
Solutions to Problems and Projects for Chapter 1

Segment 1A is a reading assignment about Ptolemy’s Maps. Comment about the reading

in any way you wish.

Segment 1B presents Euclid’s proof of the fact that for two similar triangles, the ratios

of corresponding sides are equal. It remains to use Figures 1.39a and 1.39b to show that
B′C ′

BC
=
A′B′

AB
. The argument goes as follows. Since the triangle ∆CAC ′ of Figure 1.39a and

the triangle ∆CAA′ of Figure 1.39b have the same height relative to the base CA that they

share, they have the same area. Therefore the area of ∆B′C ′A of Figure 1.39a is equal to

the area of ∆B′A′C of Figure 1.39b. The triangles ∆B′C ′A and ∆BCA of Figure 1.39a have
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the same height h relative to the bases B′C ′ and BC. In the same way, the triangles

∆B′A′C and ∆BAC of Figure 1.39b have the same height h′ relative to the bases B′A′ and

BA. Therefore,

Area ∆B′C ′A

Area ∆BCA
=

1
2
B′C ′ · h
1
2
BC · h

=
B′C ′

BC
and

Area ∆B′A′C

Area ∆BAC
=

1
2
B′A′ · h′
1
2
BA · h′

=
B′A′

BA
.

Since the areas of ∆B′C ′A and ∆B′A′C are equal, we can conclude that
B′C ′

BC
=
A′B′

AB
.

1.1. The figure below depicts two similar triangles. The corresponding equal angles are

labelled accordingly and the corresponding sides are as well. Applying the law of sines

to each of the triangles, we get

sinα

a
=

sin β

b
=

sin γ

c
and

sinα

a′
=

sin β

b′
=

sin γ

c′
.
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Inverting the first two equalities and multiplying then into the second two, give us

a

sinα
· sinα

a′
=

b

sin β
· sin β

b′
=

c

sin γ
· sin γ

c′
.

Therefore a
a′

= b
b′

= c
c′
.

1.2. The triangles ∆PAC and ∆ABC are right triangles and ∠CAP = ∠CAB. So two of

the angles of these two triangles match and therefore all three. So ∆PAC and ∆ABC

are similar. The same reasoning tells us that ∆PBC and ∆ABC are similar. It follows

that c
b

= b
c1

and a
c2

= c
a
. Therefore, a2 + b2 = cc2 + cc1 = c2.

1.3. The inner square is a (a − b) by (a − b) square. So (a − b)2 + 4 × 1
2
ab = c2. Hence

a2 − 2ab+ b2 + 2ab = c2.

1.4. After they are slid into position in Figure 1.43, the two small squares cover the region

A twice and the two regions B not at all. In terms of areas this means that A = B+B.

Let r and s be the side lengths of the squares A and B respectively. Figure 1.43 tells

us that r + s = i and r + 2s = j. So s = j − i and r = i − s = 2i − j. Therefore

A = B + B with both A and B of integer side lengths. Since the square A is smaller

than the earlier smallest one, we have reached a contradiction. So the assumption that√
2 is rational must have been wrong.

1.5. Since an angle of π radians has 180◦, 1 radian corresponds to 180
π

degrees and 1 degree

corresponds to π
180

radians. The other answers are 78.5
180
π radians and 1.238·180

π
degrees

respectively.

1.6. Since θ in radians is equal to arc AB
3

and 57.3◦ = (57.3) · π
180

radians, we see that
arc AB

3
= (57.3) · π

180
. So arcAB is (57.3) · 3π

180
≈ 3.00 units long.

1.7. In radians, the angle θ is equal to arc AB
2

=
1 1
2

2
= 3

4
. Since 1 radian is equal to 180

π

degrees, θ =
3
4
·180
π

= 3·45
π

= 135
π
≈ 42.97 degrees.

1.8. The radian measure of the angle is 4
5

radians or 0.8 · 180
π

= 144
π
≈ 45.84 degrees. If the

angle is 21◦ then it has 21 · π
180

= 21π
180

= 7π
60

radians. If r is the radius of the circle, then
4
r

= 7π
60

, so that r = 240
7π
≈ 10.91 centimeters.

1.9. Let’s start by pointing out that even though the center O of the circle is shown to lie

on the constructed segment DE, this is not assumed. This is precisely what needs to
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be established. Since OB and OB′ are both radii of the circle, the triangle ∆BOB′ is

isosceles. So ∠OBC = ∠OB′C as asserted in the hint. Since C is the midpoint of the

segment BB′, the triangles ∆OBC and ∆OB′C are congruent. Therefore ∠BCO =

∠B′CO as asserted in the hint. Since ∠BCO + ∠B′CO = 180◦, this means that

both ∠BCO and ∠B′CO are right angles. It follows that O lies on the perpendicular

bisector DE.

1.10. Let B and B′ be the two points. By Problem 1.9, the center O of any circle that has

both B and B′ on it lies on the perpendicular bisector of the segment BB′. Conversely,

if O is any point on the perpendicular bisector of BB′, then (refer to Figure 1.45)

BC = B′C and ∠BCO and ∠B′CO are both right angles. So the triangles ∆OCB

and ∆OCB are congruent and therefore OB = OB′. So the circle with radius OB has

the point B′ on it. It follows that the center of any circle that has both B and B′ on

it lies on the perpendicular bisector of the segment BB′.

1.11. Let B,B′, and B′′ be the three points. By the previous problem, the center O of the

circle on which the three points lie is the point of intersection of the perpendicular

bisectors of the segments BB′ and BB′′. Since the radius of the circle is OB, there is

exactly one such circle.

1.12. Assume that the cross section of the Earth depicted in Figure 1.46b is a circle with

center the point that the figure singles out (this is not quite true because Earth is

flattened at the poles) and let r be its radius. If d is the distance from the ship to the

equator (along the arc), then d
r

is the radian measure of the angle β. Since the radian

measure of α + β is π
2
, it follows that the radian measure of α is equal to π

2
− d

r
. So

d = r(π
2
− α).

1.13. If α is equal to 53◦, then the radian measure of α is 53 · π
180

. By the previous problem,

d = r(π
2
− α) = 6370(π

2
− 53π

180
) = 6370(37π

180
) ≈ 4114 kilometers.

1.14. i. By applying the Pythagorean theorem to Figure 1.47, we get OT 2 + (1
2
sn)2 = 1.

ii. SinceQT+OT = 1, we see by an application of part (i) that (1−QT )2+(1
2
sn)2 = 1.

So 1−QT =
√

1− 1
4
s2n. Therefore, QT = 1−

√
4−s2n
2

.

iii. By another application of the Pythagorean Theorem, QT 2 + 1
4
s2n = s22n. So by

part (ii), s22n =
(
1−
√

4−s2n
2

)2
+ 1

4
s2n = 1−

√
4− s2n+ 1

4
(4−s2n)+ 1

4
s2n = 2−

√
4− s2n.

iv. The product ns2n is an approximation for π because the 2n segments of length s2n
approximate the circumference 2π of the circle of radius 1. This last approxima-

tion becomes more and more accurate with increasing n because the 2n segments

involved taken together approximate the circumference more and more tightly.
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1.15. i. In the given circle of radius 1, draw six radii so that the six angles that they form

at the circle’s center are each 60◦. Connect consecutive endpoints of these radii

to get the inscribed hexagon. The six triangles that are formed are equilateral.

It follows that s6 = 1.

ii. Taking s6 = 1 in the equality of 1.14iii, we get s212 = 2 −
√

4− 1 = 2 −
√

3. So s12 =
√

2−
√

3. By repeating this, s24 =

√
2−

√
2 +
√

3, s48 =√
2−

√
2 +

√
2 +
√

3, and s96 =

√
2−

√
2 +

√
2 +

√
2 +
√

3 . With a calcu-

lator, π ≈ 48s96 ≈ 3.14103. After one more step, π ≈ 96s192 ≈ 3.14145.

iii. The square inscribed in a circle of radius 1 has diagonal 2, so that by the

Pythagorean Theorem, s4 =
√

2.

iv. With s4 =
√

2 in the equality of 1.14iii, s8 =
√

2−
√

2. By repetition, s16 =√
2−

√
2 +
√
2 , s32 =

√
2−

√
2 +

√
2 +
√
2 , and s64 =

√
2−

√
2 +

√
2 +

√
2 +
√
2 .

It follows that π ≈ 64s128 ≈ 3.141277.

v. The correct decimal expansion of π starts with π ≈ 3.141592.

1.16. At three items for a dollar, one item is worth exactly 331
3

cents. Since there is no coin

worth 1
3

of a cent, this amount falls beyond the capacity of our system.

1.17. Consider Figures 1.27a. Since the angle at the bottom left is π
4
, we get cos π

4
= 1√

2
and

tan π
4

= 1. Turn to 1.27b. The right triangle has angle π
3

on the bottom left and π
6

at

the top. It follows that cos π
6

=
√
3
2

, cos π
3

= 1
2
, tan π

6
= 1√

3
, and tan π

3
=
√

3.

1.18. Using a calculator in radian mode, we get sin 0.1 ≈ 0.099833, tan 0.1 ≈ 0.100335,

sin 0.01 ≈ 0.00999983, tan 0.01 ≈ 0.01000033, sin 0.001 ≈ 0.000999999833, tan 0.001 ≈
0.001000000333.
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1.19. The figure below shows a part of a circle of radius 1 as well as its center. From the

figure, cos θ′ = b′ < b = cos θ.

1

b

θ
θ

`

b

`
1.20. We’ll elaborate on the hint. Let θ be an angle given in degrees. The same angle in

radians is θ · π
180

. By the limit equality that concludes Section 1.6,

lim
θ→0

sin
(
θ · π

180

)(
θ · π

180

) = 1.

Since the angles θ in degrees and θ · π
180

in radians are the same, sin θ = sin
(
θ · π

180

)
.

So with θ in degrees,

lim
θ→0

sin θ(
θ · π

180

) = 1

and therefore, 1
π

180
lim
θ→0

sin θ
θ

= 1. Multiply through by π
180

to get the result.

1.21. With θ in radians, lim
θ→0

tan θ
θ

= lim
θ→0

(
sin θ
θ
· 1
cos θ

)
= 1 · 1

1
= 1.

1.22. Dividing the identity sin2 θ + cos2 θ = 1 through by cos2 θ, gives tan2 θ + 1 = 1
cos2 θ

=

sec2 θ. In the same way, dividing the identity sin2 θ+cos2 θ = 1 through by sin2 θ, gives

1 + cot2 θ = csc2 θ.

1.23. The radius of the semicircle in Figure 1.48 is equal to 1, P is a point on the diameter

AB, and CP is the perpendicular to AB that determines the angle θ. By results in

BA
O

θ

C

P

θ
2

Fig. 1.48
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Sections 1.3 and 1.6, ∆ABC is a right triangle and ∠CAO = θ
2
.

Notice that sin θ = CP and cos θ = OP . By the Pythagorean Theorem, AC2 =

CP 2 + (1 +OP )2 = sin2 θ + (1 + cos θ)2 = sin2 θ + 1 + 2 cos θ + cos2 θ = 2(1 + cos θ).

i. Since sin θ
2

= CP
AC
, we get sin2 θ

2
= CP 2

AC2 = sin2 θ
2(1+cos θ)

. Therefore,

sin2 θ
2

= 1
2

sin2 θ
1+cos θ

× 1−cos θ
1−cos θ = 1

2
sin2 θ(1−cos θ)

1−cos2 θ = 1
2
sin2 θ(1−cos θ)

sin2 θ
= 1

2
(1− cos θ).

Figure 1.48 tells us that cos θ
2

= 1+OP
AC

. So cos2 θ
2

= (1+cos θ)2

2(1+cos θ)
= 1

2
(1 + cos θ). The

equality tan2 θ
2

= 1−cos θ
1+cos θ

follows from the definition of the tangent.

ii. tan θ
2

= CP
1+OP

= sin θ
1+cos θ

. It follows that tan2 θ
2

= sin2 θ
1+2 cos θ+cos2 θ

and therefore that

1− tan2 θ
2

= 1+2 cos θ+cos2 θ−sin2 θ
1+2 cos θ+cos2 θ

= 2 cos θ+2 cos2 θ
(1+cos θ)2

= 2 cos θ(1+cos θ)
(1+cos θ)2

= 2 cos θ
1+cos θ

.

By combining what we know,
tan θ

2

1−tan2 θ
2

= sin θ
1+cos θ

· 1+cos θ
2 cos θ

= sin θ
2 cos θ

= 1
2

tan θ.

1.24. The focus is on Figure 1.49b. The angles ∠CAD and ∠BAD are both acute. So by

the acute case already verified, ∠CAD = 1
2
∠COD and ∠BAD = 1

2
∠BOD. Notice

next that θ = ∠COD + ∠BOD. Therefore, ∠CAB = ∠CAD + ∠BAD = 1
2
∠COD +

1
2
∠BOD = 1

2
θ.

1.25. Let α and β be two angles with sum less than π
2

and place them into the two right

triangles ∆ABC and ∆BDC shown in Figure 1.50. Complete the diagram to the

A

C

B

α
β

1

DS

R

T

Fig. 1.50

rectangle RSDC and draw in the parallel AT to SD.

A look at the angles around the point B tells us that ∠SBA + π
2

+ ∠DBC = π

and a look at the right triangle ∆BDC informs us that ∠DBC + π
2

+ β = π. So,

∠SBA = π
2
− ∠DBC and β = π

2
− ∠DBC. Therefore, ∠SBA = β.
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i. Note that cos β = cos∠SBA = SB
AB

and sin β = BD
BC

. It follows therefore that

AT = SB + BD = AB cos β + BC sin β. Since AB = sinα,BC = cosα, and

sin(α + β) = AT
1

= AT we can conclude that

sin(α + β) = sinα cos β + cosα sin β.

ii. Since cos β = DC
BC

and sin β = sin∠SBA = SA
AB

, we get DC = BC cos β and

SA = AB sin β. Therefore, TC = DC − SA = BC cos β − AB sin β. Another

look at Figure 1.50 tells us that cosα = BC
1

= BC and sinα = AB
1

= AB. Since

cos(α + β) = TC
1

= TC, we get

cos(α + β) = cosα cos β − sinα sin β.

iii. tan(α + β) =

sin(α+β)
cosα cosβ

cos(α+β)
cosα cosβ

=

sinα cosβ+cosα sinβ
cosα cosβ

cosα cosβ−sinα sinβ
cosα cosβ

=
tanα + tan β

1− (tanα)(tan β)
.

1.26. Formulas i, ii, and iii follow by taking α = β in the formulas of 1.25 and applying

sin2 α + cos2 α = 1.

The next three problems make use of the triangle in the figure below

ab

α

c

β

γ

A

C

B

1.27. Since α and β are π
5

and π
7

respectively, γ is equal to π − π
5
− π

7
= (35−7−5)π

35
= 23π

35
. So

γ > π
2

is obtuse. Since c = 8,

sin 23π
35

8
=

sin π
5

a
=

sin π
7

b

by applying the law of sines to the figure below. A calculator (in radian mode) informs

us that a ≈ 5.34 and b ≈ 3.94.

1.28. Let α = π
5
, b = 7, and c = 11. By the law of cosines, a2 = b2 + c2 − 2bc cosα =

72 + 112 − 2 · 77 cos π
5
≈ 16.01.

1.29. If the three sides a, b, and c satisfy a2 + b2 = c2, then by the law of cosines a2 + b2 =

a2 + b2 − 2ab cos γ, so that cos γ = 0. The definition of the cosine in Section 1.6 tells

us that γ = π
2
.

The solutions of some of the “inverse” trigonometry problems that follow require a cal-

culator with inverse trig feature. (Use three-decimal-accuracy.)
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1.30. It follows quickly from Figures 1.27a and 1.27b, that α = 30◦ = π
6
, β = 45◦ = π

4
,

γ = 60◦ = π
3
, and ϕ = 60◦ = π

3
.

1.31. These answers are better provided in terms of approximations than equalities. The

inverse trig function of a calculator shows that:

i. sin(12.65◦) ≈ 0.219

ii. sin(56.51◦) ≈ 0.834

iii. For the angle 0.002 in radians, sin(0.002) ≈ 0.002

iv. For the angle 0.7262 in radians, sin(0.7262) ≈ 0.664

v. tan(37.74◦) ≈ 0.774

vi. tan(55.92◦) ≈ 1.478

vii. For the angle 1.4756 in radians, tan(1.4756) ≈ 10.473

viii. For the angle 1.53466 in radians, tan(1.53466) ≈ 27.664

1.32. In triangle (a) let a and b be the sides opposite the angles 40◦ and 35◦ respectively.

By the law of sines, sin 40◦

a
= sin 35◦

b
= sin 105◦

135
. So a = 135 sin 40◦

sin 105◦
≈ 89.84 and b =

135 sin 35◦

sin 105◦
≈ 80.16.

In triangle (b) let c be the remaining side. By the law of cosines, c2 = 302 + 452 −
2(30)(45) cos 130◦ ≈ 4660.53, so that c ≈ 68.27.

In triangle (c) let a and b be the sides opposite the angles 55◦ and 65◦. By the law

of sines, sin 55◦

a
= sin 65◦

b
= sin 60◦

85
. So a = 85 sin 55◦

sin 60◦
≈ 80.40 and b = 85 sin 65◦

sin 60◦
≈ 88.95.

1.33. Let α, β, and γ be the angles opposite the sides of lengths 11, 7, and 5, respectively.

Then α, β, and γ satisfy 112 = 72 + 52 − 2(7)(5) cosα, 72 = 112 + 52 − 2(11)(5) cos β

and 52 = 112 + 72 − 2(11)(7) cos γ, respectively. So

cosα = −121−49−25
70

, cos β = −49−121−25
110

, and cos γ = −25−121−49
154

.

It follows that α ≈ 132.18◦, β ≈ 28.14◦, and γ ≈ 19.69◦.

1.34. We will take the value π = 3.1420 and work with 4 decimal accuracy. We’ll also

rely on the discussion that ends Section 1.6 about the close agreement between sin θ

and θ for small angles θ (in radians). In Figure 1.35, 3◦ is replaced by 1
6

◦
. This

angle equals 1
6
π
180

= π
1080

= 0.0029 in radians. Since this is a small angle, we’ll take

sin 0.0029 = 0.0029. Therefore, take DM
DS

= rM
rS

= 0.0029. In Figure 1.34, 1◦ is replaced

by 1
4

◦
. In radian measure 1

4

◦
is equal to 1

4
π
180

= π
720

= 0.0044 radians. This is a small

angle, so we’ll take sin 0.0044 = 0.0044. Therefore, rM
DM

= 0.0044. If 4rM is replaced by

5rM , and hence 2rM by 2.5rM in Figure 1.36, then a repetition of the analysis that

led to the formula rE
rM

+ rE
rS

= 3 will give rE
rM

+ rE
rS

= 3.5 instead. From rM
rS

= 0.0029,
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we get rS = 345rM . Inserting rS = 345rM , shows that 3.5 = rE
rM

+ rE
345rM

= 346rE
345rM

,

and therefore that rM = 346rE
(3.5)(345)

= 0.2865rE. Taking Eratosthenes’s value rE = 6200

kilometers, this gives rM = 1780 kilometers. Since rS = 345rM , we find that rS =

614,000 kilometers. Since rM
DM

= 0.0044, DM
rM

= 227. So DM = 404,000 kilometers.

Finally, DS = DM
0.0029

= 404,000
0.0029

, so DS = 139×106 kilometers. A look at Table 1.3 shows

that the distances rM , rS, DM , and DS just derived are within the “ball park.”

1.35. In Figure 1.52, let γ = ∠MAE. Since α + γ = 180◦ and β + µ + γ = 180◦, it follows

that α = β+µ. By the law of sines, sin γ
EM

= sinµ
EA

. Since sin γ = sin(180◦−α) = sinα by

an equality established in Section 1.6, it follows that DM = EM = EA · sinα
sinµ

= rE · sinαsinµ
.

Taking Eratosthenes value rE = 6200 kilometers for Earth’s radius and noticing that

µ = α−β = 50◦55′−49◦48′ = 1◦7′, Ptolemy obtains the estimate DM = 6200 sin 50◦55′

sin 1◦7′
≈

6200 0.776
0.0195

≈ 247,000 kilometers. A look at Table 1.3 tells us that while this value is

much better than what Aristarchus achieved, it falls far short of today’s accurate value.

1.36. Given the differences in notation it is better to repeat the argument of the solution

of Problem 1.24 rather than to apply the result. So let the angle θ in Figure 1.53 be

greater than 180◦ and choose the point D on the circle of the figure such that POD

is a diameter. Notice that the angles ∠AOD = θ1 and ∠BOD = θ2 are both less than

180◦. So by the case already verified, ∠APD = 1
2
θ1 and ∠BPD = 1

2
θ2. Therefore

∠APB = 1
2
(θ1 + θ2) = θ

2
.

1.37. In Figure 1.59, F is chosen so that ∠DAF = ∠BAE = ∠BAC. By the Corollary,

∠ADB = ∠ACB. These two equalities imply that the triangles ∆ADF and ∆ACB of

Figure 1.57 are similar in the situation of Figure 1.59 as well. Since ∠DAC+∠EAF =

∠DAF = ∠BAE = ∠BAF + ∠FAE, it follows that ∠DAC = ∠BAF . By the

Corollary, ∠DCA = ∠ABD = ∠ABF . It follows that the triangles ∆ABF and

∆ACD of Figure 1.58 are also similar in this new context. Therefore, the equalities (a)

and (b) both hold again, and the conclusion (AC) ·(BD) = (AB) ·(CD)+(AD) ·(BC)

follows as in the case of Figure 1.56.

1.38. Consider a right triangle with sides a and b and hypothenuse c. Take two copies of this

triangle to form a rectangle with sides a and b and diagonal c. The center O of the

rectangle is the point of intersection of the two diagonals. The circle with center O and

radius 1
2
c and center the center of the rectangle has all four corners of the rectangle on

it. By Ptolemy’s theorem, c · c = a · a+ b · b.

1.39. By Ptolemy’s theorem, AB · CD = AD · CB + AC · BD. By a result of Section 1.3,

any triangle that has a diameter as side is a right triangle. Since all diagonals are

equal to 1, Figure 1.60 tells us that AB = sin(α + β), CD = 1, AD = sinα,CB =

cos β,AC = cosα, and BD = sin β. The result follows. (Note that Ptolemy’s corollary

was not needed.)
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1.40. Consider the generic quadrilateral of Figure 1.55 and let O be the point of intersection

of the two diagonals. To see that ∆ADO is similar to ∆BOC, observe first that

∠AOD = ∠BOC. By Ptolemy’s corollary, ∠ADO = ∠ADB = ∠ACB = ∠OCB. So

two of the angles of ∆ADO and ∆BOC are equal. Therefore the remaining angles are

equal as well and the triangles are similar. The similarity of the other pair of triangles

is verified in the same way.

1.41. Let O be the center of the circle. The angle ∠AOB = 4
3

radians. By Ptolemy’s

proposition, ∠APB = 2
3

radians. Hence ∠APB = 2
3
· 180
π

= 120
π

degrees.

1.42. The figure below depicts a typical situation. The arc complementary to the highlighted

P
A

B

θ

O

arc AB determines the angle 2π− θ. By Ptolemy’s proposition, ∠APB = 1
2
(2π− θ) =

π − θ
2
.

1.43. A typical situation is depicted below. Let Q be any point on the perpendicular bisector

L. Since AP = BP and QP is perpendicular to AB, it follows that the triangles ∆APQ

P

A

B

Q

L

P

A

B

Q

L

and ∆BPQ are congruent. So QA = QB. Conversely, suppose that Q is any point

such that QA = QB and refer to the figure on the right. We need to show that

Q is on L. Consider the triangle ∆ABQ. The fact that it is isosceles, tells us that
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∠BAQ = ∠ABQ. Since the segments AP and AQ and the angles between them

are respectively equal to the segments BP and BQ and the angle between them, the

triangles ∆PAQ and ∆PBQ are congruent. Since ∠APQ and ∠BPQ are equal and

add to 180◦, it follows that ∠APQ = ∠BPQ = 90◦. Hence Q is on L. (Note that the

second part of this problem was already taken up in Problem 1.9.)

1.44. This problem was already considered in Problem 1.11.

1.45. Start with the figure below on the left. Consider the base AC of the triangle and let

P be its midpoint. By Problem 1.43, the perpendicular bisector of AC goes through

A

B

C

D

γ

a

b

c

dA

B

CP

O

D

the center O of the circle. It follows that the trapezoid on the right is obtained by

revolving the triangle ∆ACB around the diameter through P and O. So AD =

a,DC = c, and b = AC = 2d + DB. By Ptolemy’s theorem, c2 = a2 + b · DB =

a2 + b(b− 2d) = a2 + b2 − 2bd. Since cos γ = d
a
, we get c2 = a2 + b2 − 2ab cos γ.

1.46. Following the hint, label the triangle ∆ABC and let the right angle be at C. The right

triangle is inscribed in the circle of the figure below. Let O be the center of the circle

A

B

C

D
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and extend CO to a diameter CD of the circle. Since the ∠ACB is a right angle and

since the triangles ∆CAD and ∆CBD have right angles at A and B respectively (this

follows from the fact that CD is a diameter of the circle), we know that ACBD is a

rectangle with diagonals CD and AB. Because CD is a diameter and the lengths of

AB and CD are equal, AB is a diameter too.

1.47. The circle with center O and radius r, the arc with endpoints A and B, the point P

on the circle (but not on the arc), and the angle ∠APB = α (in radians) are shown in

P

A

Bα

O

α2

Q

A

B

α
O

the figure on the left. That ∠AOB = 2α follows from Ptolemy’s proposition. Therefore,

2α = arc AB
r

and hence arc AB = 2rα. Choose the point Q so that QOB is a diameter

of the circle. By Ptolemy’s corollary, ∠AQB = α. Since QOB is a diameter, ∠QAB =

90◦. Therefore, AB = 2r(sinα).

1.48. Refer to Figure 1.62. That sinα = h
c

follows directly. With r the radius of the circle,

sinα = a
2r

by Problem 1.47. So 2r
a

= c
h
. It follows that r = ac

2h
.

1.49. Let a, b, and c be any three positive numbers. Is there a triangle that has a, b, and c

as the lengths of its sides? Show that this is so if a+ b > c. Start by taking segments

of lengths a and b and aligning them in a straight line, as shown in Figure 1.63. If c is

the length of this segment, then c = a+ b. If a and or b are increased so that a+ b > c,

then segments of lengths a, b, and c can be arranged to form a triangle as the figure

a b

c

shows. It follows also that if a, b and c are positive numbers such that such that

a+ b > c, then also a+ c > b and b+ c > a.

1.50. A triangle has sides of lengths 7 and 11 and (with the third side as base) height 4.

Refer to Problem 1.48 and Figure 1.62 and think of a = 7, c = 11, and h = 4. Then

12



b corresponds to the third side. Refer to the two right triangles of Figure 1.62, let

b1 and b2, respectively, be their third sides and observe that b = b1 + b2. By the

Pythagorean theorem, b21 = 112 − 42 and b2 = 72 − 42. Since b1 =
√

105 ≈ 10.25 and

b2 =
√

33 ≈ 5.74, b = b1 + b2 ≈ 10.25 + 5.74 ≈ 15.99. By the conclusion of Problem

1.48, we get that the radius r of the circle on which the vertices of the triangle lie is

r = ac
2h

= 7·11
2·4 = 77

8
= 9.625.

1.51. That there is a triangle with side lengths 7, 11, and 17 follows from Problem 1.49.

Let θ be the angle between the sides of lengths 7 and 11. By the law of cosines,

172 = 112+72−2(11)(7) cos θ. So cos θ = 112+72−172
2(11)(7)

≈ −0.7727. Therefore θ ≈ 140.60◦.

Let α be the angle between the sides of lengths 7 and 17. By the law of sines, sinα
11

= sin θ
17
.

So sinα ≈ 11
17

sin 140.60◦ ≈ 0.41. So α ≈ 24.20◦ If h is the height of the triangle with

respect to the base 17, then sinα = h
7
. So h ≈ 7 sin 24.25 ≈ 2.87. By Problem 1.48

and Figure 1.62, the radius r of the circle is r = ac
2h
≈ 7·11

2(2.87)
≈ 13.41.

We now consider the question of the billboard and the car. How is the point on the

highway S determined at which the passenger’s lines of sight to the left and right edges A

and B of the billboard attains a maximum value? Why is the intuitively answer that this

point is the intersection of S with the perpendicular bisector of AB wrong? The problem

that follows provides the key to the answer.

1.52. Turn to Figure 1.65, consider any point Q in the plane on the side of L opposite the

arc AB, and let α = ∠AQB. If Q is on the circle, then α = ∠AQB = ϕ
2

by Ptolemy’s

proposition. For a point Q outside the circle, a point P has been chosen on the circle

such that ∆PBA lies inside ∆QBA. By Ptolemy’s proposition, β = ∠APB = ϕ
2
.

O

B

P

A

Q α

ϕ

L

β
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Since α = ∠AQB < β, it follows that α < ϕ
2
. If Q is inside the circle, chose a point

P on the circle such that ∆QBA lies inside ∆PBA. See the figure above. This time,

α = ∠AQB > β = ϕ
2
.

Now to the question about the highway and the billboard.

1.53. Suppose that a circle has been chosen that has the points A and B on it and has the

line S as a tangent. Let P on the circle be the point of tangency. See Figure 1.66. Let

C be the center of the circle. By Ptolemy’s proposition, ∠APB = 1
2
∠ACB. Since all

other points Q on S lie outside the circle, it follows from Problem 1.52 for any such Q

that ∠AQB < 1
2
∠ACB. It follows that P is the point on the highway S at which the

passenger’s lines of sight to the left and right edges A and B of the billboard attains

a maximum value.
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