
Solutions to Problems and Projects for Chapter 6

6.1. Use Newton’s derivative formula to show that

i. g(x) = 4x5 has derivative g′(x) = 20x4.

ii. h(x) = 7

x−
2
3

= 7x
2
3 has derivative h′(x) = 14

3
x−

1
3 .

iii. f(x) = 5x
1

100 − 4x
1
3 has derivative f ′(x) = 1

20
x−

99
100 − 4

3
x−

2
3 .

iv. g(x) = −2x
1
3 + 3x5 − 6 has derivative g′(x) = −2

3
x−

2
3 + 15x4.

v. f(x) = 3(
√
x)7 = 3(x

1
2 )7 = 3x

7
2 has derivative f ′(x) = 21

2
x

5
2 .

vi. y = x
2
7 + 30x4 − 1

4
x

5
3 has derivative dy

dx
= 2

7
x−

3
7 + 120x3 − 5

12
x

2
3 .

6.2. The required generic antiderivative is

i. F (x) = 1
2
x4 + C for f(x) = 2x3.

ii. F (x) = 5 · 3
4
x

4
3 + C = 15

4
x

4
3 + C for f(x) = 5x

1
3 .

iii. F (x) = 3 · 1
6
x6 + 1

4
· 7

9
x

9
7 + C = 1

2
x6 + 7

36
x

9
7 + C for f(x) = 3x5 + 1

4
x

2
7 .

iv. F (x) = 6
5
x5 − 3

8
· 3

8
x

8
3 + C = 6

5
x5 − 9

64
x

8
3 + C for f(x) = 6x4 − 3

8
x

5
3 .

6.3. Newton’s area function for a simple function f(x) is an antiderivative A(x) of the

function satisfying A(0) = 0. Since any two antiderivatives differ by a constant, we get

i. A(x) = 1
3
x3 + C with C = 0 (since A(0) = 0).

ii. A(x) = 3
4
x

4
3 + C with C = 0 (since A(0) = 0).

iii. A(x) = 2
7
x

7
2 + C with C = 0 (since A(0) = 0).

6.4. These problems can be solved by finding Newton’s area function A(x) for each of the

functions f(x).

i. For f(x) = 2x2, the area function is A(x) = 2
3
x3. The required area under the

graph is A(8)−A(4) = 2
3
83− 2

3
43 = 2

3
[(2 ·4)3−43] = 2

3
[(23−1)43] = 14

3
·43 = 29826

3
.

ii. For f(x) = 5x3, the area function is A(x) = 5
4
x4. The area is A(4) − A(1) =

5
4
44 − 5

4
= 5

4
(44 − 1) = 1275

4
= 3183

4
.

iii. For f(x) = 3
√
x = 3x

1
2 , the area function is A(x) = 2x

3
2 . The area is A(9)−A(4) =

2(9
3
2 − 4

3
2 ) = 2(33 − 23) = 38.

iv. For f(x) = 4x2 + 2x
1
3 , the area function A(x) = 4

3
x3 + 3

2
x

4
3 . So the area is

A(8)− A(1) = (4
3
83 + 3

2
8

4
3 )− (4

3
+ 3

2
) = 4

3
(83 − 1) + 3

2
(24 − 1) = 4223

6
= 7035

6
.



6.5. First Problem. Raise both sides of y = f(x) = x
2
3 to the 3rd power to get y3 = x2. See

Figure 6.5. Because Q = (x+ ∆x, y + ∆y) is on the graph,

(y + ∆y)3 = (x+ ∆x)2.

To multiply out the 3 factors

(y + ∆y)3 = (y + ∆y)(y + ∆y)(y + ∆y),

the y and ∆y from any one of the three groups (y + ∆y) must be multiplied by the y

and ∆y from each of the other two. The product y ·y ·y = y3 is one term that arises in

this way. Fixing any ∆y and multiplying it by the y from each of the other two groups

gives the product y2∆y. Since three different ∆y’s can be picked to do this, y2∆y will

occur three times. The result of the multiplication will therefore be

(y + ∆y)3 = y3 + 3y2∆y + more terms.

Each of the additional terms contain at least two factors of ∆y because terms containing

no or one ∆y are already accounted for. (The fact that the missing terms are 3y(∆y)2

and (∆y)3 is not relevant to our computation.) Since (x+ ∆x)2 = x2 + 2x∆x+ (∆x)2,

we get

y3 + 3y2∆y + terms with (∆y)2 as factor = x2 + 2x∆x+ (∆x)2.

Because P = (x, y) is on the graph, y3 = x2. Therefore after a subtraction,

3y2∆y + terms with (∆y)2 as factor = 2x∆x+ (∆x)2.

Now divide both sides of this equation by ∆x to get

3y2 ∆y
∆x

+ terms with ∆y · ∆y
∆x

as factor = 2x+ ∆x.

Next, push ∆x to zero. Since ∆y also goes to 0 in the process (see Figure 6.5) and

because lim
∆x→0

∆y
∆x

= f ′(x), all terms with ∆y · ∆y
∆x

as factor go to zero and

3y2f ′(x) = 2x.

Recalling that y = x
2
3 , we get by simple algebra that f ′(x) = 2

3
x·y−2 = 2

3
x·x− 4

3 = 2
3
x−

1
3 .

Second Problem. Raise both sides of y = f(x) = x
4
3 to the 3rd power to get y3 = x4.

Because Q = (x+ ∆x, y + ∆y) is on the graph,

(y + ∆y)3 = (x+ ∆x)4.

We already dealt with (y + ∆y)3 above, so we’ll focus on (x + ∆x)4. To multiply out

the four factors

(x+ ∆x)(x+ ∆x)(x+ ∆x)(x+ ∆x),
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the x and ∆x from any one of the four groups (x + ∆x) must be multiplied by the x

and ∆x from each of the other three. The product x · x · x · x = x4 is one term that

arises in this way. Fixing any ∆x and multiplying it by the xs from each of the other

three groups gives the product x3∆x. Since four different ∆x’s can be picked to do

this, x3∆x occurs four times. The result of the multiplication is

(x+ ∆x)4 = x4 + 4x3∆x + more terms.

Each of these additional terms contains at least two factors of ∆x (because the terms

that contain no or one ∆x are accounted for). Using what we already know about

(y + ∆y)3 from the solution of the first problem, we have

y3 + 3y2∆y+ terms with (∆y)2 as factor = x4 + 4x3∆x+ terms with (∆x)2 as factor.

Because P = (x, y) is on the graph, y3 = x4. Therefore after a subtraction,

3y2∆y + terms with (∆y)2 as factor = 4x3∆x+ terms with (∆x)2 as factor.

Now divide both sides of this equation by ∆x to get

3y2 ∆y
∆x

+ terms with ∆y · ∆y
∆x

as factor = 4x3 + terms with ∆x as factor.

Next, push ∆x to zero. Since ∆y also goes to 0 in the process (see Figure 6.5) and

lim
∆x→0

∆y
∆x

= f ′(x), it follows that all terms with ∆y · ∆y
∆x

as factor go to zero and that

3y2f ′(x) = 4x3.

Since y = x
4
3 , we get that f ′(x) = 4

3
x3 · y−2 = 4

3
x3 · x− 8

3 = 4
3
x

1
3 .

6.6. As suggested, we’ll carry six decimal places and then round off to three. Since the power

series 1
1+x

= 1− x+ x2 − x3 + x4 − x5 + x6 − x7 + . . . converges for all x with |x| < 1,

it converges for 0 ≤ x ≤ 3
4
. We’ll begin our computations with the approximation

1
1+x
≈ 1 − x + x2 − x3 + x4 − x5 for 0 ≤ x ≤ 3

4
, and see what pattern emerges. Since

F (x) = x− 1
2
x2 + 1

3
x3− 1

4
x4 + 1

5
x5− 1

6
x6 is an antiderivative of 1−x+x2−x3 +x4−x5,

we get that∫ 3
4

0

1
1+x

dx ≈
∫ 3

4

0

(1− x+ x2 − x3 + x4 − x5) dx = F (x)
∣∣ 34
0

= F (3
4
)

= 0.75− 1
2
(0.75)2 + 1

3
(0.75)3 − 1

4
(0.75)4 + 1

5
(0.75)5 − 1

6
(0.75)6

≈ 0.750000− 0.281250 + 0.140625− 0.079102 + 0.047461− 0.029663

≈ 0.548071.

To achieve an accuracy of three decimal places—according to our rule of thumb—

we’ll need to continue to compute the terms 1
7
(0.75)7,−1

8
(0.75)8, 1

9
(0.75)9, . . . and in-

clude them in the approximation until they round to 0 (with regard to three decimal

places) and can be ignored. These computations are
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1
7
(0.75)7 ≈ 0.019069, 1

8
(0.75)8 ≈ 0.012514, 1

9
(0.75)9 ≈ 0.008343,

1
10

(0.75)10 ≈ 0.005631, 1
11

(0.75)11 ≈ 0.003840, 1
12

(0.75)12 ≈ 0.002640,

1
13

(0.75)13 ≈ 0.001827, 1
14

(0.75)14 ≈ 0.001273, 1
15

(0.75)15 ≈ 0.000891,

1
16

(0.75)16 ≈ 0.000626.

Since the next term 1
17

(0.75)17 ≈ 0.000442 rounds to zero, the rule of thumb tells us

that∫ 3
4

0

1
1+x

dx ≈ 0.548071 + 0.019069− 0.012514 + 0.008343− 0.005631 + 0.003840

− 0.002640 + 0.001827− 0.001273 + 0.000891− 0.000626 ≈ 0.559357.

The actual value is ln 1.75 ≈ 0.559616, where ln is the natural log function (developed

in Section 7.11).

Let’s turn to the second integral. For any x satisfying |x| < 1, |x2| < 1 as well. So

we can substitute x2 for x to get the power series 1
1+x2

= 1−x2 +x4−x6 +x8−x10 + . . .

for all x with |x| < 1. Proceeding as before, we’ll start with the approximation,
1

1+x2
≈ 1− x2 + x4 − x6 + x8 − x10 and study the pattern that emerges. With F (x) =

x− 1
3
x3 + 1

5
x5 − 1

7
x7 + 1

9
x9 − 1

11
x11 we get∫ 3

4

0

1
1+x2

dx ≈
∫ 3

4

0

(1− x2 + x4 − x6 + x8 − x10) dx = F (x)
∣∣ 34
0

= F (3
4
)

= 0.75− 1
3
(0.75)3 + 1

5
(0.75)5 − 1

7
(0.75)7 + 1

9
(0.75)9 − 1

11
(0.75)11

≈ 0.750000− 0.140625 + 0.047461− 0.019069 + 0.008343− 0.003840 ≈ 0.642270.

Continue with the terms 1
13

(0.75)13 ≈ 0.001827 and 1
15

(0.75)15 ≈ 0.000891. As in the

solution of the previous integral, 1
17

(0.75)17 ≈ 0.000442 so that the process stops.

Adjusting the initial approximation, we get∫ 3
4

0

1
1+x2

dx ≈ 0.642270 + 0.001827− 0.000891 ≈ 0.643206.

The actual value is 0.643501 is a consequence of a property of the inverse tangent

function (studied in Section 9.9.1).

6.7. Multiplying the power series 1
1+x

= 1−x+x2−x3 +x4−x5 +x6−x7 + . . . by x
1
2 gives

the series x
1
2

1+x
= x

1
2 − x 3

2 + x
5
2 − x 7

2 + x
9
2 − . . . . It converge for all x with 0 ≤ x < 1,

because x
1
2 (1 − x + x2 − x3 + x4 − x5 + x6 − x7 + . . .) converges for 0 ≤ x < 1. At

x = 1, the sum bounces back and forth between 0 and 1, so that the series does not

converge at x = 1. We’ll use the approximation x
1
2

1+x
≈ x

1
2 − x 3

2 + x
5
2 − x 7

2 + x
9
2 . With

the antiderivative F (x) = 2
3
x

3
2 − 2

5
x

5
2 + 2

7
x

7
2 − 2

9
x

9
2 + 2

11
x

11
2 , we get∫ 1

2

0

x
1
2

1+x
dx ≈ F (x)

∣∣ 12
0

= F (1
2
) = 2

3
( 1√

2
)3 − 2

5
( 1√

2
)5 + 2

7
( 1√

2
)7 − 2

9
( 1√

2
)9 + 2

11
( 1√

2
)11

≈ 0.235702− 0.070711 + 0.025254− 0.009821 + 0.004018 ≈ 0.184442.
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Computing additional terms, we get

2
13

( 1√
2
)13 ≈ 0.001700, 2

15
( 1√

2
)15 ≈ 0.000737, 2

17
( 1√

2
)17 ≈ 0.000325.

Since this last term rounds to 0 to three decimal places, our rule of thumb tells us that

0.184442− 0.001700 + 0.000737 = 0.183479

is an approximation of the integral that should be accurate up to three decimal places.

The actual value—accurate to 6-decimal places—is 0.183254 (a computation also in-

volves the inverse tangent function).

The next several exercises study specific examples of the binomial series ,

(1 + x)r = 1 + rx+ r(r−1)
2!

x2 + r(r−1)(r−2)
3!

x3 + · · ·+ r(r−1)(r−2)···(r−(k−1))
k!

xk + . . . .

6.8. The binomial series for (1 + x)3 is equal to

(1 + x)3 = 1 + 3x+ 3(3−1)
2!

x2 + 3(3−1)(3−2)
3!

x3 = 1 + 3x+ 3x2 + x3.

The series stops there because the coefficient 3(3−1)(3−2)(3−3)
3!

of the term x4 is equal to

zero. Since they contain (3−3) as a factor, all the subsequent coefficients are zero as

well. Notice that in this case the binomial series is equal to the multiplied out form of

(1 + x)3. Since this equality holds for all x, this binomial series converges for all x.

The binomial series for (1 + x)4 is equal to

(1+x)4 = 1+4x+ 4(4−1)
2!

x2 + 4(4−1)(4−2)
3!

x3 + 4(4−1)(4−2)(4−3)
4!

x4 = 1+4x+6x2 +4x3 +x4.

All subsequent terms of this series contain the factor (4−4) and are zero.

These two examples illustrate what happens for any positive integer r. For k = r+1,

the coefficient
(
r
k

)
of xk is zero because the factor r−(k−1) = r+1−k is zero. The same

is true for any k > r+1. In this case k−i = r+1 for some i > 0, so that the factor

r−(k−(i+1)) < r−(k−1) is zero. The series for (1 + x)r is the multiplied-out version

of the polynomial (1 + x)r. Since there are only a finite number of terms, it converges

for all x.

6.9. For any k, the numbers 1, 2, 3, . . . , k − 2, k − 1 count the number of factors of the

numerator of the coefficient(
r

k

)
=
r(r − 1)(r − 2) · · · (r − (k − 1))

k!

except the first r. So k is the number of terms in the numerator of the kth coefficient

of the binomial series. In the case r = −1,
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(−1
k

)
= (−1)(−1−1)(−1−2)···(−1−(k−1))

k!
= (−1)(−2)(−3)···(−k)

k!
= (−1)k·k!

k!
= (−1)k.

It follows that this coefficient is equal to 1 if k is even and −1 if k is odd. So when

r = −1 the binomial series is

(1 + x)−1 =
1

1 + x
= 1− x+ x2 − x3 + x4 − x5 + . . . .

6.10. For r = 1
2

we get the binomial series

(1 + x)
1
2 = 1 +

( 1
2
1

)
x+

( 1
2
2

)
x2 +

( 1
2
3

)
x3 +

( 1
2
4

)
x4 +

( 1
2
5

)
x5 +

( 1
2
6

)
x6 + . . . .

The first few coefficients are( 1
2
1

)
= 1

2
,
( 1

2
2

)
=

1
2

( 1
2
−1)

2!
= −1

8
,
( 1

2
3

)
=

1
2

( 1
2
−1)( 1

2
−2)

3!
=

3
8

3!
= 1

16
,( 1

2
4

)
=

1
2

( 1
2
−1)( 1

2
−2)( 1

2
−3)

4!
=

3
8
·−5

2

4!
= − 5

128
,
( 1

2
5

)
=

1
2

( 1
2
−1)( 1

2
−2)( 1

2
−3)( 1

2
−4)

5!
=

3
8
·−5

2
·−7

2

5!
= 7

256( 1
2
6

)
=

1
2

( 1
2
−1)( 1

2
−2)( 1

2
−3)( 1

2
−4)( 1

2
−5)

6!
=

3
8
·−5

2
·−7

2
·−9

2

6!
= − 7

64(22·4)
= − 3·7

1024
− 21

1024
.

So the start of this binomial series is

(1 + x)
1
2 = 1 + 1

2
x− 1

8
x2 + 1

16
x3 − 5

128
x4 + 7

256
x5 − 21

1024
x6 + . . . .

As a consequence, for any x with 0 ≤ x ≤ 1
2
,

√
1 + x ≈ 1 + 1

2
x− 1

8
x2 + 1

16
x3 − 5

128
x4 + 7

256
x5 − 21

1024
x6.

It follows that∫ 1
2

0

√
1 + x dx ≈

∫ 1
2

0

(
1 + 1

2
x− 1

8
x2 + 1

16
x3 − 5

128
x4 + 7

256
x5 − 21

1024
x6
)
dx

≈
(
x+ 1

4
x2 − 1

24
x3 + 1

64
x4 − 1

128
x5 + 7

6·256
x6 − 3

1024
x7
)∣∣∣ 12

0

≈ 0.500000+0.062500−0.005208+0.000977−0.000244+· · · ≈ 0.558269.

This approximation made use of our rule of thumb. Since 0.000244 rounds to 0 with

three decimal place accuracy, this term was ignored. The approximation is accurate

up to three decimal places. (The value of the integral is 0.558078 with an accuracy of

6 decimal places.)

The same strategy applied to

∫ 5

0

√
1 + x dx gives us∫ 5

0

√
1 + x dx ≈

(
x+ 1

4
x2 − 1

24
x3 + 1

64
x4 − 1

128
x5 + 7

6·256
x6 − 3

1024
x7
)∣∣∣5

0

≈ 5 + 1
4
52 − 1

24
53 + 1

64
54 − 1

128
55 + 7

6·256
56 − 3

1024
57

≈ 5 + 6.25− 5.21 + 9.77− 24.41 + 71.21− 288.88.

Notice that the numbers get larger and larger as their coefficients alternate. So this

does not deliver an approximation of the integral. The basic problem is that the

binomial series for
√

1 + x does not converge for x = 5. (A substitution—see Section

9.7.1—can be used to show that the integral is approximately equal to 9.13.)
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We turn to the exploration of moving points. Rather than sketched, the motion of the

points is explicitly described.

6.11. i. For p(t) = 2t− 5 with t ≥ 0, the velocity is v(t) = p′(t) = 2 and the acceleration

is a(t) = v′(t) = 0. So the point starts at p(0) = −5 on the coordinate axis and

moves with the constant speed of 2 in the positive direction.

ii. For p(t) = 2t2 + 2t + 12 with t ≥ −10, the velocity is v(t) = 4t + 2 and the

acceleration is a(t) = v′(t) = 4. So the point starts at p(−10) = 192 on the

coordinate axis and moves with a velocity of v(−10) = −38 at that time. The

point moves to the left over the time −10 ≤ t − 1
2
, stops at time t = −1

2
, and

then moves to the right for t > −1
2
. Regarding the point to have a mass of 1, it

is pushed to the right with a constant force of 4 units.

iii. For p(t) = t3 − 4t2 − 21t with t ≥ −6, the velocity is v(t) = p′(t) = 3t2 − 8t− 21

and the acceleration is a(t) = v′(t) = 6t− 8. By the quadratic formula, v(t) = 0

when t =
8±
√

64−(4)(3)(−21)

6
= 8±

√
64+252
6

= 8±2
√

79
6

= 4±
√

79
3

, so when t ≈ −1.63

or t ≈ 4.30. The point starts at p(−6) = −224 on the coordinate axis. Since

v(−6) = 135 it moves to the right until it stops at time t = 4−
√

79
3

. From that time

on it moves to the left (for example, v(−1) = −10) until it stops again at time

t = 4+
√

79
3

. From then on, it moves to the right again (for instance, v(5) = 14)

with greater and greater velocity.

iv. For p(t) = 3
t

= 3t−1 with t ≥ 1, the velocity is v(t) = p′(t) = −3t−2 = −3
t2

and the

acceleration is a(t) = v′(t) = 6t−3 = 6
t3

. So the point starts at p(1) = 3 on the

coordinate axis moving with a speed of 3 to the left. As t increases it continues

to move to the left with diminishing speed getting closer and closer to the origin

in the process. Taking the points mass to be 1, note that the force on the point

always acts to the right but with a magnitude that decreases to 0 as time goes on.

6.12. i. The velocity function v(t) is an antiderivative of a(t) = 6t − 12, so that v(t) =

3t2 − 12t + C. Since v(0) = 0, v(t) = 3t2 − 12t. Since p(t) is an antiderivative

of v(t), p(t) = t3 − 6t2 + C. Since p(0) = 0, p(t) = t3 − 6t2. The equation

v(t) = 3t(t− 4) describes the motion. During the time 0 < t < 4, the velocity is

negative and the point moves from the origin to the left. It stops at time t = 4 at

the point p(4) = 64− 96 = −32. From time t > 4 onward the velocity is positive

and the point moves to the right with ever increasing speed.

ii. A diagram of the motion over the time interval [0, 7] similar to Figure 6.12 is

easily drawn.

6.13. Since a(t) = 2t− 6 and the velocity v(t) is an antiderivative of a(t), v(t) = t2− 6t+C.

Since v(0) = 5, v(t) = t2 − 6t + 5. Notice that v(t) = (t − 1)(t − 5). Since p(t)

is an antiderivative of v(t) and p(0) = 6, p(t) = 1
3
t3 − 3t2 + 5t + 6. Combining the
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information that v(t) and p(t) provide, we see that: for 0 ≤ t < 1, v(t) is positive so

that the point, starting at p(0) = 6, moves to the right; it stops at t = 1 at the point

p(1) = 1
3
−3+5+6 = 81

3
; during 0 < t < 5, v(t) is negative, so that the point moves to

the left; it stops again at t = 5 at the point p(5) = 1
3
53 − 3 · 52 + 52 + 6 = −21

3
; finally

for t > 5, v(t) is positive again and the point moves to the right with ever increasing

speed.

6.14. i. If x(t) = 2 and y(t) = 5 for all t ≥ 0, the point remains at (2, 5) in the xy-plane

and does not move.

ii. In the situation x(t) = t and y(t) = t2 notice that x(t)2 = t2 = y(t). So the

point moves on the parabola y = x2 for the entire time t ≥ −2. We can draw the

following conclusions from the fact that x′(t) = 1 and y′(t) = 2t. From its starting

point (x(−2), y(−2)) = (−2, 4) on the parabola, the point moves with a constant

horizontal speed of 1 unit in the direction of the positive x-axis. The speed of the

point along the parabola is
√
x′(t)2 + y′(t)2 =

√
1 + 4t2. So while its speed in the

horizontal direction is constant, its speed along the parabola decreases initially

until time t = 0 when its speed is 1. Thereafter the speed along the parabola

increases. After only a short time t it is approximately equal to 2t.

iii. In the situation x(t) = t
1
3 and y(t) = t

2
3 it is again the case that y(t) = x(t)2 so

that the point also moves on the parabola y = x2 for t ≥ −8. Since −8
1
3 = −2, it

also starts at (−2, 4). Since x′(t) = 1
3
t−

2
3 = 1

3t
2
3

and y′(t) = 2
3
t−

1
3 = 2

3t
1
3

the speed

of the point along the parabola is equal to√
x′(t)2 + y′(t)2 =

√
1
9
t−

4
3 + 4

9
t−

2
3 = 1

3

√
1

t
4
3

+ 4

t
2
3

.

Notice that the speed of the point increases quickly during −8 ≤ t < 0 before it

reaches infinite speed at the origin at time t = 0. Thereafter, the point continues

to move to the left initially at a great speed, but as t increases the point slows

down. Even though the speed of the point goes to zero with advancing t, a look

at the equations x(t) = t
1
3 and y(t) = t

2
3 tells us that no matter how far out on

the parabola a point is, the moving point will pass it eventually.

iv. Since x(t) = t3 and y(t) = t2, y(t)3 = x(t)2 so that y(t) ≥ 0 and y(t) = x(t)
2
3 .

Hence the point moves on the curve depicted below. It starts at time t = −1 at

y = x
2

3

8



(x(−1), y(−1)) = (−1, 1) and moves to the right with increasing t. Since x′(t) =

3t2 and y′(t) = 2t,
√
x′(t)2 + y′(t)2 =

√
9t4 + 4t2. It follows that the initial speed

of the point is
√

13, that it then slows to stop at the origin at time t = 0, and

that thereafter it speeds up to greater and greater speeds with increasing t.

v. Since x(t) = t and y(t) = f(t) for t ≥ b the point moves along the graph of the

function y = f(x). It starts its motion at the point (b, f(b)). Since x′(t) = 1 its

speed in the horizontal direction is constant. The speed of the point along the

graph is
√
x′(t)2 + y′(t)2 =

√
1 + f ′(t)2 for any t ≥ b. It follows that its speed is

at its minimum of 1 whenever f ′(t) = 0. Since x(t) = t, this happens whenever

the moving point encounters a horizontal tangent of the graph y = f(x).

6.15. The component of this force in the indicated direction is drawn into the diagram. Its

magnitude is 400 cos 35◦ ≈ 327.66 N.

35
o

400

6.16. The resultant of the two horizontal components of the vectors of Figure 6.40a is the

vector from (0, 0) to (−3, 0) obtained by adding the x-coordinates 1 and −4 and the

resultant of the two vertical components is the vector from (0, 0) to (0, 1) obtained by

adding the y-coordinates 4 and −3. By the parallelogram law, the resultant of these

two resultants is the vector from (0, 0) to (−3, 1) depicted in Figure 6.40b. (If the two

4
(1, 4)

1

–3

–4

(–4, –3)

1

–3

(–3, 1)

(a)

(b)

Figure 6.40

9



end points (1, 4) and (−4,−3) of the vectors in Figure 6.40a are placed accurately,

then the resultant of Figure 6.40b is also obtained by applying the parallelogram law

to the two vectors. Is this the case?)

6.17. Refer to Figure 6.41a. The resultant of the horizontal components of the two vectors

is the vector from (0, 0) to (1, 0). The resultant of the vertical components of the two

vectors is the vector from (0, 0) to (0, 4). The resultant of the two resultants is the

vector from (0, 0) to (1, 4). (What about the accuracy question of Problem 6.16 here?)

(–1, 3)

(2, 1)

0

(a)                (b)  

(–1, 3)

(2, 1)

0

(1, 4)

Figure 6.41

6.18. Since the vectors are in equilibrium, the magnitude of the total upward force is equal

to the downward force. The vertical components of F1 and F2 are F1 sin θ1 and F2 sin θ2

respectively, so that F1 sin θ1 + F2 sin θ2 = F. The equilibrium condition also implies

that the magnitude of the horizontal component of F1 is equal to the magnitude of the

P

F

1

F

F

θ
2θ

2

1

horizontal component of F2. Therefore F1 cos θ1 = F2 cos θ2.

i. If F1 has a magnitude of 10 pounds and if the angles θ1 and θ2 are 30◦ and 60◦,

respectively, then F1 cos θ1 = 10 ·
√

3
2

= 5
√

3 pounds. Since F2 cos θ2 = F2 · 1
2
,

10



we obtain that F2 = 10
√

3 pounds. Since F = F1 sin θ1 + F2 sin θ2, we see that

F = 10 · 1
2

+ 10
√

3 ·
√

3
2

= 5 + 15 = 20 pounds.

ii. Let the mass of the object attached at the point P be 2 kg and let then F represent

the object’s weight. So F = 2 · 9.81 = 19.62 N. With θ1 = 30◦ and θ2 = 45◦,

we get the equations F1 sin 30◦ + F2 sin 45◦ = 19.62 N and F1 cos 30◦ = F2 cos 45◦

N. After putting in the values for sine and cosine, we get 1
2
F1 +

√
2

2
F2 = 19.62 N

and
√

3
2
F1 = F2

√
2

2
N. Using

√
3

2
≈ 0.87 and

√
2

2
≈ 0.71, we get 0.87F1 ≈ 0.71F2

and 0.5F1 + 0.71F2 ≈ 19.62 N. So 0.5F1 + 0.87F1 ≈ 1.37F1 ≈ 19.62 N, and hence

F1 ≈ 14.32 N and F2 ≈ 0.87
0.71

F1 ≈ (1.23)(14.32) ≈ 17.61 N.

6.19. i. By the law of sines and Figure 6.43a, sin 125◦

115
= sin 25◦

F1
= sin 30◦

F2
. Putting in the values,

we get 0.82
115
≈ 0.42

F1
≈ 0.50

F2
. So F1 ≈ 0.42·115

0.82
≈ 58.90 and F2 ≈ 0.50·115

0.82
≈ 70.12.

ii. By the law of cosines and Figure 6.43b, we get that F 2 = 352+492−2(35)(49) cos 115◦.

With cos 115◦ ≈ −0.42, we get F 2 ≈ 352 + 492 + 2(35)(49)(0.42). So the magnitude F

satisfies F 2 ≈ 5066.6, so that F ≈ 71.18.

30
o

25
o

F1

F2

35

49
(a)                 (b)

30
o

125
o

115
o

65
o

F

Figure 6.43

6.20. We’ll put Newton’s toss of the apple into the context of Section 6.7 and Figure 6.22.

45

18

o

Figure 6.44

So y0 = 3 feet, ϕ0 = 45◦, and v0 = 25 feet/sec.

11



i. To find the time t, turn to equation (6a), set x(t) = (v0 cosϕ0)t = 18 and solve

for t. So (25 cos 45◦)t = 25·
√

2
2
t = 18, and hence t = 18

25
· 2√

2
≈ 1.02 sec. Evaluating

y(t) = −g
2
t2 + (v0 sinϕ0)t + y0 of (6b) at t ≈ 1.02 we get the height y(1.02) ≈

−32
2

(1.02)2 + 25
√

2
2

(1.02) + 3 ≈ 4.38 feet of the apple at that time. So—assuming

Newton is accurate in terms of the direction of his toss—the apple will reach the

location of Halley almost exactly 1 second after it is released and it will be close

to 4.4 feet above the ground at that time.

ii. The range formula (6f) R = v0
g

cosϕ0

(
v0 sinϕ0 +

√
v2

0 sin2 ϕ0 + 2gy0

)
with g = 32

feet/sec2 tells us that the apple will hit the ground about
25
32

√
2

2

(
25
√

2
2

+
√

252 · 0.5 + 2(32)(3)
)
≈ 22.17 feet

from where Newton is standing. By formula (6e), the time of impact is

timp =
v0 sinϕ0+

√
v20 sin2 ϕ0+2gy0

g
≈ 25·

√
2

2
+
√

252·0.5+2(32)(3)

32
≈ 1.25 sec.

iii. By formula (6i), the speed of the apple at impact is equal to√
x′(timp)2 + y′(timp)2 =

√
v2

0 + g2t2 − 2g(v0 sinϕ0)t

≈
√

252 + (322)(1.252)− 64(25 ·
√

2
2

)1.25 ≈ 28.47 feet/sec.

6.21. The initial data are y0 = 5 feet, ϕ0 = 20◦, and v0 = 40 feet/sec. The maximal

height reached by the apple is given by (6d) 1
2g
v2

0 sin2 ϕ0 + y0. Inserting the data into

this expression, we get 1
32

402 sin2 20◦ + 5 ≈ 7.92 feet. Since Hooke is 35 feet away,

the time that the apple arrives at the position held by Hooke, is gotten by solving

x(t) = (v0 cosϕ0)t = 35t for t. So (40 cos 20◦)t = 35 and hence t ≈ 35
37.59

≈ 0.93

seconds. The height of the apple at this time is

y(t) = −g
2
t2 + (v0 sinϕ0)t+ y0 ≈ −16(0.93)2 + (40 sin 20◦)(0.93) + 5 ≈ 3.88 feet.

That Hooke was at least 4 feet tall is likely, so that the ball would have hit him. Since

x′(t) = v0 cosϕ0 = 40 cos 20 and y′(t) = −gt+ v0 sinϕ0 = −32t+ 40 sin 20◦,

the speed at time t = 0.93 is equal to√
x′(0.93)2 + y′(0.93)2 ≈

√
(40 cos 20◦)2 + (−(32)(0.93) + 40 sin 20◦)2 ≈ 40.88 ft/sec.

Hooke was small in stature, but it is safe to assume that he was not a midget (and

taller than 3.9 feet). Hooke and Newton quarreled over scientific matters for years (the

nature of gravity, for instance). Newton closed one of his friendlier letters to Hooke

with “if I have seen further it has only been by standing on the shoulders of giants.”

This has been widely interpreted as a nasty allusion to Hooke’s smallish stature. But

one of Hooke’s friends describes him as having “midling stature, something crooked,

pale faced ...”.

6.22. In this problem x(t) and y(t) are the coordinates of the bottom point of the basketball.

The relevant data is y0 = 8 feet, v0 = 22 feet per second, and ϕ0 = 45◦. Let the shot

12



be released at time t = 0. Since the rim of the basket is 10 feet above the floor, the

key is to find the time t for which y(t) = 10 feet on the ball’s descent. So the first

question is: What t gives us y(t) = 10? Taking y(t) = 10 in formula (6b) and solving

for t, we get

10 = −g
2
t2 + (v0 sin ϕ0)t+ y0 = −16t2 + 22 ·

√
2

2
t+ 8 = −16t2 + 11

√
2t+ 8

and hence by applying the quadratic formula to 16t2 − 11
√

2t+ 2 = 0, that

t = 11
√

2±
√

242−4·16·2
32

= 11
√

2±
√

114
32

≈ 15.56±10.68
32

≈ 0.152 or 0.820 seconds.

Since the ball is on its descent, t = 0.82 seconds is the time of interest. The x-coordinate

of the bottom of the ball at that time determines the distance of a successful shot from

the basket. Inserting t = 0.82 into formula (6a) x(t) = (v0 cosϕ0)t, tells us that

x(0.820) ≈ 22 ·
√

2
2
· 0.820 ≈ 12.76 feet.

To maximize the likelihood of scoring, the player should take his jump shot about 123
4

feet from the basket.

6.23. The relevant data about Newton’s pet parakeet—more accurately its dropping—are

v0 = 6 meters/sec, ϕ0 = 30◦, and y0 = 15 meters. Inserting this into expression (6d)
1
2g
v2

0 sin2 ϕ+y0, we get that 1
2(9.80)

62 sin2 30◦+ 15 ≈ 15.46 meters is the maximal height

reached by the dropping. To determine when the dropping might splatter against

Newton’s house, we’ll set x(t) = (v0 cosϕ0)t = 9 and solve for t. Doing so we get

t = 9

6·
√
3
2

≈ 1.73 seconds. Using the formula y(t) = −g
2
t2 + (v0 sinϕ0)t + y0 of (6b), we

see that the height of the dropping at this time is −9.8
2

(1.73)2 + 6 · 1
2
(1.73) + 15 ≈ 5.52

meters. So the dropping will hit the house. Using formula (6i) we get that the speed

of the dropping at the time of impact t = 1.73 is√
x′(1.73)2 + y′(1.73)2 ≈

√
(6 cos 30)2 + (−(9.80)(1.73) + 6 sin 30)2 ≈ 14.89 m/sec.

6.24. In this problem y0 = 1.5 meters and ϕ0 = 70◦. We are looking for v0. Formula (6c)

asserts that any point (x, y) on the trajectory of the arrow satisfies

y =
( −g

2v2
0 cos2 ϕ0

)
x2 + (tan ϕ0)x+ y0.

We are given that the point (25, 55) is on the trajectory. If we plug all of our infor-

mation into this equation, v0 should emerge. Doing this, we get

25 =
(

−9.8
2v20 cos2 70◦

)
552 + (tan 70◦)55 + 1.5 ≈ −41.89

v20
552 + (2.75)55 + 1.5.

Therefore, 41.89
v20

552 = −25 + 151.25 + 1.5 = 127.75. So v2
0 ≈

(41.89)(552)
127.75

and hence

v0 ≈ 31.5 meters per second.
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6.25. Here y0 = 6 feet and v0 = 120 feet per second and we are looking for ϕ0. Let’s start

by repeating the strategy used in Problem 6.24. Using the data we have, the fact that

the point (240, 62) lies on the trajectory, and plugging what we know into

y =
( −g

2v2
0 cos2 ϕ0

)
x2 + (tanϕ0), x+ y0 ,

we get 62 =
( −32

2(1202) cos2 ϕ0

)
2402 + (tan ϕ0)240 + 6. Using the fact that 1

cosϕ0
= secϕ0,

we can rewrite this as 62 = −16(4)(sec2 ϕ0) + 240(tan ϕ0) + 6. Because sec2 ϕ0 =

1 + tan2 ϕ0, we get 62 = −16(4)(tan2 ϕ0) + 240(tan ϕ0)− 16(4) + 6 and therefore

64(tan2 ϕ0)− 240(tan ϕ0) + 120 = 0 .

By the quadratic formula, tan ϕ0 =
240±
√

2402−4(64)(120)

2·64
. Because 240 = 16 · 15, notice

that 162 = 256 is a factor of both terms under the radical. Therefore,

tan ϕ0 = 240±16
√

152−120
2·64

= 240±16
√

105
2·64

= 15±
√

105
8

≈ 0.594 or 3.16.

By pushing “inverse tan” on your calculator, you will get ϕ0 ≈ 30.7◦ or ϕ0 ≈ 72.4◦. Are

there two different angles with which the arrow can be shot off so as to hit the target?

Intuitively, if the arrow has the steeper trajectory, it will gain altitude earlier and will

then descend towards the cauldron as the archer intends. To see more convincingly

that this is the case, consider the steeper trajectory ϕ0 ≈ 72.4◦ and refer to the

discussion that develops equation (6d). Note that the arrow will reach its maximal

height at time t1 = v0 sinϕ0

g
≈ (120)(0.953)

32
≈ 3.57 seconds. Thereafter, it will descend.

By one of the equations in (6a), the arrow will reach its target (240, 62) at time

t = 240
v0 cosϕ0

≈ 240
(120)(0.302)

≈ 6.62 seconds. So the flaming arrow will hit the target on its

descent. With the flatter trajectory the arrow will approach the cauldron from below

and hit against its base.

6.26. i. We’ll apply the range formula (6f) of Section 6.7

R =
v20
2g

sin(2ϕ0) + v0
g

√
v20
4

sin2(2ϕ0) + 2gy0 cos2 ϕ0,

with ϕ0 = 0, y0 = 3.6 feet and v0 = 1439, to get

R = (1439)2

2·32
sin 0

◦
+ 1439

32

√
(1439)2

4
sin 0◦ + 2(32)(3.6)(cos2 0◦)

≈ 0 + 44.97
√

0 + 230.4 ≈ 682.60 feet.

For the cannonball propelled by a 6-pounder field gun with 1.25 pounds of powder

and an angle of elevation of ϕ0 = 0, Table 6.1 provides a range of 315 yards or

3(315) = 945 feet.

So the observed range of the actual shot is considerable greater than the range

predicted by the theory, even though the former occurred against air resistance
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and the latter assumes no air resistance. The inescapable conclusion is that there

is a problem with the data in The Artillerist’s Manual. Since the range would

seem to be easy to measure, it is likely that the angle of departure and/or the

muzzle velocity are inaccurate. Suppose, for instance, that the angle of departure

and the muzzle velocity were in fact 0.2◦ and 1480 feet per second, instead of 0◦

and 1439 feet per second. The predicted range under those assumptions is

R = 14802

2(32)
sin 0.4

◦
+ 1480

32

√
14802

4
(sin2 0.4◦) + 2(32)(3.6)(cos2 0.2◦)

≈ 238.93 + 46.25
√

26.69 + 230.40 ≈ 980 feet.

Now, as expected, the predicted range exceeds the actual range.

ii. Let’s try ϕ0 = 1◦ next (while keeping y0 = 3.6 and v0 = 1439). Inserting these

values into the range formula, we obtain

R = (1439)2

2·32
sin 2◦ + 1439

32

√
(1439)2

4
sin2 2◦ + 2(32)(3.6)(cos2 1◦)

≈ 1129.17 + 44.97
√

630.52 + 230.33

≈ 1129.17 + (44.97)(29.68)

≈ 2448.57 feet.

The corresponding observed value from Table 6.1 is 674 yards = 2022 feet. So

the theoretical prediction exceeds the observed value by about 20%.

iii. Let’s try ϕ0 = 5◦ next (again keeping y0 = 3.6 and v0 = 1439). Plugging these

values into the range formula, we obtain

R = (1439)2

2·32
sin 10◦ + 1439

32

√
(1439)2

4
sin2 10◦ + 2(32)(3.6)(cos2 5◦)

≈ 5,618.39 + 44.97
√

15,609.97 + 228.65

≈ 5,618.39 + (44.97)(125.85)

≈ 11,277.78 feet.

The corresponding observed value from Table 6.1 is 1523 yards = 4569 feet. So

the theoretical prediction far exceeds the observed value by a factor of about 21
2
.

6.27. This is another application of the range formula

R =
v20
2g

sin(2ϕ0) + v0
g

√
v20
4

sin2(2ϕ0) + 2gy0 cos2 ϕ0,

this time with v0 = 1486 feet and ϕ0 equal to 0◦, 1◦, and 5◦. We will assume that the

muzzle of the 12-pdr. field gun is the same y0 = 3.6 feet from the ground as that of

the 6-pdr. field gun. Taking ϕ0 = 0◦ we get

R = v0
g

√
2gy0 = 1486

32

√
(64)(3.6) ≈ (46.44)(15.18) ≈ 704.87 feet.
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With ϕ0 = 1◦ we get

R = (1486)2

64
sin 2

◦
+ 1486

32

√
(1486)2

4
sin2 2◦ + 64(3.6)(cos2 1◦)

≈ 1204.14 + 46.44
√

672.38 + 230.33 ≈ 2599.39 feet.

Finally with ϕ0 = 5◦ we get

R = (1486)2

64
sin 10

◦
+ 1486

32

√
(1486)2

4
sin2 10◦ + 64(3.6)(cos2 5◦)

≈ 5991.39 + 46.44
√

16646.31 + 228.65 ≈ 12,023.95 feet.

The observed ranges from Table 6.1 are respectively, 347 yards, 662 yards, and 1663

yards, or 1041 feet, 1986 feet, and 4,989 feet. The large discrepancies between the

theoretical and observed distances are again explained by inaccuracies of the data (in

the first case) and most certainly by air resistance (in the other two).

In sum, the only valid conclusion that can be drawn from the results of Problems 6.26

and 6.27 is that in situations involving large velocities, air resistance plays an overwhelming

role and the formulas derived in Section 6.7 are practically useless.

6.28. With an xy-coordinate plane given, we saw in Section 4.4 that an ellipse with focal axis

the x-axis, center the origin, semimajor axis a, and semiminor axis b is the graph of

the equation x2

a2
+ y2

b2
= 1. It was also shown in Section 4.4 that the two focal points are

the points (−c, 0) and (c, 0) where c =
√
a2 − b2. Its definition tells us that the latus

rectum L is the distance between the two points on the ellipse that have x-coordinate

equal to c. To find these points, set x = c in the equation x2

a2
+ y2

b2
= 1 and solve for y.

Doing this, we get c2

a2
+ y2

b2
= 1 and hence y2

b2
= 1− c2

a2
= a2−c2

a2
= b2

a2
. So

y2 = b4

a2
and hence y = ± b2

a
.

Therefore the two points in question are
(
c, b

2

a

)
and

(
c,− b2

a

)
. The distance between

them is the difference b2

a
− (− b2

a
) = 2b2

a
between their y-coordinates.

6.29. Let P1 = (x1, y1) be any point on the ellipse with y1 6= 0 (and hence x1 6= ±a). So

b2x2
1 + a2y2

1 = a2b2. Let Q1 = (x1 + ∆x, y1 + ∆y) be any point on the ellipse different

from P1. Since the coordinates of Q1 satisfy the equation b2x2 + a2y2 = a2b2, we get

a2b2 = b2(x1 + ∆x)2 + a2(y1 + ∆y)2

= b2
(
x2

1 + 2x1(∆x) + (∆x)2
)

+ a2
(
y2

1 + 2y1(∆y) + (∆y)2
)

= b2x2
1 + 2b2x1(∆x) + b2(∆x)2 + a2y2

1 + 2a2y1(∆y) + a2(∆y)2

= a2b2 + 2b2x1(∆x) + b2(∆x)2 + 2a2y1(∆y) + a2(∆y)2.

It follows that (∆x)(2b2x1 + b2(∆x)) + (∆y)(2a2y1 + a2(∆y)) = 0 and hence that

(∆y)(2a2y1 + a2(∆y)) = −(∆x)(2b2x1 + b2(∆x)). So
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∆y
∆x

= − 2b2x1+b2(∆x)
2a2y1+a2(∆y)

.

Since ∆y goes to zero when ∆x does it follows that lim
∆x→0

∆y
∆x

= − 2b2x1
2a2y1

= − b2x1
a2y1

. This

is the slope of the tangent line to the ellipse at the point P1 = (x1, y1).

6.30. The equation of the line that P1 and O determine is has slope y1−0
x1−0

= y1
x1

and y-

intercept 0. So the equation of this line is y = y1
x1
x. Since the coordinates of the

point (−x1,−y1) satisfies the equation of both the line and the ellipse, it follows that

P2 = (−x1,−y1). If x1 is equal to a or −a, then this is also true for −x1. So P1 and P2

are the points (−a, 0) and (a, 0). In this case the tangent lines at P1 and P2 are both

vertical and therefore parallel to each other. So suppose that x1 6= ±a. This means

that the conclusion of Problem 6.29 applies to both P1 and P2. It follows that the

slope of the tangent line to the ellipse at P1 is − b2x1
a2y1

and that the slope of the tangent

line to the ellipse at P2 is − b2(−x1)
a2(−y1)

= − b2x1
a2y1

. Since they have the same slope, the two

tangent lines are parallel. [The conclusion of this problem has historical significance.

Newton’s proof of the fact that lim
Q→P

QR
QT 2 = 1

L
in the elliptical case makes use it.]

With regard to the study “Newton’s Test Case: The Orbit of the Moon” all the details

are included in the text.

6.31. Newton’s theory predicts that Kepler’s third law holds for the satellites of Jupiter. So

we need to check whether a3

T 2 , where a is the semimajor axis and T the period of the

elliptical orbit, is the same for the four satellites of Jupiter that Newton knew about.

Let’s check:

Satellite 1: 5.5783

42.482
≈ 173.55

1804.55
≈ 0.096

Satellite 2: 8.8763

85.302
≈ 699.28

7974.49
≈ 0.096

Satellite 3: 14.1593

171.992
≈ 2838.56

29580.56
≈ 0.096

Satellite 4: 24.9033

402.092
≈ 15443.83

161676.37
≈ 0.096

So the prediction is confirmed.

6.32. As in the previous problem, the concern is the verification of Kepler’s third law, namely

the equality a3

T 2 for the five satellites of Saturn that were known in Newton’s time. As

noted in the Errata for this chapter, the first distance listed should be 119
20

and not 119
2

.

Since

Satellite 1: 1.953

45.312
≈ 3.375

2053.00
≈ 0.00361

Satellite 2: 2.53

65.692
≈ 15.625

4315.18
≈ 0.00362

Satellite 3: 3.53

108.422
≈ 2838.56

29584
≈ 0.00365

Satellite 4: 83

372.692
≈ 15443.83

161676.37
≈ 0.00369

Satellite 5: 243

1903.82
≈ 15443.83

161676.37
≈ 0.00381
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this is approximately so. The variation in the numbers is explained by the fact that the

data for Saturn’s satellites available at the time (especially the the distances involved)

lacked sufficient accuracy.

In his analysis of the satellites of Jupiter and Saturn, Newton assumes that the semimajor

axes of their orbits are equal (at least approximately) to their maximal distances from Jupiter

or Saturn. The potential problem with this assumption is that if the astronomical eccentricity

of the orbit is large, then the difference between the semimajor axis and the maximal distance

is large. Why? However we know today, see

https://nssdc.gsfc.nasa.gov/planetary/factsheet/joviansatfact.html

https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturniansatfact.html

that the orbits of the satellites of Jupiter and Saturn referred to above are all close to being

circles. The eccentricities of Jupiter range from 0.002 to 0.009. (Their average distances from

Jupiter range from 670,000 to 1,890,000 kilometers.) The eccentricities of the five moons of

Saturn lie between 0 and 0.029 and their distances from Saturn range from 295,000 km to

1,222,000 km. One last question. Given that he had determined G, could Cavendish have

deduced estimates for the masses of Jupiter and Saturn from Newton’s data?

We turn next to the speculation of Newton about the possibility of determining the

magnitude of the gravitational force and in particular the gravitational constant G. So that

Newton’s two spheres are “in spaces void of resistance” let’s assume that they float, side by

side, somewhere in outer space, isolated from all other gravitational forces.

6.33. With r = 6.371× 106 meters or 6.371× 108 cm, we get the estimate

4
3
πr3 ≈ 4

3
π 6.3713 × 1024 cm3 ≈ 1.083× 1027 cm3

for the volume of the Earth. Since 1 kg = 1000 gm, the Earth’s average density in

CGS is 6.00×1027

1.083×1027
≈ 5.54 gm/cm3. The value 5.514 gm/cm3 is more accurate.

6.34. Since 1 foot is equal to 30.48 cm, each of Newton’s spheres has a radius of r = 15.24 cm

and hence a volume of 4
3
πr3 = 4

3
π15.243 ≈ 14.83 × 103 cm3. Multiplying this by the

density of 5.514 gm/cm3, we get that each of the spheres “of like nature to the Earth”

has a mass of about 81.77× 104 gm.

6.35. Since G = 6.67× 10−11 m3

kg·s2 in MKS, it follows that

G = 6.67× 10−11 1003 cm3

1000 gm·s2 = 6.67× 10−8 cm3

gm·s2

in CGS. Note that the force between the spheres is greatest when the spheres are

closest, in other words touch each other, and weakest at the start of the motion. When

the spheres touch, the centers of the spheres are a distance of 30.48 cm apart. Therefore

by Newton’s law of universal gravitation, the maximal gravitational force between the

two spheres is
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G (81.77)(81.77)×108

(30.48)2
≈ 48.00 dynes.

Since 1 inch is equal to 2.54 cm, 1
4

inch is equal to 0.635 cm. So when the spheres are

0.635 cm apart, their centers are 30.48 + 0.635 ≈ 31.12 cm apart. In this position the

gravitational force between the spheres is at its minimum of

G (81.77)(81.77)×108

(31.12)2
≈ 46.05 dynes.

6.36. Since 1 inch is equal to 2.54 cm, 1
4

inch is equal to 0.635 cm. So the a in Figure 6.47

is a = 0.3175 cm. Let the minimal gravitational force of F = 46.05 dynes act on the

sphere on the right. How long will it take for this force to move this sphere from rest

at a = 0.3175 cm to the origin? Since the same force acts on the sphere on the left, the

sphere on the left will reach the origin at the same time. So this is the time it takes for

the minimum gravitational force to move the spheres from rest until they touch. As

was observed in the solution of the previous problem, only when the motion begins is

the gravitational force equal to the minimal force. Later, when the spheres touch the

force equal to its maximum. It follows that the time that we will compute is somewhat

more than the actual time.

Since the mass of the sphere is m = 81.77 × 104 grams, the acceleration of the

sphere is F
m

= 46.05
81.77×104

≈ 56.32 × 10−6 cm/sec2. Let the force begin to act at time

t = 0 and let t > 0 be the elapsed time thereafter. So v(t) ≈ 56.32t × 10−6 cm/sec

and the distance the sphere is moved by the force is x(t) ≈ 28.16t2× 10−6 cm. Setting

28.16t2× 10−6 = 0.3175 or 28.16t2× 10−4 = 31.75, we get t2 ≈ 31.75
28.16
× 104 sec2, so that

t ≈ 1.06× 102 = 106 seconds. The same computation with the maximal force in place

of the minimal force results in a time of about one second less. In conclusion, the time

it takes for gravity to move the two spheres until they touch is about 13
4

minutes.

So Newton got it wrong when he speculated that the spheres would not come together

“in less than a month’s time.” (Why couldn’t Newton simply have carried out the above

computation?)

The study of the Earth-Moon-Sun system and in particular Airy’s computation of the

mass of the Moon that the text engages next is complete in its details. So we turn next to

a discussion of the speeds of the bodies in the solar system.

Consider a planet (comet, or asteroid) P in its elliptical orbit with the Sun S at a focal

point of the ellipse. Let a be the semimajor axis, b the semiminor axis, c =
√
a2 − b2, and

ε = c
a

the eccentricity of the orbit. Let T be the period of the orbit and κ its Kepler constant.

The figure below shows P in five different locations of its orbit. (The ellipse is drawn much

flatter than that of any planetary orbit in order to add transparency to our discussion.) The

five locations are labeled from 1 to 5 in the figure. The numbers 1 and 5 denote the perihelion

and aphelion positions respectively. Let ∆t be a short fixed interval of time and consider the
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S
1

2

3

4

perihelion

5
aphelion

five short arcs starting from the five points that P traces out during this time. The five

arcs and the thin wedges that the segment SP sweeps out in the process are drawn in as

well. Since they are all swept out in the same time ∆t, these wedges have the same area by

Kepler’s second law. Since the wedges get longer as P proceeds from perihelion to aphelion,

the arcs get shorter and shorter. Since they are all traced out over the same time, this means

that the average speed of P over the arcs decreases from one arc to the next. Pushing ∆t

to zero shortens the five arcs and pushes the average speed to the speed at the initial point

of each arc. Since the distance from P to S is shortest at perihelion, P achieves its greatest

speed vmax at perihelion. Similarly, since the distance from P to S is longest at aphelion,

P attains its least speed vmin at aphelion.

The next two problems illustrate how Newton would have determined the maximum and

minimum speeds of the planet or in fact of any body in the solar system. His Figure 6.30 is

the key.

6.37. Figure 6.52 shows the perihelion position of the planet P , a short stretch of the orbit,

and the position Q of the planet a short time ∆t later. The tangent to the orbit at P

Δs

Q

S
P

R

Figure 6.52

is drawn in and R is chosen so that RQ is parallel to SP . The segment PR has

length ∆s.

i. The average speed vav of the planet during its motion from P to Q is equal to
arc PQ

∆t
. Because arc PQ ≈ ∆s, vav ≈ ∆s

∆t
.
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ii. Since the area of the wedge SPQ is approximately equal to that of the triangle

∆SPQ, we see that κ = area wedge SPQ
∆t

≈
1
2

SP·∆s
∆t

. Since SP = a − c and κ = abπ
T

,

we get the approximation 1
2
(a− c)∆s

∆t
≈ abπ

T
. Therefore, vav ≈ ∆s

∆t
≈ 2abπ

(a−c)T .

iii. When ∆t is pushed to zero, the average speed ∆s
∆t

= vav becomes the speed vmax at

perihelion. Secondly, the approximation of the area of the wedge SPQ by the area
1
2
(a−c)·∆s of ∆SPQ becomes tighter and tighter. Therefore, the approximations

κ = area wedge SPQ
∆t

≈
1
2

(a−c)·∆s
∆t

≈ 1
2
(a − c)vmax snap to equalities. Since κ = abπ

T

this leads to the conclusion vmax = 2abπ
(a−c)T .

iv. Since b =
√
a2 − c2 and c = εa, we get a − c = a(1 − ε) and b = a

√
1− ε2. So

vmax = 2a2
√

1−ε2
a(1−ε)

π
T

= 2a(
√

1−ε)(
√

1+ε)

(
√

1−ε)2
π
T

= 2aπ
T

√
1+ε
1−ε .

6.38. We have already established that a planet (or comet or asteroid) attains its minimum

speed vmin at aphelion. It is a routine matter to modify the solution to Problem 6.37

Δs

Q

S
A

R

(by using the figure above and SA = a + c in place of SP = a − c) to show that

vmin = 2abπ
(a+c)T

= 2πa
T

√
1−ε
1+ε

.

Several of the computations that follow use the fact that 1 au ≈ 149,598,000 km and that

1 au
year

= 149,597,892 km
1 year

× 1 year
31,558,000 s

≈ 4.74 km
s
.

6.39. Simply plug the data of Table 3.3 and the relationship between au/year and km/s into

the formulas that Problem 6.37 and 6.38 developed.

6.40. The orbit of the comet Halley has semimajor axis a = 17.83 au, eccentricity ε = 0.967,

and period T = 75.32 years. Putting these data into the formula vmax = 2aπ
T

√
1+ε
1−ε , we

get vmax = 35.66π
75.32

√
1+0.967
1−0.967

≈ 11.48 au/year or 11.48 · 4.74 ≈ 54.42 km/sec. Doing this

with vmin = 2πa
T

√
1−ε
1+ε

, provides vmin ≈ 35.66π
75.32

√
1−0.967

1.967
≈ 0.19 au/year or 0.91 km/sec.

The next set of problems establishes the fact that there is a “maximum speed limit” on

the speed of all the planets, comets, or asteroids that are in elliptical orbit around the Sun.
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6.41. The equality a3

T 2 = GM
4π2 is derived in Section 6.10. Since no orbital parameters appear

on the right side of the equation (M is the mass of the Sun), a3

T 2 is the same constant

for the planets and any astronomical body in elliptical orbit around the Sun. Since

a = 1 au and T = 1 year for Earth, it follows that in the units au and years, a3

T 2 = 1

for Earth and hence for any astronomical body in elliptical orbit around the Sun.

6.42. Consider any object in an elliptical orbit around the Sun. Take distances in the solar

system in au and time in years. Let a be the semimajor axis, ε the eccentricity, and

T the period of the orbit of the object. By Problem 6.41, a3 = T 2. Hence T = a
3
2 .

Since ε < 1, the conclusion of Problem 6.37 implies that the maximum speed vmax of

the object in au/year satisfies

vmax =
2aπ

T

√
1 + ε

1− ε
=

2π

a
1
2

√
1 + ε

1− ε
<

2π ·
√

2√
a(1− ε)

.

Notice that a(1− ε) = a− aε = a− c is the perihelion distance of the orbiting object

in au.

6.43. Inserting the smallest perihelion distance of a(1− ε) = 0.005 au into the term 2π·
√

2√
a(1−ε)

derived in Problem 6.42, provides the approximate value 125.66 au/year for the maxi-

mum speed of a comet in elliptical orbit around the Sun. Since 1 au/year is equal to

4.74 km/s, this maximum speed corresponds to about 598 km/s.

We’ll turn to provide estimates of the maximal speeds of some of the great sungrazing

comets.

6.44. The Great Comet of 1680 that Newton tracked attained a perihelion distance of close

to 0.006 au. Substituting a(1 − ε) = 0.006 au into 2π·
√

2√
a(1−ε)

tells us that the Great

Comet of 1680 attained a maximum speed of about 114.71 au/year or 544 km/s.

6.45. For the Great Comet of 1843, take a(1 − ε) = 0.00546 to be the perihelion distance.

So its speed at perihelion was 2π·
√

2√
a(1−ε)

= 2π·
√

2√
0.00546

≈ 120.25 au/year or 570 km/sec. For

the Great Comet of 1882, 2π·
√

2√
a(1−ε)

= 2π·
√

2√
0.0076

≈ 101.93 au/year or 483 km/sec. Finally

for the Great Comet of 1965, 2π·
√

2√
a(1−ε)

= 2π·
√

2√
0.00778

≈ 100.74 au/year or 478 km/s.

The next group of problems focuses on artificial satellites of Earth. Recall that the

Earth is a sphere that is slightly flattened at the poles, so that the distances from the

Earth’s center to its surface vary slightly. The radius at the equator is 6378 km and that at

the poles is 6357 km. The average radius is 6371 km.
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6.46. Let a and ε be the semimajor axis and eccentricity of Sputnik’s elliptical orbit. The

addition of the distance 942 km to Earth’s radius of 6371 km gives an aphelion distance

of a + aε = 7313 km for the orbit and adding 230 km to 6371 km gives a perihelion

distance of a−aε = 6601 km. So 2a = (a+εa)+(a−εa) = 7313+6601 = 13,914 km and

hence a = 6957 km. Since 2εa = (a+εa)− (a−εa) = 7313−6601 = 712 km, aε = 356

and hence ε = 356
6957
≈ 0.051. Given Sputnik’s orbital period of 96·60 = 5760 seconds,

we get that Earth’s mass in MKS is M = 4π2a3

GT 2 = 4π2·6,957,0003

6.67×10−1157602
≈ 6.00× 1024 kg.

6.47. For Explorer 1, the aphelion and perihelion distances of the orbit were a + aε =

6371+2534 = 8905 km and a−aε = 6371+360 = 6731 km, respectively. So 2a = 15,636

km and 2aε = 8905−6731 = 2174 km. It follows that a = 7818 km and aε = 1087 km.

So ε = 1087
7818
≈ 0.14. Since the period of Explorer’s orbit was T = (114.9)(60) = 6894

seconds, we get the estimate M = 4π2a3

GT 2 = 4π2·7,818,0003

6.67×10−11· 68942
≈ 5.95× 1024 kg for Earth’s

mass.

We’ll turn to the Moon and its orbit around Earth next.

6.48. Since Earth revolves once around its axis every 24 hours and the Moon takes 27.32 day

to complete its orbit around Earth, the Earth’s rotation has the greater effect on the

Moon’s observed change of position.

6.49. We’ll use Newton’s formula F = GmM
r2

of universal gravitation. With the mass of the

Sun equal to 2.0×1030 kg and the average distance from the Moon to the Sun the same

1.5×108 km = 1.5×1011 m as that from Earth to the Sun, we get that the gravitational

force of the Sun on the Moon is F = 6.67 × 10−11 (7.4×1022)(2.0×1030)
(1.5×1011)2

≈ 4.39 × 1020 N.

Taking 6.0×1024 kg for Earth’s mass, F = 6.67×10−11 (7.4×1022)(6.0×1024)
(3.8×108)2

≈ 2.05×1020 N

is the gravitational force of Earth on the Moon. So the gravitational force of the Sun

on the Moon is about twice as great as the gravitational force of Earth on the Moon.

The best way to understand the Earth-Moon-Sun dynamic is to regard both Earth and

Moon to be in orbit around the Sun. As this occurs the Earth’s gravitational force

pulls the Moon into orbit around it.

6.50. Putting a = 3.8× 108, T = (27.32)(24)(602) seconds, and ε = 0.0549 into the formulas

vmax = 2πa
T

√
1+ε
1−ε and vmin = 2πa

T

√
1−ε
1+ε

, we get

vmax ≈ 2π(3.8×108)
(27.32)(24)(3600)

√
1.0549
0.9451

≈ 1069 and vmin ≈ 2π(3.8×108)
(27.32)(24)(3600)

√
0.9451
1.0549

≈ 957

both in meters/sec. This is consistent with the fact that the average orbital speed of

the Moon is 1.023 km/s.

6.51. The formula that provides the answer is M = 4π2a3

GT 2 where a is the semimajor axis

of Luna 10’s orbit and T is the period. So from all the information supplied, only

a = 2,413,000 m and T = (178.05)(60) = 10,683 seconds (we’re using MKS) is relevant.
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Inserting this, we get M = 4π2a3

GT 2 ≈ 4π2(2,413,000)3

(6.67×10−11)(10,6832)
≈ 7.29× 1022 kg for the mass of

the Moon.

6.52. If gM is the gravitational acceleration of a mass m falling near the Moon’s surface,

then the force of gravity on m is F = mgM . On the other hand, by the law of universal

gravitation, F = GmM
r2M

where M is the mass of the Moon and rM its radius. It follows

that gM = G M
r2M
≈ (6.67× 10−11) 7.4×1022

(1,740,000)2
≈ 1.63 m/s2 in MKS.

The next two examples determine the masses of the asteroids Eros and Eugenia.

6.53. The formula M = 4π2a3

GT 2 is the key. The semimajor axis a of NEAR’s orbit is its radius

r = 99.8 km. The circumference of the orbit 2πr = 2π(99.8) ≈ 627 km. Since NEARs

speed is 4.8 km/hour, its period is T ≈ 627
4.8
≈ 131 hours. Inserting the data in MKS

into the formula, tells us that the mass of Eros is M = 4π2a3

GT 2 ≈ 4π2(99,8003)
6.67×10−11(131·3600)2

≈
2.65× 1015 kg.

6.54. Again, M = 4π2a3

GT 2 is the formula to be applied. We’ll take Eugenia’s moon to have a

circular orbit of radius 1130 km and a period of 4.7 days. Converting to MKS, we get

that the mass of Eugenia is M = 4π2a3

GT 2 ≈ 4π2(1,130,0003)
6.67×10−11(4.7·24·3600)2

≈ 5.18× 1018 kg.

We’ll close our discussion about artificial Earth satellites with a look at some of the

important information that they have provided.

6.55. Nothing to do here except to go to

http://www.nasa.gov/hubble/ and http://antwrp.gsfc.nasa.gov/apod/

(in the latter case to the Archive) and explore.

6.56. Consider the modified version of Figure 6.54 below. Start with the object in position

P1 and wait for it to move to the position P2 opposite P1 with respect to the focal axis.

Suppose that the object takes the time t to get from P1 to P2. The object continues to

positions P3 and then P4 as these are determined by continuing the segments from P1

to S and P2 and S, respectively, to the ellipse. Since ∠P1SP2 = ∠P3SP4 and the object

traces out equal angles in equal times, it follows that the time it takes for the object to

S C

P

1

P

P

P

2

3

4
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move from P3 to P4 is also equal to t. As the object also sweeps out equal areas in

equal times, it follows that the elliptical sectors P1SP2 and P3SP4 have equal areas.

But a look at the figure shows that this is possible only if the focal point S of the

ellipse coincides with its center C. In terms of the discussion in Section 4.4, this means

that c = 0 and hence that the eccentricity ε = c
a

of the ellipse is 0. So the ellipse is a

circle.

6.57. The Earth’s center of mass C is also the focal point of the elliptical orbit of the satellite.

If P designates the position of the satellite and Q the point on the equator over which

it hovers, then the segment CQP traces out equal angles in equal times because CQ

does so. By Kepler’s second law, the segment CQP also traces out equal areas in equal

times. So by the conclusion of Problem 6.56, the orbit of the satellite must be a circle.

When applying the formula a3

T 2 = GM
4π2 to the orbit of the satellite, a is the radius r of

the orbit, T = 24 hours, and M = 6 × 1024 kg is the Earth’s mass. It follows that
r3

(24·3600)2
= (6.67×10−11)(6×1024)

4π2 in MKS and that r3 ≈ 75674×1018. Hence r ≈ 42.3×106

meters or 42,300 km.

6.58. The study of the GPS satellite system is self contained except for the answers to three

questions: “Why does this mean that the radii of their circular orbits have to be the

same? What is this common radius equal to? What is the speed of the satellites?”

The only fact needed for the answers is that the satellites are in circular orbits with a

period of 12 hours. The relevant formula is a3

T 2 = GM
4π2 , where (in the current situation)

a = r is the radius of the circular orbit of any of the satellites, T = 12 hours is the

common period, and M = 6× 1024 kg is the mass of the Earth. Since the right side of

this equation and the period T are the same for all satellites, it follows that all satellites

have the same r. Converting the data to MKS we get r3

(12·3600)2
= (6.67×10−11)(6×1024)

4π2 ,

so that r3 ≈ 18,918 × 1018 and r ≈ 26.65 × 106 m or 26,650 km. Since the orbit is a

circle, its eccentricity is ε = 0, so that by the conclusions of Problems 6.37 and 6.38,

vmax = vmin = 2πr
T
≈ 2π·26650

12
≈ 13,950 km/hour.

Einstein’s theory of general relativity correctly predicts that a clock that is farther

from a massive body (or at lower gravitational force) runs more quickly, and a clock

close to a massive body (or at greater gravitational force) runs more slowly. The

reason for this is that space and time are interconnected and that gravity pulls on the

composite four dimensional structure of space-time. When gravity warps space-time

it also warps time. This has an impact on the GPS system as all the clocks on the

satellites run 45 microseconds per day faster than a clock on Earth. This difference of

0.000045 seconds per day adds up over time. A highly accurate estimate of a location

on Earth depends (as we have seen) on highly accurate estimates of the distances of the

location to several of the moving satellites at synchronized times. This requires that

the relativistic differences in the readings of the clocks need to be taken into account.
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