
Solutions to Problems and Projects for Chapter 2

We’ll start with some problems that investigate some basics about parabolas and ellipses.

2.1. i. Since V is on the parabola, the distance from V to the directrix is d. Let Q be a

point on the parabola such that FQ is parallel to the directrix. So the distance

from Q to the directrix is 2d. Hence the distance from Q to F is equal to 2d.

Hence Q is the point specified in Figure 2.36a.

ii. By Proposition P1, the tangent to the parabola at V is perpendicular to the

directrix. An application of Proposition P2 to Figure 2.36a, where the points P

and Q take the place of S and C, tells us that d
y

= (2d)2

x2
. So y

d
= x2

4d2
, and hence

y = 1
4d
x2.

2.2. Consider the vertical axis of the ellipse through O. This is the focal axis of the el-

lipse. By Proposition E1 the tangents at the upper and lower points of intersection

of the ellipse with its focal axis are both perpendicular to the focal axis. By applying

Proposition E2 to Figure 2.36b with the point P taking the place of C, we get that
(a+y)(a−y)

x2
does not depend on the value of y. Since x = b when y = 0, it follows that

(a+y)(a−y)
x2

= a2

b2
. Therefore, a2 − y2 = a2

b2
· x2 and hence x2

b2
+ y2

a2
= 1.

2.3. Suppose that the mirror is a part of the ellipse of Figure 2.7. Let a light ray emanate

from the focal point F1 and suppose that it strikes the mirror at the point P . The basic

property of a light ray striking a mirror is that the angle of incidence is equal to the

angle of reflection. Combining this with the assertion of Proposition E1 tells us that

the elliptical mirror reflects the light ray from P to F2. So any light ray that emanates

from F1 and strikes the mirror is reflected back through F2. Similarly, if a powerful

sound source is placed near an elliptical screen in such a way that the sound source is

at one focus and a patient’s kidney stone at the other, then the sound waves that hit

the screen will be deflected to reconverge at the kidney stone. If all goes according to

plan, this reconvergence will be powerful enough to shatter the stone.

2.4. The trapezoid of Figure 2.37a is divided into two triangles of height h. One has base a,

the other, base b. The sum of their areas is 1
2
ah+ 1

2
bh = 1

2
(a+ b)h. Another approach

involves the observation that the trapezoid consists of a rectangle with base b and

height h and (once it is removed), a triangle with base a− b and height h. The sum of

the two areas is bh+ 1
2
(a− b)h = 1

2
(a+ b).

2.5. Notice that ∠DAE + ∠CAB = π
2

and that ∠DAE + ∠EAB + ∠CAB = π. So

∠EAB+ π
2

= π and therefore ∠EAB = π
2
. Using the fact that the quadrilateral CBED

consists of three triangles, tells us that its area is equal to 1
2
ab+ 1

2
ab+ 1

2
c2 = ab+ 1

2
c2.

Since CBED is a trapezoid with parallel lines of lengths a and b that are a distance

a+ b apart, the area of CBED is also equal to 1
2
(a+ b)(a+ b) (using the conclusion of

Problem 2.4.). Since this last term is equal to ab+ 1
2
(a2+b2), it follows that a2+b2 = c2.



The derivation of Heron’s formula that Problems 2.6, 2.7, and 2.8 outlines relies on the

triangle T sketched in Figure 2.38.

2.6. Let α = ∠CAB. Let h be the height of T relative to the base AB and notice that

sinα = h
b
. Since AB = c, the area of T is 1

2
ch = 1

2
bc sinα. If α = ∠CAB is obtuse,

then by Figure 1.28, the discussion that follows it, and similar triangles, the equality

sinα = h
b

still holds. Therefore the conclusion that 1
2
bc sinα is the area of T does as

well.

2.7. By the law of cosines, a2 = b2 + c2 − 2bc cosα. So cosα = b2+c2−a2
2bc

. Hence sin2 α =

1−
[
b2+c2−a2

2bc

]2
= (2bc)2−(b2+c2−a2)2

(2bc)2
, and therefore, sinα =

√
(2bc)2−(b2+c2−a2)2

2bc
. By sliding

this into the conclusion of Problem 2.6, we get area T = 1
4

√
(2bc)2 − (b2 + c2 − a2)2.

2.8. In reference to the steps,

area T = 1
4

√
[2bc+ (b2 + c2 − a2)][2bc− (b2 + c2 − a2)]

= 1
4

√
[(b+ c)2 − a2)][a2 − (b− c)2]

= 1
4

√
[(b+ c) + a)][(b+ c)− a)][a− (b− c)][a+ (b− c)]

=
√

1
2
[(b+ c) + a)] · 1

2
[(b+ c)− a)] · 1

2
[a− (b− c)] · 1

2
[a+ (b− c)]

=
√
s(s− a)(s− b)(s− c),

the first applies the identity x2−y2 = (x+y)(x−y) with x = 2bc and y = (b2 +c2−a2)
to the area formula of Problem 2.7; the second is verified by multiplying (b + c)2 and

(b− c)2 out; the third step uses x2 − y2 = (x + y)(x− y) twice (first with x = (b + c)

and y = a, and again with x = a and y = (b− c)); the fourth step brings 1
4

inside the

radical as 1
16

= 1
2
· 1
2
· 1
2
· 1
2
; and the fifth uses s = 1

2
(a+ b+ c).

We already know that the conclusion of Problem 2.6 does not depend on the

assumption that α is acute. A look at the solutions of Problems 2.7 and 2.8 (as

described above) shows that neither of them depends on the assumption that α is

acute..

2.9. Letting s = 1
2
(5 + 7 + 10) = 11 in Heron’s formula, we get that the area of the triangle

is
√

11(11− 5)(11− 7)(11− 10) =
√

11 · 6 · 4 =
√

264 ≈ 16.25.

2.10. The bisector of the angle at the upper vertex is perpendicular to the base of the triangle.

(Why?) So sin 60◦ = h
2
, where the is the height h of the triangle. Since sin 60◦ =

√
3
2

,

h =
√

3 and hence the area of the triangle is
√

3. Since the three angles of the triangle

add to 180◦, the areas of the triangular sectors at the vertices add to one-half of the

area of a circle of radius 1. It follows that the area of the three-pointed star is
√

3− π
2
.

Turning to the square, notice that the sectors at the four corners add to a full circle of

radius 1. So the area of the four-pointed star inside the square is 4− π.
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2.11. By a formula in Section 2.2, the area of the sector of the circle that θ (in radians)

determines is 1
2
r2θ. By the solution of Problem 1.9, the center O of the circle lies on the

perpendicular bisector of the segment AB. It follows that this perpendicular bisector

splits the angle θ into two equal halves. This tells us that sin θ
2

=
1
2
AB

r
and that cos θ

2
=

h
r

where h is the height of the triangle with base AB. Therefore the area of this triangle

is r2 sin θ
2

cos θ
2
. It follows that the shaded section of the circle in Figure 2.40 has area

1
2
r2θ − r2 sin θ

2
cos θ

2
. By the half-angle formula of Problem 1.26i, sin θ

2
cos θ

2
= 1

2
sin θ.

O

B

A

r

θ

Fig. 2.40

So this area is equal to 1
2
r2(θ − sin θ).

2.12. If r = 7 and θ = 50◦, then (after converting θ to radians) the area is equal to
1
2
72
(
50◦ π

180◦
− sin(50◦ π

180◦
)
)
≈ 2.61. In the case r = 5 and arc AB = 8, θ = 8

5
. In

this situation, the area is 1
2
52
(
8
5
− sin 8

5

)
≈ 7.51.

O

C

B

A

r

A
1

A
2

A
3

Fig. 2.41
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2.13. Let’s follow the hint. Figure 2.41 above tells us via the Pythagorean theorem, that

AB =
√

2r. So the half-circle with diameter AB has area 1
2
π
(√

2r
2

)2
= 1

4
πr2. It follows

that if A1 is the area of ∆AOB, A3 is the area of the shaded moon shape, and A2 is

the area of the region between them, then A1 + A2 = A2 + A3. So A1 = A3.

2.14. Continue to refer to Figure 2.41. The area formula of Problem 2.11 with θ = π
2

shows that the area A2 is equal to 1
2
r2(π

2
− 1). Since the area of the shaded lune

is equal to the area of the semicircle with diameter AB minus the area A2, we get
1
2
π
(√

2r
2

)2 − A2 = 1
4
πr2 − 1

2
r2(π

2
− 1) = 1

2
r2 for the area of the lune. But this is equal

to the area of the right triangle.

2.15. Turn to Figure 2.42 and observe:

i. The sum of the areas of the two smaller semicircles is 1
2
π(a

2
)2 + 1

2
π( b

2
)2. Adding

the area of the right triangle gives us

1
2
π(a

2
)2 + 1

2
π( b

2
)2 + 1

2
ab = 1

2

[
π(a

2
)2 + π( b

2
)2 + ab

]
Subtracting from this the area of the semicircle of diameter c and using the fact

that c2 = a2 + b2, tells us that the sum of the areas of the shaded lunes is

1
2

[
π(a

2
)2 + π( b

2
)2 + ab

]
− 1

2
π( c

2
)2 = 1

2
ab

as we needed to show.

ii. The area of the right triangle with base c is greatest when its height is greatest.

A look at Figure 2.42 show that this is so when a = b.

iii. Letting b shrink to 0 pushes a to c and 1
2
ab to 1

2
c · 0 = 0. So the sum of the areas

of the lunes can be made as small as desired. So there is no smallest area. (The

stipulation that there needs to be a triangle rules out the case b = 0.)

2.16. Since AOB is a diameter of a circle and C is on the circle, ∆ABC is a right triangle

by a result in Section 1.3. Figure 2.43a denotes the lengths AP and PB by a and b

respectively. The radius of the circle is r = a+b
2

. The distance from C to the vertical

radius of the circle is x = r − b = a
2

+ b
2
− b = a−b

2
and y = PC is the height of the

triangle ∆ABC.

i. In the special case of a circle, the semimajor and semiminor axes of an ellipse are

both equal to the radius of the circle. Since the radius of the circle of the figure

is r = a+b
2

, an application of Example 2.1 tells us that x2 + y2 = (a+b
2

)2. Since

x = a−b
2

, we get y2 = (a+b
2

)2 − (a−b
2

)2 = 2ab
4

+ 2ab
4

= ab. Therefore, y =
√
ab.

The triangles ∆ACP and ∆CBP are both similar to ∆ABC. This is so

because ∆ABC is a right triangle and because each of these two right triangles

shares an acute angle with ∆ABC. Since are ∆ACP and ∆CBP are similar to

each other, the ratio y
b

is equal to the ratio a
y
. So y2 = ab and hence y =

√
ab.
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By applying the Pythagorean Theorem to each of the triangles ∆ACP, ∆CBP ,

and ∆ABC, we get AC2 = y2 + a2, CB2 = y2 + b2, and (a + b)2 = AC2 + CB2.

So (a + b)2 = y2 + a2 + y2 + b2. Therefore 2ab = 2y2, and y =
√
ab follows once

more.

ii. That the area of the triangle ∆ABC is 1
2
(a+ b)y = 1

2

√
ab(a+ b) follows from (i).

iii. The shaded area of Figure 2.43b is equal to 1
2
π(a+b

2
)2 − 1

2
π(a

2
)2 − 1

2
π( b

2
)2 =

1
2
π
[ (a+b)2

4
− a2

4
− b2

4
] = 1

2
π ab

2
= π(y

2
)2. But this is equal to the area of the cir-

cle with diameter CP .

2.17. Turn to Figure 2.44 and let AC = DB = a and CD = b. Using the fact that a

semicircle of diameter d has area 1
2
π(d

2
)2 = 1

8
πd2, we get that the area of the curving

C b B

Q

A a aD

O

P

Fig. 2.44

figure bounded by the three semicircles is equal to

1
8
π(2a+b)2−2· 1

8
πa2+ 1

8
πb2 = 1

8
π(4a2+4ab+b2−2a2+b2) = 1

8
π(2a2+4ab+2b2) = π (a+b)2

4
.

Since PQ = a+ b
2

+ b
2

= a+ b, the circle of diameter PQ also has area π(a+b
2

)2.

2.18. WithO placed on the diameter by marking off a distance a from the lower right vertex of

the square on the right, draw in the two segments OA and OB from O to the upper cor-

ners of the two squares as in the figure below. By the Pythagorean theorem, the lengths

of OB and OA are
√
a2 + b2 and

√
(a+ (b− a))2 + a2 =

√
a2 + b2 and hence equal.

Let C be the center of the circle. So CA and CB are both equal to r. That C = O

a

b

aO

B

A
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follows easily. If C were to lie to the left of O, then r = CA < OA = OB < CB = r,

a contradiction. In the same way, C cannot lie to the right of O. Since r2 = a2 + b2,

it follows that the ratio of the area of the semicircle over the sum of the areas of the

two rectangles is
1
2
πr2

r2
= π

2
.

2.19. Substituting successively 1, 2, 3, and 4, for i in the expression
4∑
i=1

i and adding after

each substitution gives us the sum 1 + 2 + 3 + 4. Doing a similar thing for
5∑
i=2

i2 gives

22 + 32 + 42 + 52, doing so with
6∑
i=3

ii gives us the sum 33 + 44 + 55 + 66, and, finally,

doing this with
6∑
i=4

i2i gives the sum 48 + 510 + 612.

2.20. The black areas of the four squares (from left to right) are 1
2
, 1

2
+ 1

4
, 1

2
+ 1

4
+ 1

8
and

1
2

+ 1
4

+ 1
8

+ 1
16

or, in rewritten form, 1
2
, 1
2

+ 1
22

, 1
2

+ 1
22

+ 1
23

and 1
2

+ 1
22

+ 1
23

+ 1
24

, or again,
1∑
i=1

(
1
2

)i
,

2∑
i=1

(
1
2

)i
,

3∑
i=1

(
1
2

)i
, and

4∑
i=1

(
1
2

)i
. By repeating this for a large number of steps,

say n = 1,000,000 or more, we see that the black area
n∑
i=1

(
1
2

)i
grows imperceptibly

close to the area of the 1× 1 square. Letting n go to ∞, we get lim
n→∞

n∑
i=1

(
1
2

)i
= 1.

2.21. Is it the case that if the pattern of parallelograms of Figure 2.47 is continued, then each

point of the triangle will eventually lie in one of these parallelograms? Does the infinite

array of parallelograms fill out the entire triangle? Put another way, is the sum of the

areas of all these parallelograms equal to the area of the triangle? The parallelogram

R1 with base 1
2
b has height 1

2
h since the triangle above it is similar to the given triangle.

So R1 has area 1
4
bh. The two parallelograms of the next tier both have base 1

2
· 1
2
b = 1

4
b

and height 1
2
· 1
2
h = 1

4
h (again, because the triangles above the two parallelograms are

similar to the original triangle). So the area of each these parallelograms is 1
16
bh. Since

there are two of them, the area that is added by the second tier is 1
8
bh. The area that

the four parallelograms of the next tier add is 4× (1
8
b)(1

8
h) = 1

16
bh. In the same way,

the area that each tier of parallelograms adds is 1
2

the area of those of the previous

tier. The unfolding pattern tells us that the area of the triangle is equal to

1
4
bh+ 1

8
bh+ 1

16
bh+ 1

32
bh+ . . . = 1

2
bh(1

2
+ 1

4
+ 1

8
+ 1

16
+ . . . ).

In view of the conclusion of Problem 2.20 this is equal to 1
2
bh. So the sum of the areas

of all the parallelograms of the infinite array is equal to the area of the triangle. In the

case of an acute triangle do the same thing by working with the figure shown below.
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R2

R1

R2

`

2.22. Notice first that the shaded squares together yield 1
3

of the 1× 1 square. On the other

hand the areas of these squares add to

(1
2
)2 + (1

4
)2 + (1

8
)2 + ( 1

16
)2 + · · · = 1

22
+ 1

24
+ 1

26
+ 1

28
+ · · · = 1

4
+ 1

42
+ 1

43
+ 1

44
+ . . .

This verifies the result.

2.23. The identity Sn = 1 + x + x2 + · · · + xn−1 = 1−xn
1−x holds for any positive integer n

and any real number x 6= 1. That lim
n→∞

Sn = 1
1−x when |x| < 1 is established in the

narrative of the problem. So the sum 1 + x+ x2 + · · ·+ xn−1 + · · · of infinitely many

terms adds up to the finite number 1
1−x . For x = 1, Sn = n, and for x = −1, Sn = 1

when n is odd and Sn = 0 when n is even. In neither case does Sn add to a fixed

finite number when n is pushed to infinity. The same is true when |x| > 1, because in

this case, the absolute value |xn| of xn keeps getting larger and larger when when n is

pushed to infinity.

2.24. Since a+ar+ar2+ar3+· · ·+arn−1+· · · = a(1+r+r2+r3+· · ·+rn−1+· · · ) and |r| < 1,

it follows from Problem 2.23, that a+ar+ar2 +ar3 + · · ·+arn−1 + · · · = a
(

1
1−r

)
= a

1−r .

2.25. The sum 1 + 1
2

+ 1
22

+ 1
23

+ · · · is of the form 1 + x+ x2 + x3 + · · · with x = 1
2
. So by

Problem 2.23, the sum 1 + 1
2

+ 1
22

+ 1
23

+ · · · adds to the finite number 1
1−x = 1

1− 1
2

= 2.

It follows that 1
2

+ 1
22

+ 1
23

+ · · · adds to 1. For 1 + 1
4

+ 1
42

+ 1
43

+ · · · , take x = 1
4

to see

that 1 + 1
4

+ 1
42

+ 1
43

+ · · · = 1
1−x = 1

1− 1
4

= 1
3
4

= 4
3
.

2.26. The information provided tells us that the triangle inscribed in the parabolic section

has base 7 and height 4. So the area of the triangle is 1
2
· 7 · 4 = 14. Therefore, by

Archimedes’s theorem, the area of the parabolic section is 4
3
· 14 = 64

3
.

2.27. The distance from the vertex to the cut is the height h of the inscribed triangle. So

the area of the inscribed triangle is 1
2
5h. By Archimedes’s theorem, 16 = 4

3
· 5
2
h = 10

3
h.

So h = 48
10

= 24
5

.

2.28. The height h of the triangle in Figure 2.49 satisfies, sinα = h
c
. So the area of the

triangle is 1
2
bc sinα. Therefore by Archimedes’s theorem, the area of the parabolic

section ABC is 4
3
· 1
2
bc sinα = 2

3
bc sinα.
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2.29. Refer to Figure 2.50. Since the points S and S ′ on the parabola are 7 units from the

directrix, they are also both 7 units from the focal point F . Consider the triangle

∆SFS ′ and notice that its height is 7 − 3 = 4. Since ∆SFS ′ is isosceles, the focal

axis divides the triangle ∆SFS ′ into two congruent right triangles. By applying the

Pythagorean theorem, we get (1
2
SS ′)2 = 72 − 42 and 1

2
SS ′ =

√
33. The length of the

cut SS ′ is 2
√

33. Let V be the vertex of the parabolic section. Since FV = 3
2
, it

follows that the area of ∆SV S ′ is equal to
√

33(4 + 3
2
) = 11

2

√
33. Hence the area of the

parabolic section is 4
3
· 11

2

√
33 = 22

3

√
33.

2.30. Consider Figure 2.51. By applying Proposition E1 to the circle (so that both focal

points are at the center O), we get that the radius OV is perpendicular to the tangent

at V . By the conclusions of Problem 1.9, O lies on the perpendicular bisector of SS ′.

Since ∠OSS ′ and ∠OS ′S are equal, it follows that ∠SOV and ∠S ′OV are also equal.

So the perpendicular bisector of SS ′ coincides with the radius OV . Therefore, the

tangent at V and the segment SS ′ are both perpendicular to OV .

i. The area A of the circular section SV S ′ is the difference between the area of

the sector OSV S ′ and the triangle ∆SS ′O. So A = 1
2
θr2 − r2 sin θ

2
cos θ

2
. By the

half-angle formula of Problem 1.26i, A = 1
2
r2(θ − sin θ). Consider the triangle

∆SV S ′. Its height relative to the base SS ′ is r − r cos θ
2
. It follows that its area

B is (r sin θ
2
)(r − r cos θ

2
) = r2(sin θ

2
− sin θ

2
cos θ

2
) = 1

2
r2(2 sin θ

2
− sin θ).

ii. In view of i, A
B

= θ−sin θ
2 sin θ

2
−sin θ . With θ = π, sin θ = 0, sin θ

2
= 1, so that A

B
= π

2
.

With θ = π
2
, sin θ = 1, sin θ

2
=
√
2
2
, so that A

B
=

π
2
−1√
2−1 .

2.31. The distance d2 has to satisfy 5 · 3 = 7 · d2. So d2 = 15
7

.

2.32. On the one hand, 80 ·d1 = 15 ·d2 and on the other, d1+d2 = 9. So 80 ·d1 = 15 ·(9−d1).
Therefore, 95d1 = 135. Hence d1 = 135

95
= 27

19
= 1 8

19
and d2 = 9 − 27

19
= 171−27

19
= 144

19
=

711
19

.

2.33. Go through the proof and note that the location of XZ is irrelevant.

2.34. Let h be the distance (in feet) from the water level to the bottom of the block. So

the volume of the submersed part of the block is (0.6)(0.6)h = 0.36h. It follows that

0.36h = 0.16 and hence that h = 0.16
0.36
≈ 0.44 feet. Because 0.44

0.6
≈ 0.73, about 73% of

the block is submersed. Note the misprint in the statement of the problem: it should

be “along the 0.6-foot height of the block” not “along the 1-foot height of the block”.

2.35. The weight of the water that volume of 5,000 cubic feet displaces is 5000 × 62.5 =

312,500 pounds. This is the maximum upward force on the boat. Since he hull weighs

100,000 pounds, this leaves a maximum of 212,000 pounds for the cargo.

2.36. In the situation where w1 = 1
3
w and hence w2 = 2

3
w, the gold in the crown will lose

1
3
f1 pounds and the silver will lose 2

3
f2 pounds. Therefore f = 1

3
f1 + 2

3
f2. Since

8



f2−f
f−f1 =

f2−( 13f1+
2
3
f2)

( 1
3
f1+

2
3
f2)−f1

=
1
3
f2− 1

3
f1

2
3
f2− 2

3
f1

= 1
2

= w1

w2
.

If w1 = cw, then w2 = w − w1 = (1 − c)w. Now the gold in the crown will lose cf1
pounds and the silver (1− c)f2 pounds. So f = cf1 + (1− c)f2, and hence

f2−f
f−f1 = f2−(cf1+(1−c)f2)

(cf1+(1−c)f2)−f1 = cf2−cf1
(1−c)f2−(1−c)f1 = c

1−c = w1

w2
.

2.37. Continue to let the pound be the unit of weight and let the cubic foot be the unit of

volume. With the crown displacing v pounds per cubic foot, the upward force of the

water on the immersed crown is 62.5v pounds. In the same way the upward forces on the

immersed lumps of gold and silver are 62.5v1 and 62.5v2 pounds, respectively. Inserting

this information into the discussion of Problem 2.36, we get f = 62.5v, f1 = 62.5v1,

and f2 = 62.5v2 pounds, respectively. If the crown is made of w1 pounds of gold and

w2 pounds of silver, then by a substitution, w1

w2
= v2−v

v−v1 .

2.38. Let w1 and w2 be the the amounts of gold and silver in the crown in pounds. So

w1 + w2 = 3. Since 0.698 pounds of gold displaces 1 cubic inch, 1 pound of gold

displaces 1
0.698

cubic inches and 3 pounds displace 3
0.698
≈ 4.30 cubic inches. Similarly,

3 pounds of silver displace 3
0.379

≈ 7.92 cubic inches. Inserting v = 5, v1 = 4.30, and

v2 = 7.92 into the formula that Problem 2.37 provides, we get that w1

w2
≈ 2.92

0.70
≈ 4.17.

So 4.17w2 + w2 ≈ 3, hence w2 ≈ 3
5.17
≈ 0.58 pounds and w1 ≈ 2.42 pounds. Since

2.42
3
≈ 0.81, about 81% of the crown is gold.

2.39. 85 = πε, 842 = ωµβ, 34547 = γM′δφµζ, 2,875,739 = σπζM′εψλθ, and 99,999,999 =

′θ θMθ θ.`

2.40. For n = 4, nn
2

= 416 = 4,294,967,296, with n = 5, nn
2

= 525 = 298,023,223,876,953,125,

and for n = 6, nn
2

= 636 = 10,314,424,798,490,535,546,171,949,056. So even with the

small numbers n = 5 and n = 6 Archimedes scheme is already huge.
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