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Solutions to Problems and Projects for Chapter 7

V7 — x to make sense, we need 7—2 > 0 or 7 > z. So the domain of f(z)is {z |z < 7}.
r Vo +5 to make sense, x + 5 > 0. So the domain of g(z) is {z | x > —5}. For h(z) to
make sense, both f(z) and g(z) must make sense. So the domain of h(x) is {z | -5 < x < 7}.

These expression make sense as long as the denominators are not zero. By the quadratic

formula, 22 — 3z + 2 = 0 precisely when x = w = 3i1 .Sox =1or z = 2. Since

3+ 2? — 2z = x(z® + x — 2), we need to check When P+ — 2 = 0. Using the quadratic

—1+4/12-41.(-2) _ _j43 B B
== .Sox=-2o0rx=1.

formula again, we see that this is so for x = 5

3z — 4 to be defined, we must have 3z —4 > 0. So =z > % and hence the domain of
f(x)is {x | © > 3}. For /2z — 3 to make sense, 2z — 3 needs to be greater than or equal to
0. So 2z — 3 > 0 and hence the domain of g(z) is {z | z > 2}. Note that for z > 2, both f()
and g(x) are defined. For k(z) to make sense, we also need g(x) # 0. So the domain of k(z)
is {z | x> 3}.

In the case of f(x), we need both x+6 > 0 and 3 > vV +6.S0z>—6and 9> x+6. Hence
x > —6 and 3 > 2. So the domain of f(z) is {x | —6 < x < 3}. For g(z) to make sense, we
have to have % > 0. Soeitherz+3>0andz—5>0;orx+3<0and z—5<0. So
x > 5 or x < —3. Hence the domain of g(z) is {z | + < =3 or = > 5}.

i lim (2 4+ 1)(2* + 42) = (5)(12) = 60.

r—2

.o . z—2 -1 1
i lm s = s =

iii. im /2 + 7 =vV4+2=+6.

r—4

. : 22—x+12 _ 9—3+12 _ 18 __
v. };3; T3 T 343 T 6 =

i. Notice that in the limit lim 2=2+12
x——3 z+3

goes to 0. So the ratio becomes larger and larger. It does not close in on a finite

, the numerator goes to 24 while the denominator

number, so that there is no limit. Because the numerator goes to 24 in each case,
lim :c2—z+12 _
T——3" z+3

—o00 and lim %——I—oo
r——31

ii. This is a limit of “8” type. So we are looking for a cancellation. Because 22 — 2 — 12 =
(x + 3)(x —4), we see that lim % = lim &Y _ jig (z — 4) = —7. The

r——3 +3 r——3 z+3 r——3
2z—1

— = —7 tells us that L'Hospital’s rule gives the same answer.

observation that lim
r——3

iii. This is another limit of “9” type. It is solved with a cancellation: tliml :271 li Jim ((tt; _11)) =
o

l1m1 t = —1. Since thml 3{;—1 = %2 = —1, L’Hospital’s rule provides the same answer.
_)_

L _ iy 322

-1 }}Lq %

also be determined via a cancellation. After checking that 2% — 1 = (z — 1)(2* + 2 + 1),

(z—1)(z24x+1) x24x41 3

(—1)(z+1) :il_rﬁ z+1 2"

. .. .. «0» y . s 3 T
iv. This is a limit of “3” type. By L’Hospital = 3. This limit can

observe that lim
z—1



v. By rationalizing, factoring, and canceling,
z2— z2— T 72— z—9)(z+9)
ﬁ%:wﬂ'?Ig— 8L/ +3) = E=0E (/1 3) — (24 9) (VT +3).

So lim £==¢ f 8L — hm(m +9)(\/Z + 3) = 108. Because lim —21 = lim 422 = 4(3%) = 108,
xr—9

z—9 1 3 2‘ z—9

L’Hospital’s rule gives the same result.

. : ..  VIE3z+1 _ a(VIF3z+1) \/@H =
vi. By rationalizing, 7= = mm— Ursen T (o1 - So }}L% = e
s V/IF3x+l 2 : 1 _ 2 12
L%Tx = £. Since iﬂm = 31613% 5(1+3z)2 = 3, we get the same thing
with L’Hospital’s rule.
. 4- f 4—Vs AtVs _ 16— s _ s -1 _
vii. By rationalizing, — = 5016 Irvs — (5—16)(41f) 4+\f So hm6 6 — 515?6 s =
—<. What answer does L’Hospital’s rule provide?
viii. The limit hm lz=2| 2' does not exist. To see this, check that lim 2= ;l = lim L_;) =—1.
-2 *7 z—2— T z—2— T
This is so, because for x < 2, we get z — 2 < 0, so that |z — 2| = —(z — 2). Show in a
xX— 2 2 -~ X
similar way that lim ‘i:;' = 1. Since the limit from the left is not equal to the limit

r—>2
from the right, hm z does not exist.

ix. This limit is a “%” limit that can be solved by a cancellation:
lim (=220 iy A210m425-25 gy AACL0) gy (- 10) = —10.
h—0 h—0 h—0 h—0
Replacing h by Az we see that (h—z)i—zs = (M_A‘r’f_zs. It follows that hi% % =
Alirno %. For f(x) = 2%, we see that f'(z) = hmO W = Ahrn0 %
T— — T—
It follows that the earlier limit is equal to the derivative f/'(z) = 2z evaluated at x = —5.

So it is f'(—5) = —10.

x. After letting # = x and h = Ax, notice that this limit is the derivative of the function

f(z) = sinz evaluated at © = . Since f'(x) = cosx and f’(7) = cosm = —1, the value
of this limit is —1.
7.7. Because lim f(z) =5 and lim g(x) = 3, we see that lim @) 5 . Similarly, lim 2f(@)
z—a T—a a—a 9 ) a—a 9@)—f(z)
2% = 45 = —5. In the situation lim #@3}@) = 22 = 10 = —5 notice that the numerator

goes to 10 and the denominator goes to zero. So the limit does not exist.

7.8. For (i), we need to check that the continuity criterion is satisfied for ¢ = 5. Because f(5) =
14++52-9 = 1+ 16 = 5, we know that f(5) makes sense. In view of the fact that
il_}Hi flz) = glgli% (1++vV22-9) =1+ +16 = 5 = f(5), the continuity criterion is satisfied. So
f(z) is continuous at ¢ = 5. In case (ii), we need to check the continuity criterion for ¢ = 4.

> =2, g(x) is defined at z = 4. Since lim g(z) = lim 5% = 2 = g(4),

z—4 T4

Because g(4) = 55— = 5221

the criterion is met. So g(x) is continuous at ¢ = 4.



7.9. For 6;3;1;11 to make sense we need only for 622 + x — 1 to be non-zero. By the quadratic

formula, 622 + 2 — 1 = 0 When r = livlﬁ = ’%5 = —% or % So the domain of
G(z) = 6;”;:;31 is {z | z # —1 and © # } For \/ﬁ to make sense we need z > —1. So

the domain of H(x) = \/l% is {x | © > —1}. That G(z) is continuous on its domain follows
from Remark 7.2. That H(z) is continuous on its domain follows from Example 7.8 and two
applications of the continuity theorem. First to the composite of the functions f(x) = /z
and g(x) = z + 1, and then to the quotlent Wlth f(z)=1and g(z) = Vo + 1.

7.10. That the functions cx + 1 and cz? — 11 are contlnuous for any constant ¢ follows from Re-
mark 7.1. (Notice that the constant ¢ plays different roles in the remark and in the statement
of the problem.) For the function f(x) to be continuous, its graph must be in one connected

piece. In view of what was already said, this will be so precisely if the graphs of cx 4+ 1 and
1

cr? — 1 meet when = = 3. So we need to have 3¢+ 1 =9¢ — 1. So 6c:2andc:§.

7.11. We know from Remark 7.2 that the function # is continuous, except when z = 4 where

it is not defined. If lurr}1 w = 6, then the definition f(4) = 6 will close the gap in the

2?—=20-8 _ i, =)@+
z—4 _}}Eﬁ z—4

f(z) is continuous at x = 4 and hence for all . Notice that f(z) and g(x) = z+ 2 are exactly

graph. Because l1rr}1 = lini(x + 2) = 6, the gap is indeed closed. So
T—

the same function?

7.12. The first and third graphs are most easily sketched after observing that g(z) = x when x # —3
and that j(z) = (x_i)# = x + 3 when x # 4. The three holes in the graph occur for the
values of x for which the corresponding functions are not defined. By replacing the function
g(x) by ¢g1(x) = z for all < 0, the function j(x) by ji(z) = x 4+ 3 for all 1 < x, and then

defining the function y = f(x) by f(x) = g1(x) =z for x <0, f(z) = h(z) for 0 < z < 1, and

f(z) = ji(x) for 1 < x, the three holes are filled in, so that y = f(z) is continuous for all x.

7.13. Let f(x) = 223 + 2% + 2. Because f(—2) =2(—2)3+(-2)*+2=—-16+4+2=—10 < 0 and
f(=1) =2(-13+ (-1)>+2=-24+1+2=1> 0, it follows from the intermediate value



7.14.

7.15.
7.16.

7.17.

7.18.

7.19.

theorem that there exists some z in the interval (—2, —1) such that f(z) = 223 + 2% +2 = 0.

If m and M are the minimum and maximum values of f on [—1,1], then m <2 <3 < M.
So by the intermediate value theorem, there is, for any number v with 2 < v < 3, a number
u between —1 and 1 such that f(u) = v. Since e lies between 2 and 3, we get the x we need.

Enough detail has already been supplied.

Enough detail has been supplied.

i.

iii.

iv.

1 1
: edhs s . Tim L (1 1\ . 13y L oz—(z+Az) i 1 Az
AI;IEIEO Az o Alggo Az(m—l—Am r) - Alirgo Az (z+Az)z AlglgIEO Az (z+Azx)z
— e
AI:IEIEO (:v—l—Ax)x x2 X
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Az—0
1 1
: (z+Az)2 22 1 1 1 2?—(z+Az)® 1 2?—2?—2zxAz—(Ax)?
Al‘,lplilo Az Aliﬁ() Aw((r+Aw) 272) - Aliﬁ() Az (r+Aw)2x - Alirilo Az (z+Az)2x2
. 1 —2zAz—(Az)? —2r—Ax _ -2z _ o, -3
o Alglcrilo Az (z+Ax)?2z2 A]’;IEO (z4+Az)2z2 — z* T 2r
. (x+Az)— —2——(z—2) 2 : 1 2z—2(z+Ax)
lim rise = = lim Az — —2)) = lim = (Ar — =—+—
A0 Az AIHOA ( (1+A:E x)) Az—0 A:v( (z+Ax)x )
= lim - (Ar—-—=222) = lim (14+—2+)=1+2 =1+222
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_ _1

We saw in Section 7.4 that the definition of the derivative of a function y = f(z) has the two
formulations

ii.
iii.

iv.

o) =t FEEAD) ZF@) @) = ),

Az—0 Az T—C €r—C

. Take the function f(x) = z? and use the first formula to write down what f’(5) means.

Take the function f(x) = y/z and use the first formula to write down what f’(1) means.
Take the function f(x) = 2 and use the second formula to write down what f/(1) means.

Take the function f(x) = +/1+4 2 and use the first formula to write down what f’(0)
means. Then change notation.

. The negative part of the graph of f(z) = z? — 9 of Figure (a) is made positive by

reflecting it as shown in Figure (b) to obtain the graph of g(x) = |22 —9|. The derivative
of f(x) = 2®> — 9 is f'(z) = 2x. This is also the derivative of y = g(x) for x < —3 and
x> 3. For —3 < z < 3 the function y = g(z) is the same as y = —(22—9) = —22+9. So
the derivative of g(z) = |z — 9| for —3 < x < 3 is —2x. The graph of f'(x) = 2z is the



ii.

7.20. i
ii.
iii.

iv.

|x%- 9|

(@) (b)
-9

the line y = 2. The graphs of ¢/(z) is the indicated combination of the lines y = 2z and
y = —2x. The sharp corners at + = —3 and = = 3 tell us that g(x) is not differentiable
there.

The graph of f(z) = |z| coincides with that of y = —z for x < 0 and with y = x for
x> 0. So f'(x) =—1for x <0 and f'(z) =1 for x > 0. Since the graph of f(z) = |z|

y=-1

comes to a sharp point at x = 0, the function is not differentiable for x = 0.

Since f’(z) = 3z?, the tangent has slope f'(—2) = 12 and equation y + 8 = 12(z + 2).
Since ¢'(z) = % % the tangent has slope ¢'(—3) = 9% and equation (y—33) = %(m+3)
Since f'(z) = = 2, the tangent has slope f’(——) = 9 and equation y+3 = 9(.7:—1— ).
Since f'(z) = = —1—3, the tangent has slope f'(—2) = Z and equation y — }1 =
1(z +2).



7.21. i
ii.
iii.

iv.

vi.

vii.

viii.

7.22. 1.
ii.

iii.

iv.

vi.

vii.

viii.

ix.

7.23. 1

ii.

iii.

7.24. Converting the equation x—2y = 1 into slope-intercept form, we get 2y = r—1 or y = %x—l.

f'(x) =0

For g(z) = z2 — 2272, ¢/(z) = %:U’% +a”
fl(x) =14z =5

Fory = h(z) = g, ¥ = 30 3+ 37z
L g(x)=-32"%+3

G'(z) = 2222 — 7) + (2% +1)2 = 42 — 14w + 222 + 2 = 622 — 142 + 2

(
(

/ _da—z2 _ —2x(1+2?)—(a—22)2z _ —2zx(1+2’4a—2z3) _ —22(14a)
) =i = (1122)2 1ta2) = (1ra2)2
For s = g(t) = t5(t +2) = t5 + 2t5, & = 45 4 2475,
Fory = h(z) = ey, =L + 22 + 1) = —(a* + 22 + 1) (42® + 22).

c W= (293 4 425)5(Ta® + 92 10) 1

dx
= [6(22% +42°)%(622 +2021)) (728 +9210) 1 + (223 4 425)5[11 (728 +921°)10(5627 4+-902)]

) = §(1—a?)72(22) = 2(1 —a?) "2

Because y = —t= = (9 — 42)72, we get —g — (9 —4x)"2 + z[—3(9 — Az)~2(—4)] =
N _1 N _3 _ (9—4x)+2x _ _9-2
(9 —4x)"2 4+ 22(9 — 4a) "2 (974@% )]
[5(:):2+4x+6)4(21+4)](x3+4:1:5) — (22 +4z+6)° [ (x3+42°)~ 7(3x2+20x )]
Fl(x) = 34425 :
1
Because s(t) = 4/ g—ﬂ = (gﬂ) 4 we find that

3 L2043 1\_ (43 2 NS¢ L 3
s(t) = 1 (55) w2 = 1) ete] = 3 (6)  whe -

& fla(h(@)) = f'(g(h(x))) - (g(h(x))) = f'(g(h(x))) - ' (h(2)) - I'(x).
Because ¢'(r) = —3x?, the slope of the tangent to the graph at the point (0,1) is

¢'(0) = 0. By the point-slope form of the equation of a line, the equation of the tangent
lineis y—1=0(x—0) or y = 1.

Because I/ (z) = —1(2z — 1)72(2) = ﬁ, we see that h'(—1) = (:32)2 = —2. By the
point-slope form, the equation of the tangent line is y + % = —%(x +1) or y = —%x — g.

1(2(;:?;)92”(1) = (1:3)2, we see that the slope of the tangent line is ﬁ =
%3 = —%. By the point-slope form of the equation of a line, we get that the equation of

the tangent is y —2 = —3(z —6) or y = —3z +4.

Because y =

2

So % is the slope of the line. Next, we need the point on the graph of f(z) = 22 — 1 with the

property that the tangent at that point has slope =.
r =

1. Because f'(x) = 2z, this occurs when

. So the point is ( ,f(}l)) = (}1, ——) The equation we are looking for is that of the

6



7.25.

7.26.

7.27.

7.28.

i 1 By the point-slope form of the equation of a line we get

e 2
_ (1) _ 1/ _ 1 5 _1.._ 1 —1._ 17
Yy ( 16) = 2(x 4) or y+ 15 =3¢ — 3 or, finally, y = 52 — 1.

line through ( —%) with slope

For the graph of f(z) = 22* — 32 — 6z + 87 to have a horizontal tangent, we need to have
f'(x) = 62° — 62 — 6 = 0. By the quadratic formula, 6(z> — 2 — 1) = 0 for z = £/,

For y = 623 4 5x — 3 to have a tangent line of slope 4, the derivative 3’ = 1822 +5 must be
equal to 4. But 4 = 182% + 5 implies that 22 = —1—18 and this is impossible.

. . . o . _ 1 2 .
A reformulation of the question is this: For what point on the graph of y = ;52* will the

tangent line hit the point (10, 5)7 Let this point be (z1,y1). Because the slope of the
1
5
y —y1 = z1(x — 1). Since (10,5) must be on this line, 5 —y; =

x1 and the point (x1,y;) lies on it, we see that the equation of the tangent is
1
5

tangent line is
21(10 — ). Since (x1,y1)

y

(X1, 1) 10, 5)
/ X
is also on the parabola, y; = f5#1. Therefore, 5— -2} = 1(10—21). Multiplying by 10 gives

10
50 — 22 = 20z, — 222. So 7 — 20x; + 50 = 0, and by the quadratic formula, r; = 10 + 5v/2.

It follows that there are two such points. Both are shown in the figure.

The goal is to find the points where the tangencies occur. See the figure below. Let y = maz+b
be one of the two lines and let (xy, y1) and (x2, y2) be the two points of tangency on the graphs

y




7.29.

7.30.

7.31.

of f(x) = #*+1 and g(z) = —a?—1, respectively. Observe that f'(x;) = m = ¢/(z,) and hence
that 2z1 = m = —2xy. So 19 = —x1. Therefore, yp = —22—1 = —(—11)*~1 = —2?—1 = —y,.
Because y; = mx, +0b and yo = mxs+ b, we get y; = may +b and —y; = —ma1 + b, and hence
that 20 = 0 and b = 0. Because m = 2x1, and (z1,y;) lies on the graphs of both y = mz and
y=1a?+1, we get 22 + 1 = y; = max; = 222. So 2 = 1 and hence r; = +1. When z; = 1,
we get yy =12+ 1=2,29 = —1 and yo = —(—1)> — 1 = —2. So the two points are (1,2) and
(—1,—2), the points in the figure. When x; = —1, we get y; = (—=1)2 +1 = 2,25 = 1, and
Yo = —12 — 1 = —2. So the other two points are (—1,2) and (1, —2).

The facts to remember are these: If f/(x) > 0 for all z in an interval I, then f(x) is increasing
over I; and if f'(z) < 0 for all = in I, then f(z) is decreasing over I. If f'(z) = 0, then
the graph of f has a horizontal tangent. Going from left to right: We see that the function
whose derivative has graph a is increasing, then suddenly decreasing, then suddenly increasing,
and then suddenly decreasing again. This is the pattern of graph (ii). The function whose
derivative has graph b is increasing, then has a horizontal tangent, then is decreasing, has
another horizontal tangent, then increases until it has another horizontal tangent, and it is
decreasing thereafter. This is the pattern of graph (iv). Similar considerations match graph
¢ with graph (iii) and graph d with graph (i).

i. It’s best to separate the two cases yo > 0 and yy < 0. We’ll do the second. The first is
similar. For y < 0, y = —(r> —22)2. Soy' = —1(r? — 2?)73(~2z) = (TLZ?)%' So the
slope of the circle at (xq,yo) is (r2—xZg)% = -

ii. Let (zo,y0) be a point of tangency. Applying the answer above, we see that —ﬁl = —%.
So yo = 3wg. Since (wg,yo) satisfies 22 + y2 = 1, we get 23 + (3z0)? = 1 and hence
xy = i\/LTo' Since (xo, 3zo) is on the tangent line, 3(%) = —%(j—lio) + b and it follows
that b= 3(Z5) + §(35) = Q2L — 440,

i. Because y = sin(z7!), we get i = cos(z™!) - (—a72) = — ="

ii. Because sin®(cos4x) = [sin(cos 47)]?, we get
y' = 2[sin(cos(4x))] - cos(cos4x) - (—sindx) - 4 = —8(sin(cos4x))(cos(cos 4x))(sin 4x).

i, o = [(2sin z)(cos z)] Ccc;ss2x;(sin2 z)(=sinz) _ ZSinxCCc;sS22:§C+sin3x

iv. Because y = zsin(z™1), we get

y =sin(x™!) +x-cos(z!) - (—x72) =sin(z!) — 2 cos(z ™).

vi. ¢ =sec?(3z) - 3 = 3sec?(3z)

vii. y' = —5(cos Va2 + 1) %(—sin Va2 +1)(3)(2? + 1)"2(20) = —desinyetil

(:):2+1)% cosb(vVz2+1)
viii. 3 = 6(1 + sec® x)°(3sec? r)(secx tan z) = 18 tan x(sec® x)(1 + sec® z)°

ix. y =sec?(z?) - (2z) + 2tan xsec® x = 2z sec?(x?) + 2 tan x sec? x

x. 3 = (1 + 2tanz) "3 (2sec? z) = ﬁi;—zﬁ



7.32.

7.33.

7.34.

7.35.

7.36.

7.37.

i.
ii.
iii.
iv.
i.

ii.

6z cos(3z% + 1)
2sin(v/t) - cos(V/1) - %t’% + 2cos(Vt) - (—sin(v/1)) - %t’% =0
sec’ Vu? + 27u - 1 (u? + 27u) "2 - (2u + 27)

4 sec? z = 2(secx) - (secz)(tanz) = 2sec’ z tan x

(cos a(t))e(?)
(=sin 3(£))5'(¢)

Note first that Ghm COS(,B 05 = 91 COSZ% Since this is the derivative of the function cos#
3 -z 3
evaluated at ¢ = %, this limit is equal to —sin § = —‘/7‘9?.

Because y' = sec? x, the slope of the tangent line is sec2§ = 4. So its equation is y — /3 =
4z — %) or y=4dz — 4 + V3.

i.

ii.

iii.

ii.

s

Since z(t)> = t* = y(t), every point on the path of the point lies on the parabola
y = x2. This is a standard parabola rising from the origin. Since z(t) = t > 0, the
point starts at the origin and moves up along the right side of the parabola with speed
V()2 + ¢/ (t)2 = /1 + (20)2 = /1 + 4£2. It’s initial speed is 1 and it moves faster and

faster with increasing ¢.

Squaring both z(t) and y(t) we get z(t)* = t* and y(¢t)> = 1 —t* = 1 — z(¢)%2. So
z(t)? + y(t)> = 1 and it follows that the point moves on the circle x* + y* = 1. With
t =0, 2(0) = 0 and y(0) = 1. So the point starts at (0,1) on the circle and moves
in the direction of the point (1,0), arriving there when ¢ = 1. Since 2/(t) = 1 and
y(t) = 3(1 — 3)72(=2t), the speed of the point at any time ¢ with 0 < ¢ < 1 is

P2 +y(t)? = /1455 = \/g So the speed is 1 and time ¢t = 0. The point
increases its speed and slams into the point (1,0) with infinite speed.

Since y(t) = cosx(t), for any t > 0, the point moves on the curve y = cosz with > 0.
Since 2'(t) = 1 its z-coordinate moves with constant speed. Since +/z/(t)? + y/(t)? =
V1 +sin?t. It follows that the speed of the point varies between 1 and v/2.

. Since z(t)* + y(t)?> = 1, the point moves on the circle 22 + y> = 1. When ¢t = 0 the

point is at (1,0). Since y(¢) = sint increases from 0 to 1 as ¢ flows from ¢t = 0 to
t = %, the point moves from (1,0) to (0,1) during this time. The point continues its
counterclockwise motion around the circle. The speed of the point is constant because
V' (t) ()2 = Vsin?t + cos?t = 1.

This motion is a combination of the circular motion described in (i) and an outward

motion. Think of it this way. For any time t consider the point (z,y) given by = = cost
and y = sint as well as the ray from the origin through this point. To locate the position
(x(t),y(t)) of the moving point at time ¢ observe that the distance between (z(t),y(t))
and the origin (0,0) is \/(x(¢) — 0)2 + (y(t) — 0)2 = y/(tcost)? + (tsint)? = V2 =t. Tt
follows form (i) that the ray rotates counterclockwise at a constant rotational speed of

1. At the same time, the point moves outward on the ray, so that at any time ¢ it is



7.38.

7.39.

a distance t from the origin. So the speed of the point on the ray is also constant and
equal to 1. The point’s path is the composite of the two motions: an outward spiral that
opens in a counterclockwise way. See figure (a). The speed of the point along this spiral
at any time ¢ > 0 is

V' (1)2 + 4/ ()2 = \/(cost — tsint)2 + (sint + tcost)? = V1 + t2.

So at time ¢t = 0, the point is at (0,0) and has an initial speed of 1.
y y

/\

7

\
(a) (b)

iii. The point’s motion is also a combination of two components. The ray behaves ex-
actly as before: it rotates counterclockwise at a constant rotational speed of 1. At the
start ¢ = m, the point is positioned at (£(—1),0) and the ray goes through it (and
the origin). This time the distance from the point to the origin at any time ¢ > 7 is
V(@(t) =02+ (y(t) — 0)2 = \/(% cost)? + (7sint)? = 1. So as the ray rotates, the point

moves closer and closer to the origin. See figure (b). So it moves toward the origin in a

spiral that grows ever smaller. The speed of the point along the rotating ray at any time
t>mis }%%‘ = }— t% = t% The speed of the point along its spiral is

V()2 +y(1)? = \/(—ti2 cost — 3sint)? 4 (= sint + 1 cost)? =y /7 + 3.

As our discussion already suggests, the point’s speed approaches 0 with increasing time.

Because y = (22 + 2z + 3)?, we get g—z = 2(z% + 2z + 3)(2x + 2). On the other hand, g—z =2u
and Z—Z = 2z + 2, so that

W=D du— 9y(21 +2) = 2(2? + 22 + 3) (22 + 2)

as before. Finally, %’le =2(14+2+43)(2+2)=(2)(6)(4) = 48.

Since the equation of the tangent line also involves an x and a y, let’s change the notation for
the coordinates of the point P to (zg,yo). Since f'(x) = 10x — 622, the slope of the tangent to
the curve at this point is 10zq — 6x3. Since P = (xg,%) is on the tangent line, the equation
of the tangent line is y — yo = (10xo — 623)(z — z0).

10



7.40.

7.41.

7.42.

7.43.
7.44.

Let (x,y) be a possible point of intersection. Since x and y satisfy both equations, 22 = 3z —4
so that 22 — 3z + 4 = 0. By the quadratic formula, z = ?“—L—V?’;_“. Since v/—7 does not exist
as a real number there can be no such x and hence there is no point of intersection. Since
the point (0, —4) is on the line, it follows that the line lies entirely below the parabola. Any
line parallel to the given line has an equation of the form y = 3z + b. By moving it up, it will
touch the parabola at a point where the tangent of the parabola has slope 3. This happens
for 2z = 3 and hence z = 2. The corresponding y coordinate is y = (3)* = 2. So (2,2) is the
point where the line touches the parabola.

The distance between any point (z,y) on the line y = 2 + 5 and the point (—4,3) is
V(e —(=4)2+ (y—3)% = \/(x +4)2+ ((—32+5) —3)2 = \/(x +4)% + (—32 + 2)?

:\/(a:2+8x+16)+(}1$2—2x+4):\/§x2+6x+20.

This expresses the distance between the points (z,y) and (—4,3) as a function d(z) =
\/2a? + 62 + 20 of the z-coordinate of (z,y). The distance between (—4,3) and the line
is determined by that point (z,y) on the line for which d(z) is a minimum. So we need to
find the « for which d(z) = (/222 4 62 4+ 20 = (22? 4 6 + 20)2 attains its minimum value.

This task involves the derivative

5
d =152 4 ¢4 20 -1(5 6) = 2(32+6) _ 5x+12
(30) 2(456 + b6x + ) 2(2$—|— ) (2x2+6x+20)% (Ga62+20)

T-
2

Since (—4,3) is not on the line, (322 + 6z + 20)2 is always positive. Notice that 5z + 12 = 0

when z = —%, and that this term is negative for x = —% and positive for z > —%. This
information about d'(x) tells us that d(x) reaches its minimum value at © = —22. Tt follows

that the distance between (—4,3) and the line y = —1z + 5 is

d(—2) = \/g(—%)z +6(—2) 420 = \/35—6 — 2=, /8= 8

The z that minimizes the function d(z) is also the z that minimizes the function d(z)* =

2932 + 62 4 20. In terms of the calculus involved this function is more easily dealt with than
d(x). (This explains the last part of the hint.)

The term (g)/(?)) is the derivative of the quotient of % evaluated at = 3. Since % (%) =

f’(m)g(a;)(;)];(m)g’(m)7 it follows that (g)/(g) — f/(3)9(:;)(;)];(3)9/(3) —_ (—6)(2)4_(4)(5) _8. By the chain

rule, (f(g(z))) = f'(g(z))- ¢ (x). Evaluating this at © = 3, we get f'(¢(3))-¢'(3) = f'(2)-5 =
(=3)(5) = —15.

This problem was already considered. See Problem 7.19i .

For the graphs of f(z) = sinz and f'(x) = cosxz refer to Figures 4.23 and 4.24 and ex-
tend /restrict the pattern to the interval [0, 47]. The graph of g(x) = | sin x| is sketched below.
Its shape is explained by the fact that the absolute value makes things positive. The per-
haps instinctive response to say that ¢'(x) = |cosz| is wrong! Since g(z) = |sinz| = sinz
over the interval (0,7), it follows that ¢’(x) = cosx over (0,m). The fact that the graph of
g(x) = |sinx| repeats itself over the intervals (m,27), (27, 37), and (37,47) means that the

11



7.45.

7.46.

g(x) =Isinx|

‘0

1
0 n 2n 3m 4 x
same is true for ¢’(z) as the graph below illustrates. Notice that g(z) = |sinz| is not differ-
8'(x)
\\ ! I |
| | \ |
| | | |
‘ | | | >
3 | | "
|
\

a

a
Sy
S

=

/g'

W

a
Sy
S

a
=

entiable at 0,7, 27, 37, and 4.

As the question is phrased, the answer is that there are no such ¢ and d because the d/x + ¢
is differentiable only for x > 0. So we’ll add the condition = > 0 to the assumptions.
The discussion in Section 7.5 about the rules of differentiation tells us that y = cx? + 12 is
differentiable for all z no matter what the constant ¢ is. By the same discussion, y = dy/z + ¢
is differentiable for all > 0 no matter what d is (but not for z < 0). The remaining question
is this: For which ¢ and d do the graphs of y = cz? + 12 and y = d/z + c fit together in
such a way that the graph of f(x) is smooth at x = 1? The first thing we need is that the
two graphs are connected when x = 1 because the condition of differentiability implies that of
continuity. So we need to have lim (d\/z+c) = ¢-1?+12. But this means that d+c¢ = ¢+ 12

z—1t
and hence that d = 12. To ensure that the two pieces connect smoothly for z = 1, we’ll take

the derivatives y/ = 2cx of y = cx®+ 12 and iy = %dx_% of y = dy/x + ¢ and set them equal to
each other with x = 1. This gives us 2c = %d = 6 and hence ¢ = 3. With ¢ =3 and d = 12,
the function f(z) is differentiable for all x with x > 0.

The graphs of the two functions y = x4+ 1 for x < —1 and y = z — 1 for 1 < x are sketched
in the figure below. Any function f(x) with —1 < x < 1 that completes these two functions
to one that is differentiable for all x needs to satisfy: Its graph must connect smoothly to
the graph of y = 2z 4+ 1 at (—1,0) and to the graph of y = x — 1 at (1,0) and it must be

y

differentiable over the interval —1 < 2 < 1.

12



7.47.

i.

ii.

iii.

ii.

There are infinitely many curves that can be drawn between the points (—1,0) and (1, 0)
that have slope 1 at these two endpoints and that are smooth with nonvertical tangents
over —1 < x < 1. There is no limit on the number and variation of wiggles that such a
curve can have. One such curve is drawn into the figure above.

A function of the form f(x) = ax® + bx® + cx + d with a,b,c, and d constants, has
derivative f'(z) = 3az® + 2bx + c¢. Other than the observation that polynomial functions
are differentiable, we need for f(z) to satisfy the four equations:

f(=1)=—a+b—-c+d=0, f(1)=a+b+c+d=0,
f'(=1)=3a—2b+c=1, and f'(1) =3a+2b+c=1.

What's left is to solve these equations for a, b, c, and d. Subtracting the third equation
from the fourth, tells us that 406 = 0 and hence that b = 0. So 3a + ¢ = 1. Subtracting

the first equation from the second, gives us 2a + 2¢ = 0, so that ¢ = —a. It follows that
2a = 1, and hence that a = % So ¢ = —%. Inserting the values for a,b, and ¢ into the
second equation, we get % +0 — % +d =0, so that d =0. So f(x) = %x‘g — %x

The graph of y = 0 lies on the z-axis. So instead of having a slope of 1 at (1,0), the
graph of f(x) needs to have slope 0 at (1,0). All the other requirements are the same
as before. In terms of a function of the form f(x) = az® + bx?® + cx + d with derivative
f'(z) = 3ax® + 2bx + ¢, only the last equation is different. We now need to solve:

f(-=)=—a+b—c+d=0, f(1)=a+b+c+d=0,
f(-1)=3a—2b+c=1, and f'(1)=3a+2b+c=0.

Subtracting the fourth equation from the third, we get —4b = 1, so that b = —}L. So

3a+c = % As in the previous example, 2a + 2¢ = 0 so that a + ¢ = 0. By another

subtraction, 2a = % and a = }1. Soc= —}L and using the second equation, l—l—i%—d =0.

171
Since d = 1, the function f(z) is given by f(z) = j2* — 2% — 2 + ;.

. Note first that any polynomial function is continuous for all real numbers. So for the two

functions f(r) = 2% + x for z < 0 and g(x) = ax?® + bz + ¢ where z > 0 and a, b, and ¢
constants to splice together to a continuous functions for all real numbers, we only need
have lim (z? + x) = g(0) = ¢ and therefore that ¢ = 0.

z—0~

The rules of differentiation referred to in Section 7.5 imply that any polynomial functions
is differentiable for all real numbers. So we only need to see to it that the two functions
splice smoothly at (0,0). The derivative of y = 2 + x is Z—g = 2z + 1 and the derivative
of y = ax® + bx + c is g—g = 2ax + b. For the two functions to splice smoothly at x = 0,
we need—in addition to ¢ = O0—only that 2a-04+b = 1, so b = 1. Therefore any function
of the form g(z) = ax?® + x will satisfy the required differentiability. Since a can be any

constant, there are infinitely many such functions.

7.48. A typical graph of a differentiable function y = f(z) is sketched in the figure below. For a

given x and Az, the interval [x — Az, z + Az] is in the domain of the function. We have
assumed that Az > 0, but this is not essential. (By interchanging some minuses and pluses

13



7.49.

7.50.

7.51.

the case Az < 0 can be handled in the same way.) Consider the two points (z—Ax, f(x—Axz))
and (z + Az, f(z + Ax)) on the graph of the function and the line that they determine. The
slope of this line is equal to f&raa-f—ar) _ Jlatde) J@=Az) = Refer to the figure and let

z+Az—(z—Az) 2Ax
Ax shrink to zero. It seems intuitively clear that in the process the line that the two points
y

=f(x) ™ (x=Ax, f(x-Ax))

(x+Ax, f(x+Ax))

determine should close in on the tangent line to the graph at (z, f(z)), so that

. fla+Az)—f(z—Ax)
Am, e )
This equality can be verified analytically as well. Since f'(z) = Alimo % and f'(z) =
T—
lim W, it follows that
Az—0 z
1 _ T fle+Az)—f(z) 1 _ T fa—Az)—f(z) _ 1 —fz—Azx)+f(z)
o (@) = Jim) TS and 5 ffw) = limg TG = imy A
. z+Az)—f(z)—f(z—Ax x . z+Az)—f(r—Ax
so that f/(z) = 3/'(e) + §f/(x) = lim [CHAAHGIEBOUE o |y gt
Therefore f/(z) = lim £ (HMQ);f (2=42) a5 asserted earlier.
Az—0 z

This is done by rationalizing as follows:

lim L7 = lim CRTRAE = Im(v7 + V) (L) = 2vaf (o)

Tr—a
i. lim £ acng lim 2$1_1 -7
r——3 + z——3
.o . 3_ . 2
ii. lim % }—hm%i—%
r—1 ¥ r—1 4%
. 1
iii. lim = lim = lim 22+ = lim 4z - 22 = (4)(9)(3) = 108.
r—9 f z—9 w? 3 r—9 5T ? x—9
: : —7s2+175—20 3s2—14s+17 __ 9 __
1v. ll_lﬁ 2 5std iﬂﬁ e

From the example, f(z) = 2° + 2* — 2z — 1 and g(z) = 23 + 2> — 2 — 1. Notice that 1 is a
root of both of these polynomials so that = — 1 divides both of them. (See segment 4E of the
Problems and Projects section of Chapter 4.) Dividing z — 1 into 2° + 2* — 2 — 1, we get the
result o + 223 + 222 4 22 + 1 and dividing  — 1 into 2® + 22 — 2 — 1, we get 2% + 22 + 1.

14



After canceling the term z — 1 we see that £

_ 4 3 2
| — 207420 2072041 and hence that

x3+al—z—1 x2+2x+1
x®tat—a—1 : 422342224 20+1 _ 8
lim $295=00 = lim 2500 = § =2,

7.52. By the Mean Value Theorem we know that there is a number ¢ between 0 and 9 such that

file) = 180 — 12 — 4
Doing so, we get 1 =

7.53. 1

ii.

O-JO) — 12 _ 4 Because f/(z) = 1 + 2\%, we need to solve 3 =1+ ﬁi for x.

s = 2\f,so 2,/ = 3, and hence z = (%)2:9.
Note that f(3) = 17 and f(7) = 9. Combining the fact that a differentiable function is
continuous with the intermediate value theorem (in Section 7.3) tells us that for every
number v with m < v < M, where m and M are the minimum and maximum values of
f on [3,7], there is a number u in the interval [3,7] such that f(u) = v. Since m < 9

and 17 < M, m < 4mx < M, there is a d in [3, 7] such that f(d) = 4,

The mean value theorem (of Section 7.6) with a = 3 and b = 7 informs us that there is
a ¢ between 3 and 7 such that f(7) — f(3) = f'(¢)(7 — 3).
4f'(c) = —8 and hencef’(c) = —2.

Since 9 — 17 = —8 we get

7.54. Treating y as a function of x and using some of the standard rules for differentiating, we get

i.
ii.
iii.

iv.

V.
7.55. 1.
ii.
iii.
7.56. i

ii.

g (@) =y* +2By*y) =y’ + 3z
W(w) =3y 2y +y+ay
K (z) = 4y2*4§i(2yy’) — 4y~2 — Sxy~3y
g'() =44z +y72)3(4 - 3y~3y)

g(x) = 220> + 3y7)(da + §y ).

Because f'(x) = 3z% — 3, the critical numbers are those x for which 32? — 3 = 0 for z.
So x = *£1.

- 22— z(z— z—4)[2 (z— T
F'(x) = %x*%(:c—4)2+x%(2(x 4)) = G ?(h 8 _ 3l 4)2? (e=4) _ ( 4)[5(% 4)+2a]
_ (z—4) 1 (42—16+10x) _ (z=4)(142-16)
x% 51:% '
It follows that the critical numbers are 0,4, and % = %.
Note that
- 2 29 _1 o 2 472 _ 6z(2z— 1)+4x
T'(z) =22(2r — 1)5 + 2°5(22 — 1)73(2) = 22v(22 — 1)5 + Pyt S v—
_ 16226z _ 16z(z—%)
3(20—1)3 3(22— 1)% ’
So the critical numbers are 3 0 and 8.
Because f'(x) = 322 — 4z + 1, the critical numbers are =Y10-43 — Vlé”_“ = % and hence z = é

Take 0, ;, Since f'(0) =

and f'(2) = 5, we find that f is increasing over the intervals (—oo

decreasing over (3, 1).

and x = 1. Lf3) =3-1=-1

,3) and (1,00) and
It follows that f has a local maximum value at %

and 2 as test points.

and a local
minimum value at 1.

Check that f'(z) = 423 — 122% — 16z = 4z(2? — 3z — 4) = 4x(x — 4)(z + 1). So the

15



iii.

iv.

critical numbers are —1,0 and 4. Take —2, —%, 1, and 5 to be the test points. Check that
F(=2) = (=8)(=6)(—1) = —48: F(=1) = —2(~D(}) = & (1) = 4(=3)(2) = —24,
and f'(5) = 20(1)6 = 120. It follows that f is increasing over (—1,0) and (4, 00), and
decreasing over (—oo, —1) and (0, 4). So f has local minima at —1 and 4 and a local
maximum at 0.

Observe first that f(x) is defined only when 1 > 22 or for —1 < z < 1. Note that

fl@)=(1—a%)7 +al(1—a?)"2(-22) = (1 —a?)s — L = La’a? _ 12207

(1-22)2  (1-2%)2  (1-a2)2

It follows that the critical numbers are +1 and j:\%, so they are in increasing order:
—1, \_/—%, \%, and 1. Because \% ~ 0.71 and —1 <z < 1, we take —0.8,0, and 0.8 as test
points. Check that f'(—0.8) < 0, f(0) > 0, and f/(0.8) < 0. So f is decreasing over
(-1, _\/Li) and (\/Li’ 1) and increasing over (—\/Li, \/Li) Notice that f has a local minimum

1 . 1
at -7 and a local maximum at o

For f(z) to be defined we need x > z?. Observe that < 0 is not possible and that
1>z if x > 0. So the domain of f consists of the interval 0 < x < 1. Check that

1 _1 1 z(1-2x 2A(z—x?)+x(l—2x
fla) = (= at) ag(e —a?)H1 - 22) = (0 —a?)} 4 22 - Aol an

— —4a’43x _41”(95_%)

T — T
2(z—z?)2 2(z—z?)2
3

So the critical numbers are 0, ¥, and 1. Because 0 < x < 1, we only need the test points
5 and 7. Check that f/(3) > 0 and f/(3) < 0. Therefore f is increasing over (0, %) and
decreasing over (%, 1). Hence f has a local maximum at %.

7.57. Let f(z) = x+21. Check that f/(z) = 1-%. Whenz > 1, & < 1, and hence f'(z) = 1—% > 0.
So f is increasing for x > 1. Because f’(1) = 0, the graph of f has a horizontal tangent at
the point (1, 2). It follows that f is increasing over [1,00). The verification of the inequality

7.58.

7.59.

follows from the definition of increasing function.

Consider the function f(z) = (1 + z)" — (1 4+ nz) for > 0. Differentiating, we get f'(x) =
n(l+z)" ' —n=n[(1+2)"'—1]. So f/(x) > 0 whenever x > 0. Therefore f(z) is an
increasing function for > 0. Since f(0) = 0 it follows that f(x) > 0 for > 0.

i.

ii.

iii.

Since f'(x) = 1—2cosz, the critical points are those x with 1 —2cosx = 0 or cosz =

A look at Figure 4.24 tells us that x = 3. Take § and 7 as test points. Since f'(7)
1 - 2\/75 =1-+v2<0and f(%) =1> 0, we know that f(z) is decreasing over (0, %)

3

1
5

and increasing over (%, 7). There is a local minimum at 3.

Check that f'(x) = sinz + xcosx — sinx = zcosx. Because —m < = < 7, the critical
numbers are —7,0, and 7. Take —%T’T, -4, %, and ‘%” as test points. By Figure 4.24,
F(=23) >0, f((-=%) <0, f'(%) > 0, and f'(27) < 0. So the function f(z) is increasing
on (—m, —%), decreasing on (—7,0), increasing on (0, §), and decreasing on (7, 7). There

i

are local maxima at — 5

Refer to Figure 4.26 and notice that f is not defined for x = —% and x = 7. Check

2
that f/(r) = 2sec?z — 2tanasec®s = 2sec® z(1 — tanz) = 2288 Qg the critical

and 7, and there is a local minimum at 0.
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7.60.

7.61.

7.62.

. . sin % .
points occur when tanz = 1 and cosz = 0. Since tan} = —+ = 1, the graphs in
4

Figures 4.24 and 4.26 tell us that the only critical number is 7. (While cos § = 0, 7 is

not a critical number because f(z) is not defined at 7.) Take 0 and % as test points.
Since f'(0) =1 > 0 and f(3) = 20tang) _ 20v3) 0, f is increasing over (—Z2, %)

cos? % (%)2 273

and decreasing over (%, 7). There is a local maximum at .

iv. The derivative is g'(z) = cos x —sin . By the discussion in Section 4.6, x = 7 is the only

x with —% <z< % such that cosz = sinz. So z = % is the only critical number. Take

0 and % as test points to see that g(z) is increasing on (-3, §) and decreasing on (%, 7).

T 201 12
So f has a local maximum at 7.

i. Since f'(x) = 2(x + 1), x = —1 is the only critical number. The values of f(x) at —1
and at the endpoints —2,5 are f(—2) =2, f(—1) =1, and f(5) = 37. So the maximum
value of f is f(5) = 37 and the minimum value is f(—1) = 1.

ii. The derivative is f'(z) = 322—12 = 3(2%—4). So the critical numbers are +2. Evaluating
f at the critical numbers and also at —3 and 5, we get f(—3) = 10, f(—2) =17, f(2) =
—15, and f(5) = 66. So the maximum value is f(5) = 66 and the minimum value is
£(2) = —~15.

iii. The derivative is f'(z) = 152* — 152 = 152*(2? — 1). So the critical numbers are —1, 0,
and 1. Evaluating f at the required points, we get f(—2) = =57, f(—1) =1, f(0) =
—1, f(1) = =3, and f(2) = 55. So the maximum value is f(2) = 55 and the minimum
value is f(—2) = —57.

iv. Check that the derivative is f'(x) = - S0 the only critical number in [—1,2] is

0. Evaluating the function at = —1,0 and 2, we get f(—=1) = /8, f(0) = 3, and
f(2) = /5. So the maximum value is f(0) = 3 and the minimum value is f(2) = v/5.

The derivative of f(z) = 2 =2+ 6 is f'(z) = 2z — 1 = 2(z — 3). So f/(z) = 0 only when

x = 1. Notice that f'(z) < 0for x < 5 and f'(z) > 0 for > 5. It follows that the minimum
value of f(z) = 2? — x4 6 occurs when « = 3. This minimum value is f(3) = 1 — 3 +6 = 53.
By completing the square for z* —z 4 6, we get 22 —z + (3)* — (3)*+6 = (z — 3)® + 52. A

look at this last expression confirms that it attains its smallest value when x = % and that

this smallest value is 5%.
b2

Because y* = %(a? — 2?), the upper right corner of the rectangle is the point (z, 2v/a® — 22)

with # > 0. The area of the rectangle is equal to A(z) = (22) (2%\/@) = 42g(a® - 222,
We are looking for the value of = for which the function A(z) attains its maximum value.
Differentiating A(z), we get A'(z) = 42[(a®> — 2%)7 + - L (a® - xQ)_% (—2z)]. By taking
4 M] = M. The value x = a can be ignored
@ | (a2-42)2 a(a?—22)3

because A(z) = 0 in this case. Notice that A’(z) = 0 when z = . When z < 7, then

2 < % So 22? < a? and hence A'(x) > 0. When z > 75> then 2 > "’—22 So 222 > a?, and this
time A'(z) < 0. It follows that A(x) is increasing to the left of z = 75 and decreasing to the
right. Therefore z = \% gives us the maximum we are looking for. This maximal rectangle

common denominators, A’(x) =
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7.63.

7.64.

7.65.

has base 2 - = 1/2a and height 2b\/ 21’,/“2 NG b = /20b. Tts area is 2ab.

The y—coordlnate of the point in the first quadrant where the circle and the rectangle meet
— /2 2
y =

r? — a2
i. The volume of a cylinder is equal to the area of its circular base times its height, so that
the volume is V(z) = (72?)(2y) = 2ma®v/r2 — 2. The domain of this function is [0, 7].

ii. The derivative of V(z) is

Vi(z) = 27 (2a(r® —2?)3 + 221 (r? — 2?)73(—22))
_ 2 2\1 x3 o 2ax(r?—x2)—x?
= 27 (2z(r® — )z — = IQ)%) = 2”(—@2%2)% )

— Qﬁx(L&v"’l)‘

(r2=a)?2

Since neither = 0 nor = r provides a maximum (because V(z) = 0 in either case),

the only remaining possibility occurs when 3z = 2r?, or z = \/gr. So x = \/gr gives

us the maximum volume.

iii. Because V(\/> = 27T r2y/r2 ,/ 4 7r7"3 this is the maximum

r3

4
volume that an inscribed cyhnder has. So the ratio of the volumes is 1— =3
el

Let d be the length of the segment. The large right triangle has base x + a and hypotenuse
d and the lower right triangle has base x and hypotenuse v/x2? 4 b2. By similar triangles,

4 m . So
d=(a+z)(zvV1+b%2) = (a+;p),/1+z_22

atx
and we have expressed d = d(x) as a function of z with z > 0. Let D(z) = d(x)* =
(a+2)*(1+ z—z) Differentiating, we get

D'(x) = 2a+2)(1+ %) + (a+2)*(-3)
(CL + $)(z3+xb2f(a+m)b2> _ 2(z+a)(x? 7ab2).

x3
So D'(x) = 0 only when z = (abz)% The fact that D’(x) is not defined at © = 0 can be
ignored. (Why?) That z = (ab2) gives us the minimal D(z) can be confirmed by noticing
that D'(z) < 0 when z < (ab?)3 and that D’'(z) > 0 when z > (ab?)3. It remains to notice
that the x that provides the minimal D(z) also provides the minimal d(z). For z = (ab?)3,

[\)

3

we get
d(z) = (a+ (ab?)3), /1 +

win

= (ot @)1+ 55 = (0t (@?)9)y/1+ (D

This is the shortest that d can be.
Refer to Figure 7.56. With x and y the dlmenswns of the base and h the height of the box, of

and note that xyh = a3. So y = i = 5T 2=t Refer to F1gure 8.34 and note that the surface
area of the box is 2hx 4+ 2hy + 2yx. Substituting y = Tx 1 gives the surface area as the
function

S(x) = 2hx + 2h“—h3x_1 + 2“—;x_1x =2hx +2a%x~ ! + 2a—§

18



7.66.

7.67.

of z. The question now is this: For which x does S(z) attain its minimum value?
The answer requires the analysis of the derivative S'(z) = 2h — 2a3z~2 = 28224 Since

hx? = a® implies that z = w%, it follows that \/% is a critical number of S(x). (It is the

only critical number because S(x) is not defined at 0.) So the focus is on = = 1/%. Does

this provide the minimum we are looking for? That it does can be seen from the following

a3

;- makes hxz? — a® equal to 0, then substituting any x

observation. If the substitution x =
smaller than 4/ % must make ha? — a3 negative, and substituting any x larger than 4/ % must
make hx® — a® positive. It follows that S'(z) = 22279 is negative for x < /%" and positive

for > /<. So S(z) is increasing on the left of z = /% and decreasing on its right. So
h g h g g

as asserted, S(x) has its minimum value when x = % Substituting this value of x into
B 1 BN Bas a5 3 . ..
y=Fr " givesy = (5)72 = %Z_% = %+ = 1/%. So the base of the box with minimal

1

h2
surface area is a square. What is the height of this box?
1

1 1 1 =
i. Since f(x) = e*, we get f'(z) = e*” - %a:% == %x’% = ;\2
ii. ¢'(z) = e®*(—5) cos 3z + e **(—sin3z) - 3 = e °*(—5 cos 3x — 3sin 3x)
fii. & = et Lz 4 e7) = et (1 + %)
iv. f'(z) = 2ze” 4+ 22e” = (2 4 2%)e”
v. =" 4 ge” 20 = (1 + 22%)e”
1
1 1 .
Vi B = TR (1 - 0?) = e (<) (1 - 0?) (- 20) = B
vii. Z_Z — Sec2<€3m—2)%e3x—2 — Sec2(e3m—2) . 631—2 .3 = 36333—2 Sec2(63x—2)
e d . (ez76—33)(ez76—1)7(ez+e—z)(ez+€—z) . 621+€—21727(621+e—22+2) . 4
Vill. ﬁ - (ex,e—x)Q - (ex,e—w)Z - (exfe—x)2
i. The slope of the tangent is 2 evaluated at = 1. Because % = 2ze™® + 2%(—e™?) =

1

(2r —2?)e™®, this value is 2e ' —e ! = ¢! = % By the point-slope form of the equation

of a line, we get that the tangent has equation y — % = %(x —1)ory= %x
ii. Observe that 3 = 2¢?* — 3¢ and y” = 4e** + 9e~3%. Therefore by substituting, we get
Y+ — 6y = 4e* 4+ 9e73% 4 22 — 373" — 6e* — 6e 3% = 0.

iii. The solution is a matter of recognizing a pattern in the flow of consecutive derivatives

of f(x):

fllx) = e +a(—e®)=—(x—1)"
ff(x) = —e "+ (@x—1)e"=(x—2)"
" (z) e’ —(r—2)e"=—(x—3)e "
9 () e+ (xr—3e " =(x—4)e"
O (x) e’ —(x—4)e " =—(x—5)e "
fO) = -4 (z—5e"=(z—6)e®



iv.

V.

vi.

Two patterns have emerged, one for the odd derivatives, the other for the even derivatives.
Following it, we see that the one hundredth derivative of f(x) is (z — 100)e~*. Provide
a more definitive solution by using the principle of mathematical induction (developed
in segment 3E of Section 3.8).

Let f(z) = e® + x. Because f(0) =1 and f(—1) =1 —1 = 1< <0, it follows by the
intermediate value theorem and the continuity of the function f that f(z) = 0 for some
x with —1 <z < 0.

Starting with the graph of e”,

_/

we get the graphs of e™ and 3 — €, see below, after thinking a little.

y
y
— |
x
\
x
J(z) = <5< = ez(;f; U Observe that ¢/(x) = 0 precisely when 2 = 1. Notice that

¢'(z) < 0 when 0 < 2 < 1 and that ¢/(z) > 0 when z > 1. So g(z) = < is decreasing to
the left of x = 1 and increasing to the right of x = 1. So g has its absolute minimum at
x = 1. The absolute minimum value is g(1) = e.
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7.68. Clarity is added by plotting the graphs of the inverse functions 2* < e* < 10* (see Figures 7.39
and 7.40 for instance) and then to reflect these about the line y = .

7.69. 1.

ii.
7.70. i
ii.
iii.

iv.

vi.

vii.

viii.

iX.

7.71. i
ii.

7.72. i

ii.

. From logy(42% — 11) = 7, we get 9°20(4*~11) — 97 and hence 4z

. From 4* —

log, & + 3logy(x 4 1) + 1 logy(z — 1) = logy @ + logy(x + 1)* + logy(x — 1)1
= logy x(x + 1)*(z — 1)7.

1 1

sInz —4In(2z +3) =Inzs —In(2z +3)* =1In ﬁ

2loe2® — 93 50 1 = 23 = 8.

In 2%°~5 =1n3, 50 (z2 —5)In2 =In3. Hence 2? — 5 = ln3 Thereforex—:l:\/5+iﬁg,
In5%"~1 = In2, so x —1——§ ndx—:l:@/l—{—}ﬁg
In4=*+1 — In 3,s0x?+1= %EZ and 2 iﬁi 1. Because In x is an increasing function,

In3

In4 > In3. Hence 15 < 1. It follows that 2% < 0, impossible.

solution. (This is also evident from its first formulation.)

So the equation has no

— 11 =9". So 422 =

4,782,969 + 11 = 4,782,980, and therefore 22 = 1,195,745. So x ~ £ 1093.5.

Since logs(logs ) = 6, we get 5°85(1°852) = 56 and hence log; x = 5°. Therefore, 5°%7 =
(5)° and hence z = (5)%° = 5!%625,

From basic properties of Inx, we get In[(z + 6)(x — 3)] = In[5 - 7]. By applying the

exponential function e* to both sides, we get (x + 6)(x — 3) = 35. So #? + 3z — 18 = 35
—3+£v94212 __ —3+221
2 2 -

and hence 22 + 3z — 53 = 0. Thus, by the quadratic formula, x =

From the given equation In 2= —In = m =1. Soln (z+1 iﬁ’) = 1 and hence
x—2
In[2=2. 2] = 1. Tt follows that In2=2 = 1. Therefore, £=2 = "= = ¢ and hence

3e—2

r—2=c(r—3). So(e—1)z=3c—2and z = ==

Observe first that 3z — 2 > 0 since In(3z — 2) needs to be defined. So x > 2. Because

e” is an increasing function, 3z — 2 = €G22 < 0 = 1. Therefore 3z < 3 and hence

x < 1. It follows that % <z <1.

27+3 4 12 = 0 we get (22)” — 2723 412 =10, s0 (27)2 — 8- 27 + 12 = 0. Let
y = 2%, Since y? —8y+12 = (y—2)(y — 6) = 0, we get y = 2 = 2 or y = 2% = 6. Taking
log, of both sides, x = log, 2*
Weneed 1 —x >0. So 1> x.

We need botht >0and t? —1>0. Sot >0 and t* > 1. Hence t > 1.

=log, 2 or log, 6. So z =1 or x = log, 6.

For Inz to make sense we need x > 0. Because cos # makes sense for any 6, the domain
of f(x)is {x|x > 0}. Note that f'(x) = —sin(Inz) -
that the domain of f’'(z) is also {x |z > 0}.

%. The considerations above tell us

For f(x) to make sense, we need 2 —x —x? > 0 or z°> +x —2 < 0. Note that 2% + 1 —2 =
(x +2)(x — 1) = 0 when x = —2 or 1. Consider the z-axis and take —3,0, and 2 as test
points to see that z? + x — 2 < 0 precisely when —2 < x < 1. So the domain of f(z) is
{x| -2 < x < 1}. Check that f'(z) = —=2% = 221 Since the domain of f/(z) can

2—x—x2 = x24x—2
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7.73.

7.74.

7.75.

7.76.

fa+Az)—f(z)

be no larger than the domain of f(z) (this follows from the definition lim s

Az—0

of f'(x)), it follows that the domain of f'(z) is also {z| —2 <z < 1}.

iii. For f(x) to make sense we need both x > 0 and z — 1 > 0, so we need = > 1. For

In(y/x — v/x — 1) to make sense, we must have /= > v/z — 1. Since x > x — 1, this is so
for 2 > 1. So the domain of f(z) is {z|z > 1}. Because f(z) = In(z2 — (z — 1)2),

PR Tk VL RO v, v
f'(x) = I N
So only = 1 has to be excluded from the domain of f(x) is {z|z > 1} and it follows
that the domain of f'(z) is {x |z > 1}.

iv. We need z* + 322 > 0 for f(z) to make sense. For z* + 32% = 22(2? + 3) > 0 all we need
to have is  # 0. So the domain of f(x) is {z |z # 0}. By one of the laws of logarithms,
f(x) =log;(z* + 32°) = @'432%) g,

In11
"Eg X
f'(x) = 1n11(i4+§22)
It follows that {x | x # 0} is also the domain of f'(z).
v. For f(z) to be defined we need = + 3z* > 0. Because z + 32% = x(1 + 3z), this is so for

x> 0. If z <0, we need to have 143z < 0, to get (1 +3x) > 0. But 1+ 3z < 0 means
that 3z < —1 and hence < —3. So the domain of f(z) is

{z]z<—For0<uz}.

X _1
Because f(z) = In(z + 3172)%, we get f'(z) = 2(”(33?2; ;)(l1+6a:)
x+3x<)2

all z in the domain of f(z), the domain of f’'(z) is the same as that of f(x).

. Because x + 322 > 0 for

i.y=Inz+z--=Ihx+1andy” =
ii. Because %logax = ﬁ L for any base a, y = ln110 % = ﬁ cox b and ¥ = 1n110x 2
iii. ¢ = SeC:ezznﬁ:fl‘fx = Sec:égzif;fzcx) =secx = (cosz)™! and 3y’ = —(cosx)?(—sinz) =
St — (secx)(tanz).
i. Because g(z) = (Inz)2, we get ¢'(z) = %(lnx)’% 1= o 11m.
i () = s - e (4% — 2) = ey
ili. f/(z)=¢"-Inz+e”- 1
iv. B'(t) = 3t> — (In 3)3".
iv. Let g(z) = ™. Since £ Inz"* = L(sinz - Inz) = cosz - Inz + 3£ we get by

sin x

logarithmic differentiation, that ¢ (z) = (ZEIna*)g(z) = (cosz - Inz +

fllx)=lnz+z- E =lnz+1.Iflnz > —1, thatisif z = e"® > 7! = %, then f'(z) > 0 and
if nz < —1, that is if = e™* < e™! = £ then f'(z) < 0. So f(x) is decreasing to the left of
z =1 and increasing to the right. It follows that f(z) has its absolute minimum value when

=1 Thisvalueis f(1)=21-Int=1ln(e?) = -1

e
1 zp—1

The line determined by (1,1) and (zo, = 5o) has slope o = 0 = —%. Soy—1= —xio(x—l)
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7.77.

7.78.

7.79.

is an equation of the line. A little algebra converts it to y = —%x + (1 + %) To find the
area under this line and over the interval [1, z¢], notice first that the line intersects the z-axis
when —w—lox + (1 + xio) = 0, hence when w—lox =1+ % and therefore at z = 29 + 1. A look at
Figure 7.57a, informs us that the area under the line and over [1, 2| is the difference

sl(1+z0) = (1) = 5[(1 + m0) — w07 = 5(z0 — 1)

xo
between two triangles. Since xg > 1, In g is the area under y = % over interval [1, zo]. A look
at Figure 7.57a confirms that In z¢y < %(mo — %) and also, when zy ~ 1, that In zy ~ %(xo— %)

aking xg = 2, weget In2 < 5(2—5) = 5-5 = 5 = 0.75. A calculator tells us that In 2 ~ 0.693.
Taki 2 In2 < 3(2—3)=33=23=0.75. A calcul lIs us that In2 ~ 0.693

Iflnxy ~ %(iUo — %) for xg much greater than 1, then Inzy ~ %xo. But this is not the case
for large x( as Figure 7.57b illustrates.

The verifications combine the inverse relationship between the log and exponential function
and the rules for exponents from Section 7.10.

i. Set log, 1 = u; and log, x5 = uy. By the inverse relationship that connects the log and
exponential functions, a** = z; and a“? = z,. Since x179 = a“a*® = a“*1“2, it follows
that

log,(x122) = uy + uy = log, x; + log, 2.

ii. Again let log, 1 = wu; and log, o = uy. As in part (i), a"* = z; and a"? = z5. Since

é =a~"?, we have 7t = a"'a™" = a7, Therefore

X
log,, x—; = u; — ug = log, 1 — log, xs.

iii. Let log,z1 = u;. So a"* = z; and hence a"* = (a")* = z7*. So by the inverse
relationship, log, (7®) = uixs = z3u; = x3log, ;.
Set y = log, x1 = logyza. So a¥ = x1 and O = z5. Therefore (ab)¥ = x1x9, and hence
log,, r172 = y.
The x can be any real number, but it is fixed for the entire discussion. The answer to “Why?”

is given by the inverse relationship between the exponential function “e” and the log function
“In”. So we need to show that In ( lim (1 + %)n) =x. With h = 2,

n—o0
In (lim (14 3)") =n (lim (1+h)")
so it remains to show that In }lLiLI%)(l +h)k =z,
We will proceed somewhat differently and more simply than the outline proposes. The
use of the theorem proved in Problem 7.15 is key. It says the following about the composite
y = f(g(zx)) of two functions. If igrrig(z) = b and if f is continuous at b, then

lim f(g(x)) = f(lim g(x)) = (D).

Note first that since z is fixed, the function f(z) = 2% is continuous for all z > 0. (In Example
7.44 the function f(z) = z" for x > 0 was shown to be differentiable—and hence continuous—
for any real number r.) Next let g(h) = (1 4+ h)#» and observe (as a consequence of the limit
definition of e developed in Section 7.10) that }lgl% g(h) = }llii%(l +h)n = e. So by the theorem,
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7.80.

=

lim(1+ h)% = lim [(1 + h)

T . 1y z
lim lim " = [lim(1 4+ h)n]" = e,

Therefore

Inlim (1 + h)% =Ine” =z
h—0

and we are done.
The approach outlined in the text makes similar use of the theorem. The continuity of the
natural log allows lim to be moved past In in the expression In(1 + k)% with the result that

h—0
limIn(1 4 A)% = In (lim(1 4 h)#). This leaves lim In(1 + )%. By a basic property of logs,
h—0 h—0 h—0
limIn(1 + k) = lim £ -In(1 + k) = - lim M It remains to observe that lim w =
h—0 h—0 h—0 h—0
}llir% w and that this is nothing but the derivative % Inz = % evaluated at x = 1.
_>
Since this is equal to 1, we have again verified that In ( lim (1 + %)n) = x. Notice that it is

n—o0

the differentiability of the natural log at 1 that is needed, not just the continuity.

Recall that coshx = %(ex +e7"). A look at the graph of y = cosh x in Figure 7.46 tells us that

cosh 0 = %(1+1) = 1 is the smallest value of the function y = coshz. Soy = sechz = Coslhw has

its largest value sech(0) = 1 at = = 0. Since lirin cosh z = oo we know that lirin sechz = 0.
T— 00 T—r 00

Since y = coshx is always positive, the same is the case for y = sechx. The combination
of these observations has the consequence that the graph of y = sechx has the form that
Figure 7.48 already depicts. The graphing calculator

https://www.desmos.com/calculator

and Example 7.48 inform us that the points of inflection of the graph occur for x ~ 40.881.

coshz __ 1
sinh x tanh z

The graph of y = cothz = is next. We see from the graph of y = tanh x in

y = coth x
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7.81. Since sinh § = &=

Figure 7.47 that gElLI(I)l+ cothx = +o0o0 and mliglﬁ cothr = —oo. Since —1 < tanhx < 0 for
all negative z and lim tanhz = —1, we know that cothxz < —1 for all negative x and
lim cothz = —1.xﬁgiorjce 0 < tanhx < 1 for all positive x and lim tanhz = 1 we
%ﬁ&“{n the same way, that cothx > 1 for all positive z and lim cg(ﬁ)?};;] = 1. Combin-
ing this information, we get the graph of y = coth x sketched aﬁ;: It is also drawn with

https://www.desmos.com/calculator.

Finally to the graph of y = cschx = ﬁ From the graph of y = sinhx, lim cschz = +o00

z—0t

and lim cschx = —oo. We also see that lim cschxz = 0 and lim cschz = 0. Since
x—0— T—+00 T——00

y = sinh z is increasing over the interval (0, +00), y = cschx is decreasing over this interval.
An analogous thing is true for (—00,0). So y = cschx has the shape shown in the figure
below. The graphing calculator https://www.desmos.com/calculator provides the specifics.

y=cschx

x _x
2 2

2 Y

1 z €£*67£ 2 e£ 2_9 el €7£ 67£ 2 et _2fe— T er Lo~
(sinh §)? = (E570)? — AR A B2 ey )

2
and therefore sinh”? £ = 1(coshz — 1). The equality cosh? £ = 1(coshz + 1) is verified in the
same way.

To verify the last identity, we’ll take a detour that will illustrate more of the similarities
between the properties of the hyperbolic and trigonometric functions. We'll start by verifying
the sum formulas

sinh(z + y) = sinhx - coshy 4 coshz - sinhy and

cosh(x + y) = coshx - coshy + sinh x - sinh y
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7.82.

7.83.

7.84.

of Example 7.47. Both involve nothing but straightforward multiplication of exponentials. In
the first case,

ef—e "\ (eY4e™Y ePte P\ (eV—e V) _ e*tV4et Y e TtV Ty ety P Yo Tty 2y
2 2 + 2 2 - 4 + 4
_ 2e*tY_Qe—Ty  erty_e—x—y
o 4 o 2

The sum formula for cosh follows in the same way. By dividing the sum formula for sinh by
the sum formula for cosh, we get

_ sinh(z4+y) _ sinhz-coshy+coshz-sinhy _  sinhz-cosh y+cosh z-sinhy
tanh(x + y) " cosh(z+y) ~ coshz-coshytsinhz-sinhy ~  (coshz-coshy)(1+Snhesinhy

cosh z-cosh y
sinh z-cosh y cosh z-sinh y

inh x-sinh + inh z-sint
(cosh:r;-coshy)(lJr%) (coshx'coshy)(lJr%)

sinhz + sinh Yy __ _ tanhaz+tanhy
(cosh z) (14 Snhaosinhy (cosh ) (14 Sinhz:sinhy 1+(tanhz)(tanhy) -

cosh z-coshy cosh z-coshy

Applying this addition formula for tanh with 7 in place of both z and y provides the last of
the analogues that the solution of Problem 7.81 calls for.

Refer to Example 7.48 for the fact that j—; sechz = (sechz)(2tanh®2 — 1). The calculator
http://web2.0calc.com shows that (sechz)(2tanh®z — 1) ~ —0.000374 for z = 0.881 and
(sech z)(2tanh® z — 1) =~ 0.000626 for x = 0.882. So the graph of y = sech z is concave down
for x = 0.881 and concave up for x = 0.882 and it has a point of inflection for some x with
0.881 < = < 0.882. By another such calculation, the graph of y = sechz is concave up for
x = —0.882 and concave down for x = —0.881 and it has a point of inflection for some x with
—0.882 < < —0.881. Check that this information is consistent with Figure 7.48.

At x = 1,2,3,4,5,10,15,20 the values of f(x) = 2% and g(x) = 2% are 1,4,9, 16,25, 100,
225,400 and 2,4, 8,16,32, 1024, 32,768, 1,048,576, respectively. So from 1 to 5 the values
of the two functions are close, but thereafter, the values of g(z) = 2% far outpace those of
f(x) = z%. Their graphs were already sketched in Figures 7.13 and 7.40.

Consider the function f(z) = 22% — 2* = 2%(2 — 2?). By the discussion about symmetry in
Section 7.13 the graph of the function is symmetric about the y-axis.

i. Notice that f(x) > 0 when 22 < 2 and that this is case precisely for V2 <x<V2.

ii. Since f'(z) = 4z — 42® = 4z(1 — 2?), the critical numbers are —1,0, and 1. Choose
—2,—1,1, and 2 as test points. Since f/(3) = 2(2) > 0 and f/(2) = 8(-3) < 0, f(z)
is increasing over the interval (0,1) and decreasing over (1,400). The symmetry of the

graph tells us that f(x) is increasing over over (—oo, —1) and decreasing over (—1,0).

iii. For a large negative = both factors of the product f'(z) = 4x(1 — %) are positive and
large. As x moves toward z = —1 the factors continue to be positive, but both get
smaller and at x = —1 one of the factors is zero so that f'(—1) = 0. At x = 1 one of
the factors is zero, so that f/(1) = 0. For z > 1 and increasing one factor is positive
the other negative so that the product f’(z) is increasing negatively. It follows that for
x > —1, the tangent lines have positive slope, but that their steepness decreases with
increasing = until at x = 1 the tangent is horizontal. In the same way, the tangent is
horizontal at x = 1 and becomes steeper negatively as x > 1 increases.
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iv. From f'(x) = 4z — 423, it follows that f”(z) = 4 — 1222 = —4(32% — 1). So f"(x) =0

).

4

for & = :l:\/ig ~ +0.58. The relevant intervals are (—oo, —\/ig), (—\/Lg, \/Lg), and (

Using x = —1,0, and 1 as test points, we conclude that the graph of f(z) = 2z* — x

8

)

b Sl

over these intervals is concave down, up, and down again, respectively.

v. The graph of f(z) = 22® — 2* is now easy to sketch. Use the information above and
plot a few points. The graphing calculator https://www.desmos.com/calculator provides
the figure below. In reference to the discussion in Section 7.13 about dominant terms,
notice that z? dominates the graph for z with |z| < 1 (the smaller |x|, the greater the
dominance) and that —x? dominates the graph for z with |z| > 1 (the larger the |z|, the
greater the dominance).

7.85. Solving f(z) = 325 — 22 = 0 for x, we get 2% = 3$§, hence x5 = 3, and therefore that
© = 431 ~ £2.28. So the graph crosses the z-axis at the points (£3%,0) ~ (+2.28,0). The

4
derivative f/(z) = 2273 — 2z = —2273 (23 — 1) = 277U s zero for # = +1 and is undefined
x3

for = 0. Since f(£1) =3 — 1 = 2, the graph has horizontal tangents at the points (£1, 2).

Since f(—x) = f(x) for any x, the graph is symmetric with respect to the y-axis. So

it is enough to analyze the graph for x < 0. For x < —1, the term T3 is negative and
4

4
T3

= (z3)* > 1, so that f/(z) = 22771 is positive. For —1 < z < 0, 27 is still negative and
x

23 = (23)* < 1, so that f'(z) = Li_l) is negative. The closer x moves to zero, the larger
negatively f'(z) becomes. It follows that for z < 0 the graph increases to the left of x = —1,
has a horizontal tangent at x = —1 and then decreases more and more steeply to a vertical
tangent at x = 0.
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The second derivative is f”(z) = —2273 — 2 = —2(—r +1). So the second derivative

3 3x3

is negative except at x = 0 where it is not defined. So the graph is concave down over the

intervals (—o0,0) and (0,+00). The information collected above confirms that the graph of

f(x) = 305 — 22 provided by Figure 7.58c (the graph below on the left) is correct. The graph
from https://www.desmos.com/calculator (below on the right) is more precise confirmation.

A

AN Y

7.86. We'll develop basic relevant information about the nine functions.

(1)

For g(z) = 2® — 3z, we have ¢'(z) = 322 — 3 = 3(2? — 1) = 3(z + 1)(z — 1). So the
graph of g(x) is increasing over (—oo, —1) and (1, 00) and decreasing over (—1,1). It has
horizontal tangents at the points (—1,2) and (1, —2). The slope of its tangent line at
(0,0) is —3. The only graph that satisfies all these properties is (b).

For g(z) = 23, we see that ¢'(z) = 3z? and ¢”(x) = 6z. It follows that the graph
is increasing throughout and that it concave up over (—oo,0) and concave down over
(0,00, —1). The slope of its tangent at (0,0) is zero. The only graph that satisfies all
these properties is (a).

For g(z) = 2® — 1 the derivatives are ¢'(z) = 322 and ¢”(x) = 6x. So the graph of g(z) is
increasing, goes through (0, —1), and its tangent has slope zero there. Graph (g) is the
only possibility.

The function g(z) = 2* + x has ¢/(z) = 32® + 1 and ¢"(x) = 6x. Again the graph is
increasing throughout and its tangent at (0, 0) has slope 1. The information corresponds
to graph (c).

The function g(r) = 2® + 4z has ¢'(x) = 32® + 4 and ¢"(x) = 6x. Once more the graph
is increasing throughout and its tangent at (0,0) has slope 4. This matches graph (h).

The function g(z) = 2® + 22 has ¢/(z) = 32% + 22 = 3z(z + %) and ¢"(z) = 6z + 2.
The graph has horizontal tangents at the points (0,0) and (—%, 2%
inflection for x = —% with the graph concave down to the left of x = —% and concave up

to the right. Note that (e) is the only possibility.

). There is a point of
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7.87.

(7) The function g(x) = #* — x has ¢/(z) = 32> — 1 = 3(2® — 1) and ¢"(z) = 6x. The graph
has horizontal tangents for x = i\/ig and its tangent has slope —1 at (0,0). This fits
graph (i).

(8) For g(x) = x* — 2z, we have ¢/(z) = 32 — 2 = 3(2? — 2). So the graph has horizontal
tangents at x = j:\/g and the tangent at (0,0) has slope —2. Graph (f) matches this.

(9) The function g(z) = 2® — 22 has ¢/(z) = 32* — 22 = 3z(z — %) and ¢"(z) = 6z — 2.
The graph has horizontal tangents at the points (0,0) and (%, —%). There is a point of
1

inflection for x = % with the graph concave down to the left of z = 3 and concave up to

the right. Graph (d) agrees with this information.

i. If the line z = 3 were to be a vertical asymptote of the graph of f, then lim f(x) = 400
T3~

or lim f(z) = 4oo (or both). But this is not the case because lim f(r) = lim g(z) = 2
T3~

z—3t+ r—3~ 6

d I = li =2
and Jig J(0) = g o) =5

ii. For any + < —3, we have  +3 < 0 and z + 2 < 0, so that 22 > 0. On the other

z+3
hand, for any x > —3, we have z +3 > 0 and = + 2 < 0, so that i—ig < 0. That
lim %2 = 400 and lim %2 = 400 is clear. Using what was just observed, we now
z—s—3- TF3 g3+ TF3

know more precisely that

i z+2 i z+2
i 2500 iy 22— o0
So z = —3 is a vertical asymptote of f(z) = “"315—:6. Because f(x) is defined f0r2all T
except x = %3 it is the only vertical asymptote. The fact that lim 2 = lim 1+§ =1
z—>too T3 z—+oo 115

tells us that y = 1 is a horizontal asymptote for the graph.

15

10

(3]

-10

-15
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—2

iii. By the quotient rule, ¢'(z) = (IJF(?C);?)()’;H) =G J:3)2 and by the chain rule ¢"(z) = 755

(Note the incorrect double minus in the text’s formulation of ¢”(z).) Because (er;3)2 >0
for all x, the graph is increasing both to the left and right of its vertical asymptote
r = —3. For x < =3, z +3 < 0, so that ¢’(x) > 0. For x > =3, z + 3 > 0, so that
g"(x) < 0. So the graph is concave up for z < —3 and concave down for x > —3. Since

g(z) is not defined at * = —3 there is no point of inflection. The above graph of the

function was drawn with https://www.desmos.com/calculator.

7.88. Setting f(x) = %xz —1 =0, we get %mQ = 1 and hence 22 = 2. So z = ++/2 are the roots

of 122 — 1. Let’s see what Newton’s method gives us. Note that f’(z) = z. Starting with
c1 = 2, we get

_ 2 _ 52°-1 1 _ 3
¢ = 2-pg =25 =2-5=3

3 & 3 33*1 3 2 1 9,2 _
C3 = i—f,é)—5—%—5—5'5'1—1-3—1.4167
cr = 14167 — S50 = 14167 — 0.0025 = 1.4142.

Checking with a calculator that V2 = 1.414213562... we see that Newton’s method has
already closed in on the root /2 to within the required four decimal place accuracy. This
should mean that ¢ = 1.4142 rounded to four decimal places. Let’s check. Because ¢4 =
1.4142,

_ sLa1a)
c5 = 14142 — F5E0 = 1.414213562 ... .

So ¢5 turns out to be an approximation of y/2 that is accurate not only up to four, but in
fact, up to nine decimal places.

7.89. We get f'(z) = 32% + 2z — 7. Starting with ¢; = 3 gives us

¢ = 3—43 =3-3 =26923

s = 26923 — LR — 2.6923 — B — 2.6467

i = 26467 — LS = 2.6467 — SU — 2.6458

5 = 26458 — RO — 2.6458 — S — 2.64575335.

This agrees with c; when rounded off. So the process is finished.

Refer to segment 4E of Section 4.7. From the fact that f(—1) = —-1+14+7—-7=0, it
follows that = + 1 divides 3 + 22 — 7Tz — 7. Doing the division z + 1 |23 + 22 — T2 — 7 we
get that 2% + 2% — 72 — 7 = (2 + 1)(2? — 7). So the roots are —1 and z = ++/7. So ¢4 can only
be an approximation of V7. Because /7 ~ 2.645751311, this is indeed so.

7.90. We get f'(z) = 32% + 2z + 7. Starting with ¢; = 3 gives us

¢y = 3—43 =3 % = 1.4000

cs = 14000 — FETEE = 1.4000 — 228 = 0.0286

s = 0.0286 — LG = 0.0286 — L3010 — —0.9914

s = —0.9914 — L4 = —0.9914 — 29657 — —1.00002437.
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The convergence is to the root —1 of 2% 4+ 2% + 7z + 7. By dividing 2 + 2* + 7x + 7 by = + 1,
we get 2% + 2% + 7o + 7= (x4 1)(2? + 7). It follows that z = —1 is the only root of f(z).

7.91. i. The generic graphs below illustrate the convergence of Newton’s method in each case.

Y

ii. Two more generic graphs illustrate the convergence of Newton’s method.

v

(b)

iii. In the two situations below, the point that the second iteration produces ends up far
outside the interval [a, b]. Depending on the behavior of the graph “out there” anything

Y

31



7.92.

7.93.

can happen. For instance, the process may converge to a solution d of f(z) = 0 that
satisfies one of the conditions (i) and (ii) above (if there is such a d).

The function f(x) = x* — 3z% 4 2 has derivative f'(z) = 42® — 62 = 4z(2? — 2) and second
derivative f”(z) = 122% — 6 = 12(2? — 3).
3
2
tal tangents at the three points listed. Taking test points in each of the four intervals

(—o0, _\/E)’ (_\/g, 0), (0, \/g), and (\/g o0), say —2,—1,1, and 2, we see that f'(—2) < 0,

Since the solutions of f'(z) = 0 are z = —\/g,(), and the graph has horizon-

2 2 2
f'(=1) >0, f'(1) <0, and f'(2) > 0, so that the graph of f(x) is decreasing over the first of
these intervals, increasing over the second, decreasing over the third, and increasing over the
last.
The points of inflection occur for x = j:\/g . Picking as test points —1,0, and 1 in the inter-

29 29
and f”(1) > 0. Therefore the graph of f(z) is concave up over the first and third of these

vals (—oo, —\/g), (—\/T \/g), and (\/T 00), respectively, we see that f”(—1) > 0, f”(0) < 0,

intervals and concave down over the second. The graph of f(z) = 2* — 32% + 2 sketched above
was drawn with https://www.desmos.com/calculator.

For the guess ¢; = 3 first case of Problem 7.91i applies to show that Newton’s method
converges to the root v/2 of f(x).

For ¢; = %, there is a horizontal tangent. This horizontal tangent intersects the graph
at (—\/g, —1) so that Newton’s method goes nowhere.

For ¢ = 1.1, we get ¢; = 1.1 — £k = 1.1 — =488 ~ 0.9700. Since the graph of f(z)

is increasing and concave up over the interval [y, 1], the first case of Problem 7.91ii tells us
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that Newton’s method will converge to the root 1 of f(z). The same observation applies to
cp = 0.9.

Finally, ¢; = 0.1. The slope of the tangent to the graph of f(z) at (0.1,1.9701) is f/(0.1) =
4(0.1)>—6(0.1) = —0.5960. So this tangent line has equation y —1.9701 = —0.5960(x —0.1) or
y = —0.5960x 4-0.0596 + 1.9701 = —0.5960x +-2.0297. Setting y = 0, we get 0.5960x = 2.0297
and hence z = ¢9 =~ 3.4055. We are now in the same situation as the case ¢; = 3.

The site http://keisan.casio.com/exec/system /1244946907 carries out Newton’s method for any
differentiable function f(x).

We'll close the set of solutions for Chapter 7 by returning to Example 7.14 and the question
of the convergence of the sawtooth pattern depicted in Figure 7.24 to the origin (both from the
left and the right). The answer that this is so was provided to me by my Notre Dame colleague
Laurence Taylor. His argument follows. It is much more subtle than one might have expected.

Let y = 2% and pick a point (s, s?) in the first quadrant. Pick a positive slope m. There are two
generic problems to solve.

1. Pick any point (tg,3), to > 0 and find the intersection of the line of slope m with the z-axis.
This is the line y = mx + (t3 — mty), so that the z-coordinate of the point is

t
UO:t()(]_—EO)

0 < ug < to. (1)

As long as m > ty, we have

Let’s suppose hereafter that m > s.

2. Start with any point (wp,0), wg > 0 and run the line of slope —m through this point up to

the point (vg,v2) on y = z? in the first quadrant. Since this line is y = —mz + mwy, we get
US = —muy + mwy or vg + mvy — mwy = 0. Therefore
—m £ /m? + dmuwy
Vo = 9 .

If we were to take the minus sign we would be in the second quadrant so

—m + vm? + dmwy
5 )

Vo =

Note that
0 <y < Wo, (2)

since m? < m? + 4mwy < (m + 2wp)?. Note also that
vg = m(wy — ) (3)
which also proves wy > vg.
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Now define the sequences {a,}22, and {b,}°°, inductively as follows.

® ag = s, by = ug computed with tg = s.
e For n > 0, a,11 = ug computed with ¢ty = b,,.

e For n > 0, b, = vy computed with wy = a,,.

From (1) we see that a,y1 < b,, and from (2) it follows that b, < a,. Since ag = s is greater
than a,, n > 0 and b,, for all n, m > a, and m > b, for all n. It further follows that a,, > 0 and
b, > 0 for all n. The sequence (a,, 0) are the points of the sawtooth on the z-axis and the sequence
(b,,b%) are the points on the parabola. Note that

0< b, <, <bp_1<-by<ayg=s<m.
Hence 0 < lim a, = limb,,. From equation (3) above
lim b2 = mlim(a, — b,).

Hence lim b2 = 0 and since lim b, exists, lim b, = 0. Finally lim a,, = limb,, = 0.
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