
Solutions to Problems and Projects for Chapter 5

5.1. The slope is −3−2
2−(−6)

= −5
8

. An equation for the line (in point-slope form) is y + 3 =

−5
8
(x− 2).

5.2. The slope of this line is m = 7−2
−2−5

= −5
7
. Therefore an equation (in point slope form)

for the line is y − 7 = −5
7
(x− (−2)) or y − 7 = −5

7
(x+ 2).

5.3. The slope-intercept form of the equation is y = −3x+ 4.

5.4. An equation of the line (in point-slope form) is y−(−2) = 1
2
(x−3) or y+2 = 1

2
(x−3)).

5.5. The equation y + 7 = −3(x+ 6) is an equation of the line in point-slope form.

5.6. The figure below includes the y-intercept of the line and determines its slope.
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5.7. The figure below includes the y-intercept of the line and determines its slope.
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5.8. We need to rewrite the equation in the form y = mx + b. Solving for y, we get

7y = −2x− 2 and y = −2
7
x− 2

7
. It follows that the slope and the y-intercepts are both

−2
7
.

5.9. We need to write the equation in the form y = mx+ b. Since 5y = −3x− 2 and hence

y = −3
5
x− 2

5
, it follows that the slope of the line is −3

5
and its y-intercept is 2

5
.

5.10. Let a line through the point (3, 0) make an angle θ with the positive x-axis and assume

that 0 ≤ θ < π
2
. A look at the figure tells us that the slope m of the line is m = tan θ.

So y = (tan θ)(x − 3) is an equation of the line. For θ = 45◦, 30◦, and 25◦, the slopes

m are m = 1,m = 1√
3
≈ 0.577, and m ≈ 0.466, respectively.

x
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(3, 0)
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5.11. The slope of the line is 7−1
−4−5

= −6
9

= −2
3
. The equation y−1 = (7−1)

(−4−5)
(x−5) is in two-

point form, y−1 = −2
3
(x−5) is in point-slope form, and y = −2

3
x+ 10

3
+1 = −2

3
x+ 13

3
,

so that y = −2
3
x+ 13

3
is in point-intercept form. The line is sketched below.

x

y

5.12. The two triangular figures are not triangles. The upper boundary of the large dark
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triangle in each figure has slope 3
8

= 0.375 and the upper boundary of the smaller

triangle in each figure has slope 2
5

= 0.4. It follows that the figure at the bottom

initially rises faster from left to right than the figure at the top. This advantage in rise

gains the figure at the bottom the additional square.

5.13. The circle—it has radius
√

20 ≈ 4.47—and the line are both sketched below. By

substituting x− 3 = y into (x− 3)2 + (y + 2)2 = 20, we get y2 + y2 + 4y + 4 = 20. So

2y2 + 4y − 16 = 0, and therefore y2 + 2y − 8 = 0. By recognizing that this polynomial

factors as (y − 2)(y + 4) or by applying the quadratic formula, y =
−2±
√

4−(4)(1)(−8)

2
=

−2±
√

36
2

, we get y = 2 or y = −4. So the points of intersection are (−1,−4) and (5, 2).

x

y

(3, −2)

5.14. An equation of the circle is (x − 2)2 + (y − 3)2 = 25 and an equation of the line

is y − 3 = 1
2
(x − 2). A substitution tells us that (x − 2)2 + (1

2
(x − 2))2 = 25. So

5
4
(x − 2)2 = 25 and hence (x − 2)2 = 20. Therefore x − 2 = ±

√
20 = ±2

√
5 and

x = 2±2
√

5. For these two values of x, 1
2
(x−2) = ±

√
5, so that y = 3±

√
5. It follows

that the two points of intersection are
(
2(1−

√
5),−

√
5 + 3

)
and

(
2(1 +

√
5),
√

5 + 3
)
.

5.15. Figure 5.42 guides the argument. Let’s start by assuming that the lines L1 and L2 are

perpendicular. So α + π
2

+ β′ = π and hence α + β′ = π
2
. Also α + β + π

2
= π, so that

α + β = π
2
. It follows that β = β′. We now see that m2 = y2

x2
= − y2

−x2 = − tan β′ =

− tan β = −x1
y1

= − 1
y1
x1

= − 1
m1

. Suppose conversely that m2 = − 1
m1

. Then from above

tan β′ = tan β and hence β′ = β. Since α + β = π
2
, it follows that α + β′ = π

2
. But

this means that the angle γ between the line L1 and L2 must be π
2
, so that the lines

L1 and L2 are perpendicular.

5.16. Along with P = (2, 4), let Q = (2 + ∆x, 4 + ∆y) be a point on the parabola. Since

4 + ∆y = (2 + ∆x)2. It follows that 4 + ∆y = 4 + 4∆x + (∆x)2. Therefore ∆y =

∆x
(
4 + ∆x

)
. So ∆y

∆x
= 4 + ∆x, and hence mP = lim

∆x→0

∆y
∆x

= 4.

5.17. In addition to P = (2, 8) we’ll let Q = (2 + ∆x, 8 + ∆y) be a point on the curve.

So 8 + ∆y = (2 + ∆x)3. It follows that 8 + ∆y = 23 + 3·22∆x + 3·2(∆x)2 + (∆x)3.
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Therefore ∆y = ∆x
(
12 + 6∆x + (∆x)2

)
. So ∆y

∆x
= 12 + 6∆x + (∆x)2, and hence

mP = lim
∆x→0

∆y
∆x

= 12.

5.18. Since both P = (x, y) and Q = (x + ∆x, y + ∆y) are on the curve, y = 1
x2

and

y + ∆y = 1
(x+∆x)2

. So ∆y = 1
(x+∆x)2

− 1
x2

. After taking common denominators,

∆y = x2−(x+∆x)2

(x+∆x)2x2
= −2x∆x−(∆x)2

(x+∆x)2x2
= ∆x(−2x−∆x)

(x+∆x)2x2
. So ∆y

∆x
= −2x−∆x

(x+∆x)2x2
, and therefore

mP = lim
∆x→0

∆y
∆x

= −2x
x2x2

= −2
x3

.

5.19. Along with P = (x, y), let Q = (x+ ∆x, y + ∆y) be on the graph. Since (y + ∆y)2 =

2(x + ∆x) + 7, we see that y2 + 2(∆y)y + (∆y)2 = 2x + 2∆x + 7, and hence that

2(∆y)y+ (∆y)2 = 2∆x. So ∆y(2y+ ∆y) = 2∆x and therefore ∆y
∆x

= 2
2y+∆y

. When ∆x

is pushed to zero, ∆y goes to zero as well (see Figure 5.7), so that mP = lim
∆x→0

∆y
∆x

= 1
y
.

At the point (1,−3) on the curve, the slope of the tangent line is 1
−3

, so that y + 3 =

−1
3
(x− 1) is an equation of the tangent.

5.20. In addition to P = (x, y), we’ll let Q = (x + ∆x, y + ∆y) be on the graph of x = y3.

So x + ∆x = (y + ∆y)3 = y3 + 3y2∆y + 3y(∆y)2 + (∆y)3. It follows that ∆x =

3y2∆y + 3y(∆y)2 + (∆y)3 = (∆y)(3y2 + 3y(∆y) + (∆y)2). Notice next that

∆y
∆x

(3y2 + 3y(∆y) + (∆y)2) = 1.

Since ∆y goes to zero when ∆x is pushed to zero, we get—by taking lim
∆x→0

of both

sides—that mP (3y2) = 1 and hence that mP = 1
3y2

. With a slightly different algebraic

move, the fact that lim
∆x→0

∆
∆x

∆y = mP · 0 = 0 would have been useful.

5.21. Let the point P = (x, y) as well as the point Q = (x + ∆x, y + ∆y) be on the ellipse.

Since (x+∆x)2

52
+ (y+∆y)2

42
= 1 we get x2+2x∆x+(∆x)2

52
+ y2+2y∆y+(∆y)2

42
= 1. It follows that

x2

52
+ y2

42
+ 2x∆x+(∆x)2

52
+ 2y∆y+(∆y)2

42
= 1 and therefore that 2x∆x+(∆x)2

52
+ 2y∆y+(∆y)2

42
= 0.

After a little algebra, ∆y(2y+∆y)
42

= −∆x(2x+∆x)
52

. Therefore ∆y
∆x

(2y+∆y)
42

= − (2x+∆x)
52

and

hence ∆y
∆x

= −42(2x+∆x)
52(2y+∆y)

. So mP = lim
∆x→0

∆y
∆x

= −42

52
x
y
.

5.22. Letting Q = (x + ∆x, y + ∆y) be on the curve we get (y + ∆y)3 = 3(x + ∆x)2 + 7.

Therefore y3 +3y2∆y+3y(∆y)2 +(∆y)3 = 3x2 +6x∆x+(∆x)2 +7. Since P = (x, y) is

on the curve, its coordinates satisfy y3 = 3x2 + 7, so that 3y2∆y + 3y(∆y)2 + (∆y)3 =

6x∆x+ (∆x)2. After factoring out the ∆y and ∆x, we get ∆y(3y2 + 3y∆y+ (∆y)2) =

∆x(6x+∆x). Therefore ∆y
∆x

= 6x+∆x
3y2+3y∆y+(∆y)2

. By pushing ∆x to zero, lim
∆x→0

∆y
∆x

= 6x
3y2

=

2x
y2
. Raising both sides of y3 = 3x2 + 7 to the 2

3
power, we get y2 = (3x2 + 7)

2
3 . So we

are done.

5.23. With Q = (x0 + ∆x, y0 + ∆y) also on the circle, (x0 + ∆x)2 + (y0 + ∆y)2 = r2. It

follows that
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x2
0 + 2x0(∆x) + (∆x)2 + y2

0 + 2y0(∆y) + (∆y)2 = r2.

So 2x0(∆x)+(∆x)2+2y0(∆y)+(∆y)2 = 0 and 2y0(∆y)+(∆y)2 = −(2x0(∆x)+(∆x)2).

Factoring out a ∆y from the left side and a ∆x from the right, gives us ∆y(2y0 +∆y) =

−∆x(2x0 + ∆x). Therefore ∆y
∆x

= −2x0+∆x
2y0+∆y

, and hence mP = lim
∆x→0

∆y
∆x

= −2x0
2y0

= −x0
y0

.

i. Continue to let (x0, y0) be a point on the circle with y0 6= 0 and consider the radius

from (0, 0) to (x0, y0). Suppose first that x0 = 0. Then the radius is vertical and

the slope −x0
y0

of the tangent at the point is zero. So the radius and the tangent

are perpendicular. Suppose that x0 6= 0. Then the slope of the radius to from

(0, 0) to (x0, y0) is y0−0
x0−0

= y0
x0

. Since the tangent at (x0, y0) has slope −x0
y0

, the

radius and the tangent are perpendicular by the conclusion of Problem 5.15.

ii. Let (x0, y0) be a point of tangency. Since the slope of the tangent at this point is

−1
3
, we know that −x0

y0
= −1

3
. So y0 = 3x0. Since (x0, y0) is also on the circle, it

follows that x2
0 + (3x0)2 = x2

0 + y2
0 = 1. So 10x2

0 = 1 and hence x0 = ± 1√
10

and

(x0, y0) =
(
± 1√

10
,± 3√

10

)
. Turn to the line y = −1

3
x+ b. Taking

(
1√
10
, 3√

10

)
as the

point of tangency, we get 3√
10

= −1
3

1√
10

+ b. So

b = 3√
10

+ 1
3

1√
10

= 1√
10

(
3 + 1

3

)
= 1√

10

(
10
3

)
=
√

10
3

.

Using
(
− 1√

10
,− 3√

10

)
as the point of tangency, we get − 3√

10
= 1

3
1√
10

+ b. So

b = − 3√
10
− 1

3
1√
10

= −
√

10
3

.

5.24. Solving y2 = x for y, we get y = ±
√
x as the two possibilities for y. Since y = f+(x) =√

x is positive, the graph of this function is the upper part of the parabola of Figure

5.13a. Similarly, the graph of y = f+(x) =
√
x is the lower part of the parabola.

If the squares of two numbers are equal, the numbers are either equal or one is the

negative of the other. It follows that for any two numbers x and y that satisfy y2 = x2,

either y = x or y = −x. So any point (x, y) on the graph of y2 = x2 must lie on one

of the two lines y = x or y = −x. This provides the graph of y2 = x2 of Figure 5.13b.

Let (x, y) be a point on the graph. If y ≥ 0, then we must have y = |x| and if y is

negative, then y = −|x|.

5.25. Solving x2 + y2 = 9 for y we get y2 = 9 − x2 and hence y = ±
√

9− x2. Define f+(x)

and f−(x) by f+(x) =
√

9− x2 and f−(x) = −
√

9− x2. Both functions have domain

−3 ≤ x ≤ 3. The graph of f+(x) is the upper half of the circle (including the points

(±3, 0)) and the graph of f−(x) is the lower half (again including the points (±3, 0)).

5.26. It is clear that the height of the water level is increasing in all cases. So the issue is the

rate of this increase and the fact that this rate is provided by the slope of the graph.

Whether this rate is larger or smaller at a given time depends on the cross sectional

area of the drinking glass or vase at that time. The smaller the cross sectional area,
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the greater the rate of increase of the height of the water level, the larger the cross

sectional area, the smaller this rate of increase.

The graphs of the height function for the three glasses

(a)       (b)       (c)

are sketched below

t

h

t

h

t

h

The graphs for those for the three vases

(d)       (e)       (f)

are depicted here.

t

h

t

h

t

h
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5.27. Since
(x+∆x)3−x3

∆x
= x3+3x2∆x+3x(∆x)2+(∆x)3−x3

∆x
= ∆x(3x2+3x∆x+(∆x)2)

∆x
= 3x2 + 3x∆x+ (∆x)2,

it is clear that f ′(x) = lim
∆x→0

(x+∆x)3−x3
∆x

= 3x2.

5.28. Since h(x) = 1
x2

, we get

h(x+∆x)−h(x)
∆x

= 1
∆x

(
1

(x+∆x)2
− 1

x2

)
= 1

∆x
x2−(x+∆x)2

(x+∆x)2x2
= 1

∆x
−2x(∆x)−(∆x)2

(x+∆x)2x2
= −2x−∆x

(x+∆x)2x2
.

Therefore h′(x) = lim
∆x→0

h(x+∆x)−h(x)
∆x

= lim
∆x→0

−2x−∆x
(x+∆x)2x2

= −2x
x4

= − 2
x3

.

5.29. i. Since f ′(x) = 3x2, the slope of the tangent at (2, 8) is f ′(2) = 12.

ii. Since g′(x) = 1
3
x−

2
3 , the slope is g′(−3) = 1

3
(−3)−

2
3 = 1

3(−3)
2
3

= 1

3·9
1
3
≈ 0.16.

iii. The derivative of f(x) = 1
x

= x−1 is f ′(x) = −x−2 = − 1
x2

. Therefore the slope is

f ′(−1
3
) = − 1

1
9

= −9.

iv. Since f ′(x) = −2x−3 = − 2
x3

, the slope is f ′(−2) = − 2
(−2)3

= 1
4
.

5.30. i. f ′(x) = 0

ii. dy
dx

= 4

iii. f ′(x) = 14x− 5

iv. dy
dx

= 2
3
x−

2
3 + 3πx2

v. g′(x) = −3x−2 + 3

vi. f ′(x) = 6x2 + 3 + 2x−3

vii. h′(x) = 2x−
1
2 − 5x−2

5.31. Since a tangent line is involved, we’ll need the derivative f ′(x) = 10x − 6x2 of the

function. It provides the slope of the tangent to the graph at the point P = (x, y). If

we don’t change notation as suggested, we get—by substituting into the point-slope

form of the equation of a line—the unhelpful and confusing y − y = f ′(x)(x − x) =

(10x − 6x2)(x − x) for the tangent. After changing notation to P = (x0, y0), we get

f ′(x0) = 10x0− 6x2
0 and hence y− y0 = f ′(x0)(x−x0) or y− y0 = (10x0− 6x2

0)(x−x0)

for the equation of the tangent.

5.32. Solving the equations y = x2 and y = 3x − 4 for x, we get x2 = 3x − 4 and hence

x2−3x+4 = 0. By the quadratic formula, x = 3±
√

9−4·4
2

= 3±
√
−7

2
. It follows that there

is no solution, and hence that the parabola and the line cannot intersect. The slope

intercept form of any line with slope 3 is y = 3x + b. It will touch the parabola at a

single point if it intersects the parabola at a single point. This means that x2 = 3x+ b

needs to have a single solution. Since the solutions of x2− 3x− b = 0 are x = 3±
√

9+4b
2

,

this means that 4b = −9. So the point of “first touch” is
(

3
2
, 9

4

)
(corresponding to

b = −9
4

= −21
4
).
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5.33. The four “generic” possibilities are sketched below.

P PP

x

P

xxx

f (x) < 0 

`

5.34. Squaring both sides of y =
√

52 − x2, we get y2 = 52 − x2 and hence x2 + y2 = 52.

Example 5.7 informs us that the slope of the tangent at any point (x, y) on this circle

is −x
y
. Since in the current situation, y =

√
52 − x2, it follows that f ′(x) = − x√

52−x2 .

Problem 5.22 considers the curve defined by y3 = 3x2 + 7 and shows that the slope of

the tangent at any point P = (x, y) on the curve is mP = 2x
y2

. Since y = (3x2 + 7)
1
3 is

equivalent to y3 = 3x2 + 7 and y2 = (3x2 + 7)
2
3 , it follows that f ′(x) = 2x

y2
= 2x

(3x2+7)
2
3

.

5.35. Taking antiderivatives term by term and adding the required constant C gives us the

antiderivatives F (x) = x− 3
4
x4 + 4x

1
2 + C for f(x), G(x) = 1

3
x−1 + 6x

4
3 + C for g(x),

and H(x) = −4x− 3x−1 + 14
3
x

3
2 + C for h(x).

5.36. By proceeding as in Problem 5.34 or by applying the conclusion of Problem 5.23, we see

that the slope of the tangent at any point (x, y) on the circle x2 + y2 = 1 with y 6= 0,

is −x
y
. Now consider the function y = H(x) =

√
1− x2 and notice that the graph

of H(x) is the upper half of this circle. It follows that H ′(x) = −x
y

= − x√
1−x2 . Let

F (x) = −H(x) and observe that F ′(x) = x√
1−x2 . So the antiderivatives of f(x) = x√

1−x2

have the form −
√

1− x2 + C.

To find an antiderivative of g(x) = x

(3x2+7)
2
3

, let G(x) = 1
2
(3x2 + 7)

1
3 + C and refer

to Problem 5.34 for the fact that G′(x) = 1
2
d
dx

(3x2 + 7)
1
3 = 1

2
2x

(3x2+7)
2
3

= x

(3x2+7)
2
3
.

5.37. Let the sides of the rectangle be x and y. Since A = xy we know that y = Ax−1 and

hence that p = 2x+ 2y = 2x+ 2Ax−1. So p′(x) = 2− 2Ax−2 = 2(x2−A)
x2

. It follows that

p′(x) = 0 for x =
√
A. Notice that p′(x) < 0 for 0 < x <

√
A and that p′(x) > 0 for

x >
√
A. Therefore p(x) achieves its minimum value at x =

√
A. The corresponding y

is y = A√
A

=
√
A. So for a given area A, the rectangle that has the smallest perimeter

is a square.

5.38. Let x and y be the sides of the rectangle. By the Pythagorean theorem d2 = x2 + y2,

so that y =
√
d2 − x2. It follows that the area of the rectangle is given by the function

A(x) = x(
√
d2 − x2). The hint tells us that we need to find the x for which the function

f(x) = x2(d2 − x2) = d2x2 − x4 has its maximum value. Since f ′(x) = 2d2x − 4x3 =
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2x(d2 − 2x2), we see that f ′(x) = 0 for x = 0 or x = d√
2
. Notice that f ′(x) > 0 for

x < d√
2

and f ′(x) < 0 for x > d√
2
. It follows that the function f(x) is increasing for

x < d√
2

and decreasing for x > d√
2
. So x = d√

2
provides the maximum value of f(x)

and hence also of A(x). For this x, y =
√
d2 − d2

2
= d√

2
. So as Kepler had asserted, of

all the rectangles with a fixed diameter d, the square has the largest area.

5.39. The area of the inscribed rectangle is x · g(x) = x 1
x

= 1. Therefore any such rectangle

has area equal to 1.

5.40. Let (x, x2 +1) be any point on the parabola. The distance between it and (3, 1) is given

by the function d(x) =
√

(x− 3)2 + ((x2 + 1)− 1)2 =
√
x2 − 6x+ 9 + x4. The task is

to find the x for which d(x) is a minimum. This is also the x for which the function

D(x) = d(x)2 = x2−6x+9+x4 is a minimum. The function D(x) is easier to deal with

than d(x) so we’ll focus on it. The derivative of D(x) is D′(x) = 4x3 + 2x − 6. Since

D′(1) = 4 + 2 − 6 = 0, the term (x − 1) divides D′(x) = 4x3 + 2x − 6. A polynomial

division confirms that D′(x) = (x − 1)(4x2 + 4x + 6). The quadratic formula applied

to 4x2 + 4x + 6 = 0, tells us that 4x2 + 4x + 6 is never 0. So it is always positive.

Returning to D′(x) = (x−1)(4x2 +4x+6), we now know that D′(x) < 0 for x < 1 and

D′(x) > 0 for x > 1. Therefore the functions D(x) and also d(x) reach their minimum

values when x = 1. We have verified that the point on the parabola that is closest to

(3, 1) is the point (1, 2).

5.41. Let L = x + y be the length of the segment S. Since xy = 225, y = 225
x

, so that

L = x + 225
x

= x + 225x−1 is now a function of x. To find the minimal length that S

can have, we need to deal with L′(x) = 1 − 225x−2 = x2−225
x2

. Observe that L′(x) = 0

when x2 = 225 or x = 15, that L′(x) < 0 for x < 15 and that L′(x) > 0 for x > 15.

It follows that x = 15 provides the shortest possible length for the segment S. With

x = 15, y = 225
15

= 15, so that this length is 15 + 15 = 30 units.

5.42. This time x+ y = 1200. Let p = x2y2 be the product of the squares of the two pieces.

After substituting y = 1200 − x, we get p = x2(1200 − x)2 = 12002x2 − 2400x3 + x4.

After factoring out the term 4x from the derivative p′(x) = 2(12002)x−3(2400)x2+4x3,

we get p′(x) = 4x
(
x2 − 3(600)x + 2(6002)

)
. By the quadratic formula, p′(x) has the

three roots

x = 0 and x =
3(600)±

√
32(600)2−4·2(6002)

2
= 3(600)±600

2
= 600 or 1200.

It follows that p′(x) = x(x− 600)(x− 1200), and hence that p′(x) > 0 for 0 < x < 600

and p′(x) < 0 for 600 < x < 1200. Therefore p(x) is as large as possible when

x = 600. So y = 600 also, and the largest value that the product x2y2 can have is

6002 · 6002 = 129,600,000,000.
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5.43. A look at Figure 5.47 tells us that the volume of the cylinder is V (x) = π(3− x)2x =

π(9x − 6x2 + x3) and that 0 ≤ x ≤ 3. The derivative is V ′(x) = π(3x2 − 12x + 9) =

3π(x2 − 4x + 3) = 3π(x − 1)(x − 3). So V ′(x) = 0 for x = 1 or x = 3. Since

V ′(x) = 3π(x− 1)(x− 3), it follows that V ′(x) > 0 for 0 ≤ x < 1 and that V ′(x) < 0

for 1 < x < 3. So x = 1 provides the maximum value for the volume. This maximum

volume is 4π.

5.44. For a point P = (x, y) on the line y = −1
2
x+5 the distance between (x, y) and (−4, 3) is√

(x+ 4)2 + (y − 3)2 =
√

(x+ 4)2 + (−1
2
x+ 5− 3)2 =

√
(x+ 4)2 + (−1

2
x+ 2)2

=
√

(x2 + 8x+ 16) + (1
4
x2 − 2x+ 4) =

√
5
4
x2 + 6x+ 20.

The square of the distance is f(x) = 5
4
x2 +6x+20. Notice that the x that provides the

minimum distance, also provides the minimum of f(x). After differentiating, f ′(x) =
5
2
x + 6. The minimum value of f(x) occurs for 5

2
x + 6 = 0, or at x = −12

5
. Since

f(−12
5

) = 5
4
· (−12)2

52
+ 6 · −12

5
+ 20 = 36

5
− 72

5
+ 100

5
= 64

5
, it follows that the distance from

(−4, 3) to the line y = −1
2
x+ 5 is

√
64
5

= 8√
5
.

5.45. We turn to Toricelli’s solution of the problem posed by Fermat and explain the con-

struction of the point P . We’ll let ∆ABC be a triangle and assume that all of its three

angles are less than 120◦.

i. As Toricelli had done, complete the sides of the triangle ∆ABC to equilateral

triangles ∆ABL,∆ACM, and ∆BCN . In each case the triangle that falls outside

the given ∆ABC is taken. Then the centers of the circles that each of the three

sets of points ABL,ACM , and BCN determine are constructed by making use

of two sides and applying the conclusion of Problem 1.9. You will see that these

three circles intersect at a single point P . This is the point P that minimizes the

sum PA+PB +PC. It turns out that P is also the intersection of the segments

AN,BM, and CL.

ii. To reformulate the problem (as simply as possible), start by choosing an xy-

coordinate system so that A = (0, 0), B = (b, 0) and C = (c, d). Let P = (x, y).

The distances PA, PB, and PC are equal to

PA =
√
x2 + y2, PB =

√
(x− b)2 + y2, and PC =

√
(x− c)2 + (y − d)2,

respectively. The reformulation of the question of Fermat is this: For what x and

y does the sum√
x2 + y2 +

√
(x− b)2 + y2 +

√
(x− c)2 + (y − d)2

have its minimum value? Since both x and y are “free to move,” this is a function

of the two variables x and y. So it does not fit into the context of Chapter 5.

10
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B
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P
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M

N

The article J. Krarup and S. Vajda, “Toricelli’s geometrical solution to a problem of

Fermat,” IMA Journal of Mathematics Applied in Business & Industry (1997) 8, 215-224,

discusses several solutions and interesting historical connections. It also explores the situa-

tion where one of the angles of the triangle is greater than or equal to 120◦.

5.46. The sum of the terms f(x) · dx with f(x) = 1
x2

, 2 ≤ x ≤ 4, and dx = 1
3

is

f(2) · 1
3

+f(7
3
) · 1

3
+f(8

3
) · 1

3
+f(3) · 1

3
+f(10

3
) · 1

3
+f(11

3
) · 1

3
= (1

4
+ 9

49
+ 9

64
+ 1

9
+ 9

100
+ 9

121
)1

3
.

h(x) =
x2
1

2 4
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Using a calculator we get the approximation of 0.28 for the sum of the areas of the

six rectangles. Since F (x) = −x−1 is an antiderivative of f(x) = 1
x2

, the fundamental

theorem of calculus tells us that

∫ 4

2

1
x2
dx = −1

4
−(−1

2
) = 0.25. As the figure illustrates,

the sum of the areas of the rectangles is a little larger than the area under the graph

(and over 2 ≤ x ≤ 4).

5.47. For the function y = f(x) =
√
x over the interval from 0 to 3 with the points

0 < 1
4
< 1

2
< 3

4
< 1 < 5

4
< 3

2
< 7

4
< 2 < 9

4
< 5

2
< 11

4
< 3

the dx is dx = 1
4
. The sum of the terms f(x) · dx is

√
0 · 1

4
+
√

1
4
· 1

4
+
√

1
2
· 1

4
+
√

3
4
· 1

4
+
√

1 · 1
4

+
√

5
4
· 1

4

+
√

3
2
· 1

4
+
√

7
4
· 1

4
+
√

2 · 1
4

+
√

9
4
· 1

4
+
√

5
2
· 1

4
+
√

11
4
· 1

4

=
(
0 + 1

2
+
√

2
2

+
√

3
2

+ 1 +
√

5
2

+
√

6
2

+
√

7
2

+
√

2 + 3
2

+
√

10
2

+
√

11
2

)
1
4

≈ 3.22.

The graph of the function and the corresponding rectangles under the graph are drawn

y =    x√

0 x

y

3

in the figure below. The fundamental theorem of calculus tells us that∫ 3

0

√
x dx = 2

3
x

3
2

∣∣∣3
0

= 2
3
3

3
2 = 2

3
3
√

3 = 2
√

3 ≈ 3.46.

The numbers confirm what the figure shows, namely that the area under the graph is

a bit larger than the corresponding sum of the areas of the rectangles.

5.48. The expectation is that of these two approximations the one with the smaller dx will

be better. The sum of the terms g(x)·dx with g(x) = 9−x2, 0 ≤ x ≤ 1, and dx = 0.2 is

12



g(0) · 0.2 + g(0.2) · 0.2 + g(0.4) · 0.2 + g(0.6) · 0.2 + g(0.8) · 0.2

= (9 + 8.96 + 8.84 + 8.64 + 8.36)(0.2)

= 8.76.

For the tighter set of points with dx = 0.1, the sum of the g(x) · dx is

g(0) · 0.1 + g(0.1) · 0.1 + g(0.2) · 0.1 + g(0.3) · 0.1 + g(0.4) · 0.1 + g(0.5) · 0.1

+g(0.6) · 0.1 + g(0.7) · 0.1 + g(0.8) · 0.1 + g(0.9) · 0.1

=
(
9 + (9− 0.12) + (9− 0.22) + (9− 0.32) + (9− 0.42) + (9− 0.52)

+(9− 0.62) + (9− 0.72) + (9− 0.82) + (9− 0.92)
)
(0.1)

= 87.15(0.1) = 8.715.

Since G(x) = 9x− 1
3
x3 is an antiderivative of g(x) = 9− x2, the exact area under the

graph over 0 ≤ x ≤ 1 is equal to G(1)−G(0) = 9− 1
3

= 82
3
≈ 8.67.

5.49. For the function f(x) = 16− x2 with −2 ≤ x ≤ 2 and the points

−2 < −1.5 < −1 < −0.5 < 0 < 0.5 < 1 < 1.5 < 2

the sum of the areas f(x) · dx of all the rectangles that these points determine is

(16− (−2)2)(0.5) + (16− (−1.5)2)(0.5) + (16− (−1)2)(0.5) + (16− (−0.5)2)(0.5)

+(16− (0)2)(0.5) + (16− (0.5)2)(0.5) + (16− (1)2)(0.5) + (16− (1.5)2)(0.5)

= 58.5.

This is an approximation of the area

∫ 2

−2

(16−x2) dx under the graph of f(x) = 16−x2

over −2 ≤ x ≤ 2. The precise value is∫ 2

−2

(16− x2) dx = (16x− 1
3
x3)
∣∣∣2
−2

= (32− 8
3
)− (−32 + 8

3
) = 64− 16

3
≈ 58.67.

5.50. With the function y = f(x) =
√

4− x2 over the interval 0 ≤ x ≤ 2 and the points

0 < 0.2 < 0.4 < 0.6 < 0.8 < 1 < 1.2 < 1.4 < 1.6 < 1.8 < 2

the corresponding sum of the areas f(x) · dx of the rectangles is

(
√

4− 02)0.2 + (
√

4− 0.22)0.2 + (
√

4− 0.42)0.2 + (
√

4− 0.62)0.2 + (
√

4− 0.82)0.2

+(
√

4− 12)0.2 + (
√

4− 1.22)0.2 + (
√

4− 1.42)0.2 + (
√

4− 1.62)0.2 + (
√

4− 1.82)0.2

≈ 3.30.

Since the graph of the function y = f(x) =
√

4− x2 over the interval 0 ≤ x ≤ 2 is a

quarter circle of radius 2, 3.30 is an approximation of the area of a quarter circle of

radius 2. The exact value of this area is 1
4
4π ≈ 3.14.
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5.51. The sum of the terms f(x) · dx that corresponds to the given situation is

f(−
√

2) · 1
2

√
2 + f(−1

2

√
2) · 1

2

√
2 + f(0) · 1

2

√
2 + f(1

2

√
2) · 1

2

√
2

=
(√

2 +
√

31
2

+ 2 +
√

31
2

)(
1
2

√
2
)

= 5.06.

The graph of y = f(x) is the upper half of the circle x2 + y2 = 4 of radius 2. Notice

x

y

−2 2

√   (−   2,    2 )√   √   (   2,    2 )√   

x

y

√    −   2 2 √   

that the points (−
√

2,
√

2) and (
√

2,
√

2) are on the graph. The segments from the

origin to these two points lie on the lines y = −x and y = x, respectively. They are

therefore perpendicular to each other. So the area in question consists of a quarter of

a circle of radius 2 together with two triangles of base
√

2 and height
√

2. This area is

equal to 1
4
· 4π + 2 = π + 2 ≈ 5.14. This is also the value of

∫ √2

−
√

2

√
4− x2 dx.

5.52. A look at

32 · 1
1000

+ (3 + 1
1000

)2 · 1
1000

+ (3 + 2
1000

)2 · 1
1000

+ (3 + 3
1000

)2 · 1
1000

+ · · ·+ (5 + 999
1000

)2 · 1
1000

tells us that with dx = 1
1000

, f(x) = x2, and the interval 3 ≤ x ≤ 6, this is a sum of

terms of the form f(xi) ·dx that approximates the integral

∫ 6

3

x2 dx. Since F (x) = 1
3
x3

is an antiderivative of f(x) = x2, this integral is equal to 1
3
(63 − 33) = 1

3
(216 − 27) =

189
3

= 63. Therefore this number approximates the sum.

5.53. The sum
√

4 · 1
10,000

+
√

4 + 1
10,000

· 1
10,000

+
√

4 + 2
10,000

· 1
10,000

+ · · ·+
√

7 + 9,999
10,000

· 1
10,000

is gotten by taking dx = 1
10,000

, f(x) =
√
x, the interval 4 ≤ x ≤ 8, and forming the

sum of the corresponding f(xi) · dx. So this sum is closely approximated by∫ 8

4

x
1
2 dx = 2

3
x

3
2

∣∣8
4

= 2
3
(8

3
2−4

3
2 ) = 2

3
((2
√

2)3−8) = 2
3
((8·2

√
2−8) = 16

3
(2
√

2−1) ≈ 9.75.
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5.54. The antiderivatives of the functions y = x2, y = 1
x2

= x−2, and y = x
1
2 are y = 1

3
x3, y =

−x−1, and y = 2
3
x

3
2 , respectively. Three applications of the fundamental theorem of

calculus tell us that∫ 3

0

x2 dx = 1
3
x3
∣∣∣3
0

= 1
3
(27− 0) = 9,

∫ −2

−8

1

x2
dx = −x−1

∣∣∣−2

−8
= − 1

−2
− (− 1

−8
) = 1

2
− 1

8
= 3

8
, and∫ 12

3

√
x dx = 2

3
x

3
2

∣∣∣12

3
= 2

3

(
12 ·
√

12− 3 ·
√

3
)

= 2
3

(
12 · 2 ·

√
3− 3 ·

√
3
)

= 14
√

3.

The areas that the integrals represent are sketched below.

y = x2

y =   x√
−

3 123 −8 −20

h(x) =
x2
1

5.55. Let’s determine the points of intersection of the parabola y = 1
6
x2 and the line y = 2

3
x.

Set 1
6
x2 = 2

3
x. Note that x = 0 is one solution and that 1

6
x = 2

3
determines the

other. So the second solution is x = 4. The area under the triangle (over the x-axis) is
1
2
(4)(8

3
) = 16

3
. The area under the parabola and over the interval 0 ≤ x ≤ 4 is equal to

40

2

3
y =   x

21

6
y =    x

∫ 4

0

1
6
x2 dx = 1

18
x3
∣∣∣4
0

= 64
18

= 32
9
. It follows that the area in question is 48

9
− 32

9
= 16

9
.

5.56. By an application of the quadratic formula, the parabola y = −3x2 + 2x + 1 crosses

the x-axis at x =
−2±
√

4−4(−3)(1)

−6
= −2±

√
16

−6
= −2±4

−6
= −1

3
, 1. So the parabolic section

obtained by cutting the parabola y = −3x2 + 2x+ 1 with the x-axis has area

15



∫ 1

− 1
3

(
− 3x2 + 2x+ 1

)
dx = (−x3 + x2 + x)

∣∣∣1
− 1

3

= 1− ( 1
27

+ 1
9
− 1

3
) = 1 + 5

27
= 1 5

27
.

The area can also be computed by using Archimedes’s theorem of Section 2.4. Since
dy
dx

= −6x + 2, we know that the parabola has a horizontal tangent for x = 1
3
. The

corresponding y-coordinate is −3
(

1
3

)2
+ 2

3
+ 1 = 4

3
. Therefore

(
1
3
, 4

3

)
is the vertex of

the parabolic section. With regard to Archimedes’s theorem, the relevant triangle has

area 1
2
(1 + 1

3
)(4

3
) = 1

2
(42

32
) = 8

9
. So the area of the parabolic section is 4

3
· 8

9
= 32

27
= 1 5

27
.

5.57. The x-coordinates of the points of intersection of the parabola and the line are the

solutions of the equation −x2 + 7x − 6 = 2. So −x2 + 7x − 8 = 0, and therefore

x =
−7±
√

49−4(−1)(−8)

−2
= −7±

√
17

−2
= 7±

√
17

2
. A calculator shows that 7−

√
17

2
≈ 1.44 and

6 

y = 2

7+   17√
2

7−   17√
2

4

1

y = −x   + 7x − 62

and 7+
√

17
2
≈ 5.56. Since the cut is parallel to the x-axis, the vertex of the parabola is

obtained by setting the derivative−2x+7 equal to 0 and solving for x. So the vertex has

x-coordinate 7
2
. The corresponding y-coordinate is y = −49

4
+7 · 7

2
−6 = −49+98−24

4
= 25

4
.

In reference to Archimedes theorem, the relevant triangle has height 25
4
− 2 = 17

4
and

base
(

7+
√

17
2
− 7−

√
17

2

)
=
√

17. It follows that the triangle has area 1
2

√
17(17

4
) = 17

8
·
√

17.

Therefore the area of the parabolic section is equal to 4
3
· 17

8
·
√

17 = 17
6
·
√

17 ≈ 11.68.

A look at the figure tells us that using calculus, the area of the parabolic section is∫ 7+
√

17
2

7−
√
17

2

(−x2 + 7x− 6
)
dx− 2(

√
17).

Since −1
3
x3 + 7

2
x2 − 6x is an antiderivative of the integrand, the integral is equal to∫ 7+

√
17

2

7−
√
17

2

(−x2 + 7x− 6
)
dx = (−1

3
x3 + 7

2
x2 − 6x)

∣∣∣ 7+√17
2

7−
√
17

2

= x(−1
3
x2 + 7

2
x− 6)

∣∣∣ 7+√17
2

7−
√
17

2

.
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The conclusion—after the remaining arithmetic (it’s a bit tedious) is done—that the

area is the same 17
6
·
√

17 that Archimedes’s theorem gave us. The approach using

Archimedes’s theorem is clearly simpler.

5.58. The graph of the function f(x) =
√
x with x ≥ 0 is shown below along with any point

Q(x0, y0) on the graph. So y0 = (x0)
1
2 . The point P = (x0, 0) lies below Q on the

f(x) =    x√

Q = (x  , y  )

PO

0      0

x

y

x-axis. The area A under the graph of f(x) =
√
x and over the interval 0 ≤ x ≤ x0, is

A =

∫ x0

0

x
1
2 dx = 2

3
x

3
2

∣∣∣x0
0

= 2
3
(x0)

3
2 .

To compute the area B, we need to find where the tangent to the graph at Q intersects

the x-axis. Since f ′(x) = 1
2
x−

1
2 , the slope of the tangent is f ′(x0) = 1

2
(x0)−

1
2 . So the

equation of the tangent is y − y0 = 1
2
(x0)−

1
2 (x − x0). We need to set y = 0 and solve

−(x0)
1
2 = 1

2
(x0)−

1
2 (x− x0) for x. Doing this, we get −2x0 = x− x0, and hence x = x0.

It follows that B = 1
2
(2x0)(x0)

1
2 = (x0)

3
2 and therefore that A = 2

3
B.

5.59. The volume formula of Section 5.9 tells us that this volume is equal to

π

∫ 4

0

(
√
x)2 dx = π

∫ 4

0

x dx = π
2
x2
∣∣∣4
0

= 8π.

5.60. The upper half of the ellipse x2

52
+ y2

42
= 1 is depicted in the figure below. Solving this

equation for y2, we get y2

42
= 1− x2

52
= 52−x2

52
and hence y2 = 42

52
(52− x2). It follows that

x−5       5

the curve shown in the figure is the graph of the function y = 4
5

√
52 − x2.
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i. The area of the upper half of the ellipse is

∫ 5

−5

4
5

√
52 − x2 dx.

ii. The volume of the solid is π

∫ 5

−5

(4
5

√
52 − x2)2 dx = 42π

52

∫ 5

−5

(52 − x2) dx.

5.61. Since x2 + y2 = 4 is the equation of the circle with radius 2 and center the origin, the

graph of y =
√

4− x2 is the upper half of this circle, the integral is the area under this

graph and over 0 ≤ x ≤ 2. Therefore∫ 2

0

√
4− x2 dx = 1

4
π · 22 = π.

Since x2 +y2 = a2 is a circle of radius a (a is assumed to be positive), and y =
√
a2 − x2

is the upper half of this circle, it follows that

∫ a

0

√
a2 − x2 dx = 1

4
πa2.

5.62. Notice first that

∫ 5

0

2
5

√
52 − x2 dx = 2

5

∫ 5

0

√
52 − x2 dx. By a conclusion of Problem 5.61∫ 5

0

√
52 − x2 dx = 1

4
(π · 52), so that

∫ 5

0

2
5

√
52 − x2 dx = 2

5
· 1

4
π52 = 1

4
(5·2)π. This is the

area of one-quarter of the ellipse with semimajor axis 5 and semiminor axis 2.

5.63. This problem generalizes the conclusion of the previous one. We know that the graph

of the function f(x) =
√
a2 − x2 with −a ≤ x ≤ a is the upper half of a circle of radius

a. Since

∫ a

−a

√
a2 − x2 dx is the area under this semicircle,

∫ a

−a

√
a2 − x2 dx = 1

2
πa2.

Solving x2

a2
+ y2

b2
= 1 for y2 we get

y2

b2
= 1− x2

a2
= a2−x2

a2
= 1

a2
(a2 − x2)

so that y = ± b
a

√
a2 − x2. It follows that the graph of the function g(x) = b

a

√
a2 − x2

is the upper half of this ellipse. We can conclude that the area of the upper half of the

ellipse with semimajor axis a and semiminor axis b is∫ a

−a

b
a

√
a2 − x2 dx = b

a

∫ a

−a

√
a2 − x2 dx = b

a
· 1

2
πa2 = 1

2
abπ.

Therefore the area of the full ellipse is abπ.

5.64. The semicircle of radius 5 along with the upper half of the ellipse with semimajor axis 5

and semiminor axis 3 depicted in Figure 5.50 is repeated below.

i. Let (x0, y0) be the coordinates of Q. Since the radius of the circle is 5, it follows

that x0 = 5 cos π
3

= 5
2

and that y0 = 5 sin π
3

= 5
√

3
2

. So Q =
(

5
2
, 5
√

3
2

)
.

ii. Since the equation of the ellipse is x2

52
+ y2

32
= 1, we find by solving for y, that

y = 3
5

√
52 − x2 is the equation of the upper half of the ellipse. The equation of

the upper half of the circle is y =
√

52 − x2.
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π
3

F x

y
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iii. The area of the circular sector POQ is equal to 1
2
(52)π

3
= 1

2
52

3
π by applying the

formula for the area of a circular sector developed in Section 2.2. By subtracting

the area of the right triangle with hypotenuse OQ, we get that the area of the

section of the circle bounded by the vertical line through Q and a part of the

segment OP is 1
2

52

3
π − 1

2
5
2
5
√

3
2

= 1
2

52

3
π − 1

2
52

2

√
3

2
= 52

2
(1

3
π −

√
3

4
). We know from

part ii that for a given x the y-coordinate of the point on the ellipse is 3
5

times

the y-coordinate of the circle. This implies that R =
(

5
2
, 3

5
·5
√

3
2

)
=
(

5
2
, 3
√

3
2

)
. It

also means that Cavalieri’s principle can be applied to show that the shaded area

is equal to 3
5

(
52

2
(1

3
π −

√
3

4
)
)

= 5
2

(
π − 3

√
3

4

)
.

iv. From the discussion in Section 4.4 we know that the distance from the center O

of the ellipse to F is c =
√

52 − 33 = 4. Since R =
(

5
2
, 3
√

3
2

)
, it follows that the

right triangle with hypotenuse RF has area 1
2
(4 − 5

2
)3
√

3
2

= 3
2

3
√

3
4

. So the area of

the elliptical sector FPR is 5
2

(
π − 3

√
3

4

)
− 3

2
3
√

3
4

= 5
2
π − (5

2
+ 3

2
)3
√

3
4

= 5
2
π − 3

√
3.

A look back at Section 3.5 tells us that areas of elliptical sectors such as FPR are

an important aspect of Kepler’s second law. In fact the computation of the area of

such elliptical sectors is essential to the quantitative understanding of the motion of

the planets. Section 10.4 will discuss these connections in detail.

5.65. Let y = F (x) be antiderivatives of the function y = f(x). Since d
dx

(cF (x)) = c d
dx
F (x) =

c · f(x), the function cF (x) is an antiderivative of cf(x). So∫ b

a

cf(x) dx = cF (b)− cF (a) = c(F (b)− F (a)) = c

∫ b

a

f(x) dx.

If y = G(x) is an antiderivative of y = g(x), then d
dx

(F (x)+G(x)) = d
dx
F (x)+ d

dx
G(x) =

f(x) + g(x). So F (x) +G(x) is an antiderivative of f(x) + g(x), and hence∫ b

a

(
f(x) + g(x)

)
dx = F (b) +G(b)− (F (a) +G(a))

= (F (b)− F (a)) + (G(b)−G(a)) =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.
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5.66. Turn to Kepler’s model of the Austrian barrel as depicted in Figure 5.39a. To model

the Austrian barrel, Kepler started with a cylinder that has height to diameter ratio
h
2r

=
√

2. So Kepler relied on a “Kepler cylinder.” He then specified the length of

the slanting segment of the model of the barrel to be 3
2
r. This resulted in a model

with a rather wide girth (the ample vertical circular cross section at the center of the

figure). The idea behind Problem 5.66 is to reduce this girth by taking the length

of the slanting segment to be 4
3
r while retaining the central cylinder that Kepler had

used. A look at Figure 5.39a tells us that the length of such a slanting segment has

to exceed h
2

=
√

2 r. However, since 16
9
< 2 and hence 4

3
<
√

2, this means that the

choice 4
3
r in the text’s formulation of Problem 5.66 is too small. We’ll correct this by

letting the length of the slanting segment be
√

33
4
r instead. Since 33

16
> 2, we see that

√
33
4
r >
√

2r as required. Also, since 33
16
< 9

4
, the segment’s length of

√
33
4
r is less than

the 3
2
r that Kepler had taken.

The model of the barrel that this slanting segment determines is smaller around the

middle than Kepler’s model of the Austrian barrel. It is depicted below. Recall from

Section 5.5 that the wine merchants’ 0.6s3 rule for measuring the volume of a barrel

is closely tied to the volume of a Kepler cylinder. The fact that this new model of a

2r

2

h

y

r

√33
4

r

barrel is closer to being a Kepler cylinder suggests that the merchants’ method for

assessing volume should be more accurate for it than for Kepler’s model of the Austrian

barrel.

The volume of this “leaner” Austrian barrel can be calculated in the same way that

the volume of Kepler’s version was calculated in Section 5.9. In reference to the figure

above, the height h of the barrel and the radius r of its circular cross sections at the

two ends continue to satisfy the condition h
2r

=
√

2 or h
2

=
√

2r. As already specified,

the length of the slanting segment of each cutoff cone is now
√

33
4
r. To determine the

volume V of this barrel design turn to the figure below. Let y = mx be the line

through the origin with slope m, and consider the segment of this line over an interval

0 < a ≤ x ≤ b. The first important question is: For what m, a, and b does this segment
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h/2

r

y = mx

a b x

y

y

√33
4

r

when revolved around the x-axis, generate the left half of the barrel shape depicted in

the earlier figure?

Since h is the height of the barrel, b−a = h
2

=
√

2 r. So by the Pythagorean theorem(√
33
4
r
)2

= y2 + (
√

2r)2 where y is the length of the short vertical segment in the figure.

Therefore y2 = (33
16
− 2)r2 = 1

16
r2. So y = 1

4
r and hence m =

1
4
r√
2r

= 1
4
√

2
. Since m = r

a
,

we have determined that

a = r
m

= 4
√

2 r and b = a+
√

2 r = 5
√

2 r.

Feeding these data into the volume of revolution formula of Section 5.9 and multiplying

by 2 (to pick up both cutoff cones), we get that the volume V of this revised model of

the Austrian barrel satisfies

V = 2π

∫ b

a

(mx)2dx = 2πm2
[
x3

3

∣∣∣5√2r

4
√

2r

]
= 2πm2

3

[
125 · 2

√
2 r3 − 64 · 2

√
2 r3
]

= 2πm2

3
122
√

2 r3 = 2π
3

1
32

122
√

2 r3 = 61
24

√
2πr3.

As expected, this volume is less than the volume V = 19
6

√
2πr3 of Kepler’s model of

the Austrian barrel.

From the figure above we see that the diagonal length s that the wine merchant’s

assessment is based on satisfies

s2 = (2r + y)2 +
(
h
2

)2
= (2r + 1

4
r)2 + (

√
2r)2 =

(
9
4
r
)2

+ 2r2 = (2 + 81
16

)r2 = 113
16
r2.

So r = 4√
113
s and hence r3 = 64

113
√

113
s3. Therefore the volume of the revised model of

the Austrian barrel in terms of the measure s is equal to

V = 61
24

√
2πr3 = 61

24

√
2π · 64

113
√

113
s3 = 61

3

√
2π · 8

113
√

113
s3 ≈ 0.60s3.

So the wine merchant’s assessment Vrule = 0.6s3 of the volume of this barrel provides a

very close estimate of the actual volume of the barrel (closer than the one it provides

for Kepler’s model, because for it V ≈ 0.59s3).
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