

S(x) = 2hx+ 2ha
3

h
x−1 + 2a

3

h
x−1x = 2hx+ 2a3x−1 + 2a

3

h
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of x. The question now is this: For which x does S(x) attain its minimum value?

The answer requires the analysis of the derivative S ′(x) = 2h − 2a3x−2 = 2hx
2−a3

x2 . Since

hx2 = a3 implies that x =
√

a3

h
, it follows that

√
a3

h
is a critical number of S(x). (It is the

only critical number because S(x) is not defined at 0.) So the focus is on x =
√

a3

h
. Does

this provide the minimum we are looking for? That it does can be seen from the following

observation. If the substitution x =
√

a3

h
makes hx2 − a3 equal to 0, then substituting any x

smaller than
√

a3

h
must make hx2−a3 negative, and substituting any x larger than

√
a3

h
must

make hx2 − a3 positive. It follows that S ′(x) = 2hx
2−a3

x2 is negative for x <
√

a3

h
and positive

for x >
√

a3

h
. So S(x) is increasing on the left of x =

√
a3

h
and decreasing on its right. So

as asserted, S(x) has its minimum value when x =
√

a3

h
. Substituting this value of x into

y = a3

h
x−1 gives y = a3

h
(a

3

h
)−

1
2 = a3

h
a−

3
2

h−
1
2

= a
3
2

h
1
2

=
√

a3

h
. So the base of the box with minimal

surface area is a square. What is the height of this box?

7.66. i. Since f(x) = ex
1
2 , we get f ′(x) = ex

1
2 · d

dx
x

1
2 = ex

1
2 · 1

2
x−

1
2 = e

√
x

2
√
x
.

ii. g′(x) = e−5x(−5) cos 3x+ e−5x(− sin 3x) · 3 = e−5x(−5 cos 3x− 3 sin 3x)

iii. dy
dx

= ex+ex d
dx

(x+ ex) = ex+ex(1 + ex)

iv. f ′(x) = 2xex + x2ex = (2x+ x2)ex

v. dy
dx

= ex
2

+ xex
2 · 2x = (1 + 2x2)ex

2

vi. dy
dx

= e
1

1−x2 d
dx

(1− x2)−1 = e
1

1−x2 (−1)(1− x2)−2(−2x) = 2xe
1

1−x2

(1−x2)2

vii. dy
dx

= sec2(e3x−2) d
dx
e3x−2 = sec2(e3x−2) · e3x−2 · 3 = 3e3x−2 sec2(e3x−2)

viii. dy
dx

= (ex−e−x)(ex−e−x)−(ex+e−x)(ex+e−x)
(ex−e−x)2 = e2x+e−2x−2−(e2x+e−2x+2)

(ex−e−x)2 = −4
(ex−e−x)2

7.67. i. The slope of the tangent is dy
dx

evaluated at x = 1. Because dy
dx

= 2xe−x + x2(−e−x) =

(2x−x2)e−x, this value is 2e−1− e−1 = e−1 = 1
e
. By the point-slope form of the equation

of a line, we get that the tangent has equation y − 1
e

= 1
e
(x− 1) or y = 1

e
x.

ii. Observe that y′ = 2e2x− 3e−3x and y′′ = 4e2x + 9e−3x. Therefore by substituting, we get

y′′ + y′ − 6y = 4e2x + 9e−3x + 2e2x − 3e−3x − 6e2x − 6e−3x = 0.

iii. The solution is a matter of recognizing a pattern in the flow of consecutive derivatives

of f(x):

f ′(x) = e−x + x(−e−x) = −(x− 1)e−x

f ′′(x) = −e−x + (x− 1)e−x = (x− 2)e−x

f ′′′(x) = e−x − (x− 2)e−x = −(x− 3)e−x

f (4)(x) = −e−x + (x− 3)e−x = (x− 4)e−x

f (5)(x) = e−x − (x− 4)e−x = −(x− 5)e−x

f (6)(x) = −e−x + (x− 5)e−x = (x− 6)e−x
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Two patterns have emerged, one for the odd derivatives, the other for the even derivatives.

Following it, we see that the one hundredth derivative of f(x) is (x− 100)e−x. Provide

a more definitive solution by using the principle of mathematical induction (developed

in segment 3E of Section 3.8).

iv. Let f(x) = ex + x. Because f(0) = 1 and f(−1) = 1
e
− 1 = 1−e

e
< 0, it follows by the

intermediate value theorem and the continuity of the function f that f(x) = 0 for some

x with −1 < x < 0.

v. Starting with the graph of ex,

x

y

we get the graphs of e−x and 3− ex, see below, after thinking a little.

x

y

xx

y

vi. g′(x) = exx−ex
x2 = ex(x−1)

x2 . Observe that g′(x) = 0 precisely when x = 1. Notice that

g′(x) < 0 when 0 < x < 1 and that g′(x) > 0 when x > 1. So g(x) = ex

x
is decreasing to

the left of x = 1 and increasing to the right of x = 1. So g has its absolute minimum at

x = 1. The absolute minimum value is g(1) = e.
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7.68. Clarity is added by plotting the graphs of the inverse functions 2x < ex < 10x (see Figures 7.39

and 7.40 for instance) and then to reflect these about the line y = x.

7.69. i. log2 x+ 3 log2(x+ 1) + 1
4

log2(x− 1) = log2 x+ log2(x+ 1)3 + log2(x− 1)
1
4

= log2 x(x+ 1)3(x− 1)
1
4 .

ii. 1
3

lnx− 4 ln(2x+ 3) = lnx
1
3 − ln(2x+ 3)4 = ln x

1
3

(2x+3)4 .

7.70. i. 2log2 x = 23, so x = 23 = 8.

ii. ln 2x
2−5 = ln 3, so (x2 − 5) ln 2 = ln 3. Hence x2 − 5 = ln 3

ln 2
. Therefore x = ±

√
5 + ln 3

ln 2
.

iii. ln 5x
2−1 = ln 2, so x2 − 1 = ln 2

ln 5
, and x = ±

√
1 + ln 2

ln 5
.

iv. ln 4x
2+1 = ln 3, so x2 + 1 = ln 3

ln 4
and x2 = ln 3

ln 4
− 1. Because ln x is an increasing function,

ln 4 > ln 3. Hence ln 3
ln 4

< 1. It follows that x2 < 0, impossible. So the equation has no

solution. (This is also evident from its first formulation.)

v. From log9(4x2 − 11) = 7, we get 9log9(4x2−11) = 97 and hence 4x2 − 11 = 97. So 4x2 =

4,782,969 + 11 = 4,782,980, and therefore x2 = 1,195,745. So x ≈ ± 1093.5.

vi. Since log5(log5 x) = 6, we get 5log5(log5 x) = 56 and hence log5 x = 56. Therefore, 5log5 x =

(5)56
and hence x = (5)56

= 515625.

vii. From basic properties of ln x, we get ln[(x + 6)(x − 3)] = ln[5 · 7]. By applying the

exponential function ex to both sides, we get (x+ 6)(x− 3) = 35. So x2 + 3x− 18 = 35

and hence x2 + 3x− 53 = 0. Thus, by the quadratic formula, x = −3±
√

9+212
2

= −3±
√

221
2

.

viii. From the given equation ln x−2
x+1
− ln x−3

x+1
= 1. So ln

(
x−2
x+1

/
x−3
x+1

)
= 1 and hence

ln
[
x−2
x+1
· x+1
x−3

]
= 1. It follows that ln x−2

x−3
= 1. Therefore, x−2

x−3
= eln x−2

x−3 = e and hence

x− 2 = e(x− 3). So (e− 1)x = 3e− 2 and x = 3e−2
e−1

.

ix. Observe first that 3x − 2 > 0 since ln(3x − 2) needs to be defined. So x > 2
3
. Because

ex is an increasing function, 3x − 2 = eln(3x−2) ≤ e0 = 1. Therefore 3x ≤ 3 and hence

x ≤ 1. It follows that 2
3
< x ≤ 1.

x. From 4x − 2x+3 + 12 = 0 we get (22)x − 2x · 23 + 12 = 0, so (2x)2 − 8 · 2x + 12 = 0. Let

y = 2x. Since y2− 8y+ 12 = (y− 2)(y− 6) = 0, we get y = 2x = 2 or y = 2x = 6. Taking

log2 of both sides, x = log2 2x = log2 2 or log2 6. So x = 1 or x = log2 6.

7.71. i. We need 1− x > 0. So 1 > x.

ii. We need both t ≥ 0 and t2 − 1 > 0. So t ≥ 0 and t2 > 1. Hence t > 1.

7.72. i. For lnx to make sense we need x > 0. Because cos θ makes sense for any θ, the domain

of f(x) is {x |x > 0}. Note that f ′(x) = − sin(lnx) · 1
x
. The considerations above tell us

that the domain of f ′(x) is also {x |x > 0}.

ii. For f(x) to make sense, we need 2−x−x2 > 0 or x2 +x−2 < 0. Note that x2 +x−2 =

(x+ 2)(x− 1) = 0 when x = −2 or 1. Consider the x-axis and take −3, 0, and 2 as test

points to see that x2 + x− 2 < 0 precisely when −2 < x < 1. So the domain of f(x) is

{x | − 2 < x < 1}. Check that f ′(x) = −1−2x
2−x−x2 = 2x+1

x2+x−2
. Since the domain of f ′(x) can
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be no larger than the domain of f(x) (this follows from the definition lim
∆x→0

f(x+∆x)−f(x)
∆x

of f ′(x)), it follows that the domain of f ′(x) is also {x | − 2 < x < 1}.

iii. For f(x) to make sense we need both x ≥ 0 and x − 1 ≥ 0, so we need x ≥ 1. For

ln(
√
x−
√
x− 1) to make sense, we must have

√
x >
√
x− 1. Since x > x− 1, this is so

for x ≥ 1. So the domain of f(x) is {x |x ≥ 1}. Because f(x) = ln(x
1
2 − (x− 1)

1
2 ),

f ′(x) =
1
2
x−

1
2− 1

2
(x−1)−

1
2

x
1
2−(x−1)

1
2

=
1

2
√
x
− 1

2
√
x−1√

x−
√
x−1

.

So only x = 1 has to be excluded from the domain of f(x) is {x |x ≥ 1} and it follows

that the domain of f ′(x) is {x |x > 1}.

iv. We need x4 + 3x2 > 0 for f(x) to make sense. For x4 + 3x2 = x2(x2 + 3) > 0 all we need

to have is x 6= 0. So the domain of f(x) is {x |x 6= 0}. By one of the laws of logarithms,

f(x) = log11(x4 + 3x2) = ln(x4+3x2)
ln 11

. So

f ′(x) = 1
ln 11

(
4x3+6x
x4+3x2

)
.

It follows that {x |x 6= 0} is also the domain of f ′(x).

v. For f(x) to be defined we need x+ 3x2 > 0. Because x+ 3x2 = x(1 + 3x), this is so for

x > 0. If x < 0, we need to have 1 + 3x < 0, to get x(1 + 3x) > 0. But 1 + 3x < 0 means

that 3x < −1 and hence x < −1
3
. So the domain of f(x) is{
x | x < −1

3
or 0 < x

}
.

Because f(x) = ln(x + 3x2)
1
2 , we get f ′(x) =

1
2

(x+3x2)−
1
2 (1+6x)

(x+3x2)
1
2

. Because x + 3x2 > 0 for

all x in the domain of f(x), the domain of f ′(x) is the same as that of f(x).

7.73. i. y′ = lnx+ x · 1
x

= lnx+ 1 and y′′ = 1
x
.

ii. Because d
dx

loga x = 1
ln a
· 1
x

for any base a, y′ = 1
ln 10
· 1
x

= 1
ln 10
· x−1 and y′′ = −1

ln 10
x−2.

iii. y′ = secx tanx+sec2 x
secx+tanx

= secx(tanx+secx)
secx+tanx

= secx = (cosx)−1 and y′′ = −(cosx)−2(− sinx) =
sinx

cos2 x
= (secx)(tanx).

7.74. i. Because g(x) = (ln x)
1
2 , we get g′(x) = 1

2
(lnx)−

1
2 · 1

x
= 1

2x
√

lnx
.

ii. f ′(t) = 1
ln 7
· 1
t4−t2+1

(4t3 − 2t) = 4t3−2t
(ln 7)(t4−t2+1)

.

iii. f ′(x) = ex · lnx+ ex · 1
x
.

iv. h′(t) = 3t2 − (ln 3)3t.

iv. Let g(x) = xsinx. Since d
dx

lnxsinx = d
dx

(sinx · lnx) = cosx · lnx + sinx
x

, we get by

logarithmic differentiation, that g′(x) = ( d
dx

lnxsinx)g(x) = (cos x · lnx+ sinx
x

)xsinx.

7.75. f ′(x) = lnx+ x · 1
x

= lnx+ 1. If lnx > −1, that is if x = elnx > e−1 = 1
e
, then f ′(x) > 0 and

if lnx < −1, that is if x = elnx < e−1 = 1
e
, then f ′(x) < 0. So f(x) is decreasing to the left of

x = 1
e

and increasing to the right. It follows that f(x) has its absolute minimum value when

x = 1
e
. This value is f(1

e
) = 1

e
· ln 1

e
= 1

e
ln(e−1) = −1

e
.

7.76. The line determined by (1, 1) and (x0,
1
x0

) has slope
1− 1

x0

1−x0
=

x0−1
x0

1−x0
= − 1

x0
. So y−1 = − 1

x0
(x−1)
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is an equation of the line. A little algebra converts it to y = − 1
x0
x + (1 + 1

x0
). To find the

area under this line and over the interval [1, x0], notice first that the line intersects the x-axis

when − 1
x0
x + (1 + 1

x0
) = 0, hence when 1

x0
x = 1 + 1

x0
and therefore at x = x0 + 1. A look at

Figure 7.57a, informs us that the area under the line and over [1, x0] is the difference

1
2
[(1 + x0)− 1](1)− 1

2
[(1 + x0)− x0] 1

x0
= 1

2
(x0 − 1

x0
)

between two triangles. Since x0 > 1, lnx0 is the area under y = 1
x

over interval [1, x0]. A look

at Figure 7.57a confirms that lnx0 <
1
2
(x0− 1

x0
) and also, when x0 ≈ 1, that lnx0 ≈ 1

2
(x0− 1

x0
).

Taking x0 = 2, we get ln 2 < 1
2
(2− 1

2
) = 1

2
· 3

2
= 3

4
= 0.75. A calculator tells us that ln 2 ≈ 0.693.

If lnx0 ≈ 1
2
(x0− 1

x0
) for x0 much greater than 1, then lnx0 ≈ 1

2
x0. But this is not the case

for large x0 as Figure 7.57b illustrates.

7.77. The verifications combine the inverse relationship between the log and exponential function

and the rules for exponents from Section 7.10.

i. Set loga x1 = u1 and loga x2 = u2. By the inverse relationship that connects the log and

exponential functions, au1 = x1 and au2 = x2. Since x1x2 = au1au2 = au1+u2 , it follows

that

loga(x1x2) = u1 + u2 = loga x1 + loga x2.

ii. Again let loga x1 = u1 and loga x2 = u2. As in part (i), au1 = x1 and au2 = x2. Since
1
x2

= a−u2 , we have x1

x2
= au1a−u2 = au1−u2 . Therefore

loga
x1

x2
= u1 − u2 = loga x1 − loga x2.

iii. Let loga x1 = u1. So au1 = x1 and hence au1x3 = (au1)x3 = xx3
1 . So by the inverse

relationship, loga(x
x3
1 ) = u1x3 = x3u1 = x3 loga x1.

7.78. Set y = loga x1 = logb x2. So ay = x1 and by = x2. Therefore (ab)y = x1x2, and hence

logab x1x2 = y.

7.79. The x can be any real number, but it is fixed for the entire discussion. The answer to “Why?”

is given by the inverse relationship between the exponential function “e” and the log function

“ln”. So we need to show that ln
(

lim
n→∞

(
1 + x

n

)n)
= x. With h = x

n
,

ln
(

lim
n→∞

(
1 + x

n

)n)
= ln

(
lim
h→0

(
1 + h

) x
h
)

so it remains to show that ln lim
h→0

(1 + h)
x
h = x.

We will proceed somewhat differently and more simply than the outline proposes. The

use of the theorem proved in Problem 7.15 is key. It says the following about the composite

y = f(g(x)) of two functions. If lim
x→c

g(x) = b and if f is continuous at b, then

lim
x→c

f(g(x)) = f(lim
x→c

g(x)) = f(b).

Note first that since x is fixed, the function f(z) = zx is continuous for all z > 0. (In Example

7.44 the function f(x) = xr for x > 0 was shown to be differentiable—and hence continuous—

for any real number r.) Next let g(h) = (1 + h)
1
h and observe (as a consequence of the limit

definition of e developed in Section 7.10) that lim
h→0

g(h) = lim
h→0

(1+h)
1
h = e. So by the theorem,
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lim
h→0

(1 + h)
x
h = lim

h→0

[
(1 + h)

1
h

]x
=
[

lim
h→0

(1 + h)
1
h

]x
= ex.

Therefore
ln lim

h→0
(1 + h)

x
h = ln ex = x

and we are done.

The approach outlined in the text makes similar use of the theorem. The continuity of the

natural log allows lim
h→0

to be moved past ln in the expression ln(1 + h)
x
h with the result that

lim
h→0

ln(1 + h)
x
h = ln

(
lim
h→0

(1 + h)
x
h

)
. This leaves lim

h→0
ln(1 + h)

x
h . By a basic property of logs,

lim
h→0

ln(1 + h)
x
h = lim

h→0

x
h
· ln(1 + h) = x · lim

h→0

ln(1+h)
h

. It remains to observe that lim
h→0

ln(1+h)
h

=

lim
h→0

ln(1+h)−ln(1)
h

and that this is nothing but the derivative d
dx

lnx = 1
x

evaluated at x = 1.

Since this is equal to 1, we have again verified that ln
(

lim
n→∞

(
1 + x

n

)n)
= x. Notice that it is

the differentiability of the natural log at 1 that is needed, not just the continuity.

7.80. Recall that coshx = 1
2
(ex+e−x). A look at the graph of y = coshx in Figure 7.46 tells us that

cosh 0 = 1
2
(1+1) = 1 is the smallest value of the function y = coshx. So y = sechx = 1

coshx
has

its largest value sech(0) = 1 at x = 0. Since lim
x→±∞

coshx =∞ we know that lim
x→±∞

sechx = 0.

Since y = coshx is always positive, the same is the case for y = sechx. The combination

of these observations has the consequence that the graph of y = sechx has the form that

Figure 7.48 already depicts. The graphing calculator

https://www.desmos.com/calculator

and Example 7.48 inform us that the points of inflection of the graph occur for x ≈ ±0.881.

The graph of y = coth x = coshx
sinhx

= 1
tanhx

is next. We see from the graph of y = tanh x in

y = coth x
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Figure 7.47 that lim
x→0+

cothx = +∞ and lim
x→0−

cothx = −∞. Since −1 < tanhx < 0 for

all negative x and lim
x→−∞

tanhx = −1, we know that cothx < −1 for all negative x and

lim
x→−∞

cothx = −1. Since 0 < tanhx < 1 for all positive x and lim
x→−∞

tanhx = 1 we

find in the same way, that cothx > 1 for all positive x and lim
x→−∞

cothx = 1. Combin-

ing this information, we get the graph of y = cothx sketched above. It is also drawn with

https://www.desmos.com/calculator.

Finally to the graph of y = cschx = 1
sinhx

. From the graph of y = sinhx, lim
x→0+

cschx = +∞
and lim

x→0−
cschx = −∞. We also see that lim

x→+∞
cschx = 0 and lim

x→−∞
cschx = 0. Since

y = sinhx is increasing over the interval (0,+∞), y = cschx is decreasing over this interval.

An analogous thing is true for (−∞, 0). So y = csch x has the shape shown in the figure

below. The graphing calculator https://www.desmos.com/calculator provides the specifics.

y = csch x

7.81. Since sinh x
2

= e
x
2−e−

x
2

2
,

(sinh x
2
)2 =

(
e
x
2−e−

x
2

2

)2
= (e

x
2 )2−2(e

x
2 )(e−

x
2 )+(e−

x
2 )2

4
= ex−2+e−x

4
= 1

2
( e
x+e−x

2
− 1)

and therefore sinh2 x
2

= 1
2
(coshx− 1). The equality cosh2 x

2
= 1

2
(coshx + 1) is verified in the

same way.

To verify the last identity, we’ll take a detour that will illustrate more of the similarities

between the properties of the hyperbolic and trigonometric functions. We’ll start by verifying

the sum formulas

sinh(x+ y) = sinh x · cosh y + coshx · sinh y and

cosh(x+ y) = cosh x · cosh y + sinhx · sinh y
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of Example 7.47. Both involve nothing but straightforward multiplication of exponentials. In

the first case,(
ex−e−x

2

)(
ey+e−y

2

)
+
(
ex+e−x

2

)(
ey−e−y

2

)
= ex+y+ex−y−e−x+y−e−x−y

4
+ ex+y−ex−y+e−x+y−e−x−y

4

= 2ex+y−2e−x−y

4
= ex+y−e−x−y

2
.

The sum formula for cosh follows in the same way. By dividing the sum formula for sinh by

the sum formula for cosh, we get

tanh(x+ y) = sinh(x+y)
cosh(x+y)

= sinhx·cosh y+coshx·sinh y
coshx·cosh y+sinhx·sinh y

= sinhx·cosh y+coshx·sinh y

(coshx·cosh y)(1+ sinh x·sinh y
cosh x·cosh y

)

= sinhx·cosh y

(coshx·cosh y)(1+ sinh x·sinh y
cosh x·cosh y

)
+ coshx·sinh y

(coshx·cosh y)(1+ sinh x·sinh y
cosh x·cosh y

)

= sinhx

(coshx)(1+ sinh x·sinh y
cosh x·cosh y

)
+ sinh y

(cosh y)(1+ sinh x·sinh y
cosh x·cosh y

)
= tanhx+tanh y

1+(tanhx)(tanh y)
.

Applying this addition formula for tanh with x
2

in place of both x and y provides the last of

the analogues that the solution of Problem 7.81 calls for.

7.82. Refer to Example 7.48 for the fact that d2

dx2 sechx = (sechx)(2 tanh2 x − 1). The calculator

http://web2.0calc.com shows that (sechx)(2 tanh2 x − 1) ≈ −0.000374 for x = 0.881 and

(sechx)(2 tanh2 x− 1) ≈ 0.000626 for x = 0.882. So the graph of y = sechx is concave down

for x = 0.881 and concave up for x = 0.882 and it has a point of inflection for some x with

0.881 < x < 0.882. By another such calculation, the graph of y = sech x is concave up for

x = −0.882 and concave down for x = −0.881 and it has a point of inflection for some x with

−0.882 < x < −0.881. Check that this information is consistent with Figure 7.48.

7.83. At x = 1, 2, 3, 4, 5, 10, 15, 20 the values of f(x) = x2 and g(x) = 2x are 1, 4, 9, 16, 25, 100,

225, 400 and 2, 4, 8, 16, 32, 1024, 32,768, 1,048,576, respectively. So from 1 to 5 the values

of the two functions are close, but thereafter, the values of g(x) = 2x far outpace those of

f(x) = x2. Their graphs were already sketched in Figures 7.13 and 7.40.

7.84. Consider the function f(x) = 2x2 − x4 = x2(2 − x2). By the discussion about symmetry in

Section 7.13 the graph of the function is symmetric about the y-axis.

i. Notice that f(x) ≥ 0 when x2 ≤ 2 and that this is case precisely for −
√

2 ≤ x ≤
√

2.

ii. Since f ′(x) = 4x − 4x3 = 4x(1 − x2), the critical numbers are −1, 0, and 1. Choose

−2,−1
2
, 1

2
, and 2 as test points. Since f ′(1

2
) = 2(3

4
) > 0 and f ′(2) = 8(−3) < 0, f(x)

is increasing over the interval (0, 1) and decreasing over (1,+∞). The symmetry of the

graph tells us that f(x) is increasing over over (−∞,−1) and decreasing over (−1, 0).

iii. For a large negative x both factors of the product f ′(x) = 4x(1 − x2) are positive and

large. As x moves toward x = −1 the factors continue to be positive, but both get

smaller and at x = −1 one of the factors is zero so that f ′(−1) = 0. At x = 1 one of

the factors is zero, so that f ′(1) = 0. For x > 1 and increasing one factor is positive

the other negative so that the product f ′(x) is increasing negatively. It follows that for

x > −1, the tangent lines have positive slope, but that their steepness decreases with

increasing x until at x = 1 the tangent is horizontal. In the same way, the tangent is

horizontal at x = 1 and becomes steeper negatively as x ≥ 1 increases.
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iv. From f ′(x) = 4x − 4x3, it follows that f ′′(x) = 4 − 12x2 = −4(3x2 − 1). So f ′′(x) = 0

for x = ± 1√
3
≈ ±0.58. The relevant intervals are (−∞,− 1√

3
), (− 1√

3
, 1√

3
), and ( 1√

3
,∞).

Using x = −1, 0, and 1 as test points, we conclude that the graph of f(x) = 2x2 − x4

over these intervals is concave down, up, and down again, respectively.

v. The graph of f(x) = 2x2 − x4 is now easy to sketch. Use the information above and

plot a few points. The graphing calculator https://www.desmos.com/calculator provides

the figure below. In reference to the discussion in Section 7.13 about dominant terms,

notice that x2 dominates the graph for x with |x| < 1 (the smaller |x|, the greater the

dominance) and that −x4 dominates the graph for x with |x| > 1 (the larger the |x|, the

greater the dominance).

7.85. Solving f(x) = 3x
2
3 − x2 = 0 for x, we get x2 = 3x

2
3 , hence x

4
3 = 3, and therefore that

x = ±3
3
4 ≈ ±2.28. So the graph crosses the x-axis at the points (±3

3
4 , 0) ≈ (±2.28, 0). The

derivative f ′(x) = 2x−
1
3 −2x = −2x−

1
3 (x

4
3 −1) = −2(x

4
3−1)

x
1
3

is zero for x = ±1 and is undefined

for x = 0. Since f(±1) = 3− 1 = 2, the graph has horizontal tangents at the points (±1, 2).

Since f(−x) = f(x) for any x, the graph is symmetric with respect to the y-axis. So

it is enough to analyze the graph for x < 0. For x < −1, the term x
1
3 is negative and

x
4
3 = (x

1
3 )4 > 1, so that f ′(x) = −2(x

4
3−1)

x
1
3

is positive. For −1 < x < 0, x
1
3 is still negative and

x
4
3 = (x

1
3 )4 < 1, so that f ′(x) = −2(x

4
3−1)

x
1
3

is negative. The closer x moves to zero, the larger

negatively f ′(x) becomes. It follows that for x < 0 the graph increases to the left of x = −1,

has a horizontal tangent at x = −1 and then decreases more and more steeply to a vertical

tangent at x = 0.
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The second derivative is f ′′(x) = −2
3
x−

4
3 − 2 = −2

(
1

3x
4
3

+ 1
)
. So the second derivative

is negative except at x = 0 where it is not defined. So the graph is concave down over the

intervals (−∞, 0) and (0,+∞). The information collected above confirms that the graph of

f(x) = 3x
2
3 − x2 provided by Figure 7.58c (the graph below on the left) is correct. The graph

from https://www.desmos.com/calculator (below on the right) is more precise confirmation.

7.86. We’ll develop basic relevant information about the nine functions.

(1) For g(x) = x3 − 3x, we have g′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x + 1)(x − 1). So the

graph of g(x) is increasing over (−∞,−1) and (1,∞) and decreasing over (−1, 1). It has

horizontal tangents at the points (−1, 2) and (1,−2). The slope of its tangent line at

(0, 0) is −3. The only graph that satisfies all these properties is (b).

(2) For g(x) = x3, we see that g′(x) = 3x2 and g′′(x) = 6x. It follows that the graph

is increasing throughout and that it concave up over (−∞, 0) and concave down over

(0,∞,−1). The slope of its tangent at (0, 0) is zero. The only graph that satisfies all

these properties is (a).

(3) For g(x) = x3−1 the derivatives are g′(x) = 3x2 and g′′(x) = 6x. So the graph of g(x) is

increasing, goes through (0,−1), and its tangent has slope zero there. Graph (g) is the

only possibility.

(4) The function g(x) = x3 + x has g′(x) = 3x2 + 1 and g′′(x) = 6x. Again the graph is

increasing throughout and its tangent at (0, 0) has slope 1. The information corresponds

to graph (c).

(5) The function g(x) = x3 + 4x has g′(x) = 3x2 + 4 and g′′(x) = 6x. Once more the graph

is increasing throughout and its tangent at (0, 0) has slope 4. This matches graph (h).

(6) The function g(x) = x3 + x2 has g′(x) = 3x2 + 2x = 3x(x + 2
3
) and g′′(x) = 6x + 2.

The graph has horizontal tangents at the points (0, 0) and
(
− 2

3
, 4

27

)
. There is a point of

inflection for x = −1
3

with the graph concave down to the left of x = −1
3

and concave up

to the right. Note that (e) is the only possibility.
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(7) The function g(x) = x3 − x has g′(x) = 3x2 − 1 = 3(x2 − 1
3
) and g′′(x) = 6x. The graph

has horizontal tangents for x = ± 1√
3

and its tangent has slope −1 at (0, 0). This fits

graph (i).

(8) For g(x) = x3 − 2x, we have g′(x) = 3x2 − 2 = 3(x2 − 2
3
). So the graph has horizontal

tangents at x = ±
√

2
3

and the tangent at (0, 0) has slope −2. Graph (f) matches this.

(9) The function g(x) = x3 − x2 has g′(x) = 3x2 − 2x = 3x(x − 2
3
) and g′′(x) = 6x − 2.

The graph has horizontal tangents at the points (0, 0) and
(

2
3
,− 4

27

)
. There is a point of

inflection for x = 1
3

with the graph concave down to the left of x = 1
3

and concave up to

the right. Graph (d) agrees with this information.

7.87. i. If the line x = 3 were to be a vertical asymptote of the graph of f , then lim
x→3−

f(x) = ±∞
or lim

x→3+
f(x) = ±∞ (or both). But this is not the case because lim

x→3−
f(x) = lim

x→3−
g(x) = 5

6

and lim
x→3+

f(x) = lim
x→3+

g(x) = 5
6
.

ii. For any x < −3, we have x + 3 < 0 and x + 2 < 0, so that x+2
x+3

> 0. On the other

hand, for any x > −3, we have x + 3 > 0 and x + 2 < 0, so that x+2
x+3

< 0. That

lim
x→−3−

x+2
x+3

= ±∞ and lim
x→−3+

x+2
x+3

= ±∞ is clear. Using what was just observed, we now

know more precisely that

lim
x→−3−

x+2
x+3

= +∞ and lim
x→−3+

x+2
x+3

= −∞.

So x = −3 is a vertical asymptote of f(x) = x2−x−6
x2−9

. Because f(x) is defined for all x

except x = ±3 it is the only vertical asymptote. The fact that lim
x→±∞

x+2
x+3

= lim
x→±∞

1+ 2
x

1+ 3
x

= 1

tells us that y = 1 is a horizontal asymptote for the graph.
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iii. By the quotient rule, g′(x) = (x+3)−(x+2)
(x+3)2 = 1

(x+3)2 and by the chain rule g′′(x) = −2
(x+3)3 .

(Note the incorrect double minus in the text’s formulation of g′′(x).) Because 1
(x+3)2 > 0

for all x, the graph is increasing both to the left and right of its vertical asymptote

x = −3. For x < −3, x + 3 < 0, so that g′′(x) > 0. For x > −3, x + 3 > 0, so that

g′′(x) < 0. So the graph is concave up for x < −3 and concave down for x > −3. Since

g(x) is not defined at x = −3 there is no point of inflection. The above graph of the

function was drawn with https://www.desmos.com/calculator.

7.88. Setting f(x) = 1
2
x2 − 1 = 0, we get 1

2
x2 = 1 and hence x2 = 2. So x = ±

√
2 are the roots

of 1
2
x2 − 1. Let’s see what Newton’s method gives us. Note that f ′(x) = x. Starting with

c1 = 2, we get

c2 = 2− f(2)
f ′(2)

= 2−
1
2
·22−1

2
= 2− 1

2
= 3

2

c3 = 3
2
− f( 3

2
)

f ′( 3
2

)
= 3

2
−

1
2

( 3
2

)2−1
3
2

= 3
2
− 2

3
· 1

2
· 9

4
+ 2

3
= 1.4167

c4 = 1.4167− f(1.4167)
f ′(1.4167)

= 1.4167− 0.0025 = 1.4142.

Checking with a calculator that
√

2 = 1.414213562 . . . we see that Newton’s method has

already closed in on the root
√

2 to within the required four decimal place accuracy. This

should mean that c5 = 1.4142 rounded to four decimal places. Let’s check. Because c4 =

1.4142,

c5 = 1.4142− f(1.4142)
f ′(1.4142)

= 1.414213562 . . . .

So c5 turns out to be an approximation of
√

2 that is accurate not only up to four, but in

fact, up to nine decimal places.

7.89. We get f ′(x) = 3x2 + 2x− 7. Starting with c1 = 3 gives us

c2 = 3− f(3)
f ′(3)

= 3− 8
26

= 2.6923

c3 = 2.6923− f(2.6923)
f ′(2.6923)

= 2.6923− 0.9175
20.1300

= 2.6467

c4 = 2.6467− f(2.6467)
f ′(2.6467)

= 2.6467− 0.0183
19.3085

= 2.6458

c5 = 2.6458− f(2.6458)
f ′(2.6458)

= 2.6458− 0.0009
19.2924

= 2.64575335.

This agrees with c5 when rounded off. So the process is finished.

Refer to segment 4E of Section 4.7. From the fact that f(−1) = −1 + 1 + 7 − 7 = 0, it

follows that x+ 1 divides x3 + x2 − 7x− 7. Doing the division x+ 1 |x3 + x2 − 7x− 7 we

get that x3 +x2− 7x− 7 = (x+ 1)(x2− 7). So the roots are −1 and x = ±
√

7. So c6 can only

be an approximation of
√

7. Because
√

7 ≈ 2.645751311, this is indeed so.

7.90. We get f ′(x) = 3x2 + 2x+ 7. Starting with c1 = 3 gives us

c2 = 3− f(3)
f ′(3)

= 3− 64
40

= 1.4000

c3 = 1.4000− f(1.4000)
f ′(1.4000)

= 1.4000− 21.504
15.6800

= 0.0286

c4 = 0.0286− f(0.0286)
f ′(0.0286)

= 0.0286− 7.2010
7.0597

= −0.9914

c5 = −0.9914− f(−0.9914)
f ′(−0.9914)

= −0.9914− 0.0687
7.9658

= −1.00002437.
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The convergence is to the root −1 of x3 + x2 + 7x+ 7. By dividing x3 + x2 + 7x+ 7 by x+ 1,

we get x3 + x2 + 7x+ 7 = (x+ 1)(x2 + 7). It follows that x = −1 is the only root of f(x).

7.91. i. The generic graphs below illustrate the convergence of Newton’s method in each case.

a b

c

c1c2 a bc

c1c2

(a)        (b)

ii. Two more generic graphs illustrate the convergence of Newton’s method.

a b

c

c1
c2 a bc

c1 c2

(a)        (b)

iii. In the two situations below, the point that the second iteration produces ends up far

outside the interval [a, b]. Depending on the behavior of the graph “out there” anything

a bc

c1

a bc

c1

(a)        (b)
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can happen. For instance, the process may converge to a solution d of f(x) = 0 that

satisfies one of the conditions (i) and (ii) above (if there is such a d).

7.92. The function f(x) = x4 − 3x2 + 2 has derivative f ′(x) = 4x3 − 6x = 4x(x2 − 3
2
) and second

derivative f ′′(x) = 12x2 − 6 = 12(x2 − 1
2
).

Since the solutions of f ′(x) = 0 are x = −
√

3
2
, 0, and

√
3
2
, the graph has horizon-

tal tangents at the three points listed. Taking test points in each of the four intervals

(−∞,−
√

3
2
), (−

√
3
2
, 0), (0,

√
3
2
), and (

√
3
2
,∞), say −2,−1, 1, and 2, we see that f ′(−2) < 0,

f ′(−1) > 0, f ′(1) < 0, and f ′(2) > 0, so that the graph of f(x) is decreasing over the first of

these intervals, increasing over the second, decreasing over the third, and increasing over the

last.

The points of inflection occur for x = ±
√

1
2
. Picking as test points −1, 0, and 1 in the inter-

vals (−∞,−
√

1
2
), (−

√
1
2
,
√

1
2
), and (

√
1
2
,∞), respectively, we see that f ′′(−1) > 0, f ′′(0) < 0,

and f ′′(1) > 0. Therefore the graph of f(x) is concave up over the first and third of these

intervals and concave down over the second. The graph of f(x) = x4−3x2 + 2 sketched above

was drawn with https://www.desmos.com/calculator.

7.93. For the guess c1 = 3 first case of Problem 7.91i applies to show that Newton’s method

converges to the root
√

2 of f(x).

For c1 =
√

3
2
, there is a horizontal tangent. This horizontal tangent intersects the graph

at (−
√

3
2
,−1

4
) so that Newton’s method goes nowhere.

For c1 = 1.1, we get c2 = 1.1 − f(1.1)
f ′(1.1)

= 1.1 − −0.1659
−1.2760

≈ 0.9700. Since the graph of f(x)

is increasing and concave up over the interval [c2, 1], the first case of Problem 7.91ii tells us
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that Newton’s method will converge to the root 1 of f(x). The same observation applies to

c1 = 0.9.

Finally, c1 = 0.1. The slope of the tangent to the graph of f(x) at (0.1, 1.9701) is f ′(0.1) =

4(0.1)3−6(0.1) = −0.5960. So this tangent line has equation y−1.9701 = −0.5960(x−0.1) or

y = −0.5960x+0.0596+1.9701 = −0.5960x+2.0297. Setting y = 0, we get 0.5960x = 2.0297

and hence x = c2 ≈ 3.4055. We are now in the same situation as the case c1 = 3.

The site http://keisan.casio.com/exec/system/1244946907 carries out Newton’s method for any

differentiable function f(x).

We’ll close the set of solutions for Chapter 7 by returning to Example 7.14 and the question

of the convergence of the sawtooth pattern depicted in Figure 7.24 to the origin (both from the

left and the right). The answer that this is so was provided to me by my Notre Dame colleague

Laurence Taylor. His argument follows. It is much more subtle than one might have expected.

Let y = x2 and pick a point (s, s2) in the first quadrant. Pick a positive slope m. There are two

generic problems to solve.

1. Pick any point (t0, t
2
0), t0 > 0 and find the intersection of the line of slope m with the x-axis.

This is the line y = mx+ (t20 −mt0), so that the x-coordinate of the point is

u0 = t0

(
1− t0

m

)
.

As long as m > t0, we have

0 < u0 < t0. (1)

Let’s suppose hereafter that m > s.

2. Start with any point (w0, 0), w0 > 0 and run the line of slope −m through this point up to

the point (v0, v
2
0) on y = x2 in the first quadrant. Since this line is y = −mx + mw0, we get

v2
0 = −mv0 +mw0 or v2

0 +mv0 −mw0 = 0. Therefore

v0 =
−m±

√
m2 + 4mw0

2
.

If we were to take the minus sign we would be in the second quadrant so

v0 =
−m+

√
m2 + 4mw0

2
.

Note that

0 < v0 < w0, (2)

since m2 < m2 + 4mw0 < (m+ 2w0)2. Note also that

v2
0 = m(w0 − v0) (3)

which also proves w0 > v0.
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Now define the sequences {an}∞n=0 and {bn}∞n=0 inductively as follows.

• a0 = s, b0 = u0 computed with t0 = s.

• For n > 0, an+1 = u0 computed with t0 = bn.

• For n > 0, bn = v0 computed with w0 = an.

From (1) we see that an+1 < bn, and from (2) it follows that bn < an. Since a0 = s is greater

than an, n > 0 and bn for all n, m > an and m > bn for all n. It further follows that an > 0 and

bn > 0 for all n. The sequence (an, 0) are the points of the sawtooth on the x-axis and the sequence

(bn, b
2
n) are the points on the parabola. Note that

0 < · · · bn < an < bn−1 < · · · b0 < a0 = s < m.

Hence 0 6 lim an = lim bn. From equation (3) above

lim b2
n = m lim(an − bn).

Hence lim b2
n = 0 and since lim bn exists, lim bn = 0. Finally lim an = lim bn = 0.
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