
Solutions to Problems and Projects for Chapter 3

3.1. Figures (a) and (b) below are more explicit versions of Figure 3.35. i. The segments

CAG and C ′A′G′ are parallel because they represent the same gnomon at the same

point A = A′ on the surface of the Earth.

ii. Since the angles α and α′ at G and G′ are by the shadows cast by the gnomon blocking

the light rays of a very distant Sun (at S), it follows that α = ∠GCS and α′ =

∠G′C ′S = β′. Because C ′B extends C ′A′G′ it is parallel to CAG. Therefore, α = β.

iii. From the triangle in Figure (b), γ + β′ + (π− β) = π. Therefore, γ = β − β′ = α− α′.
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This was the strategy used by the Greek astronomers to establish that the obliquity of

the ecliptic is approximately 24◦ in their Earth-centered context.

3.2. The minute hand moves through two complete revolutions (during the motion of the

hour hand from the one o’clock to the three o’clock positions) and then another 8
12

= 2
3

of one revolution. Since the minute hand is 14 feet long, its tip moves

2π · 14 + 2π · 14 + 2
3
(2π · 14) = (56 + 56

3
)π = 742

3
π ≈ 234.57 feet.

The hour hand moves for 22
3

hours. So it moves 8
3
· 1
12

= 2
9

of one revolution and hence
2
9
· 2π · 9 = 4π ≈ 12.57 feet.

3.3. The tip of the arrow takes 6 hours to move from B to C and therefore 1.5 hours to

trace out arc AB + arc CD. Since the arc AB = arc CD, it takes the tip 3
4

hours to

trace arc CD. In one hour the tip traces out a distance of 1
12
· 2π · 1 = 1

6
π meters.

Therefore arc CD is 3
4
· 1
6
π = 1

8
π ≈ 0.39 meters long.



3.4. Since the clock loses 1 minute per hour, it looses 72 minutes or 11
5

hours in the 72 hour

period. So the hour hand moves through 704
5

hours on the dial. Since the radius of

the hour hand is r = 2 feet, its tip travels 1
12
· 2πr = 1

3
· π ≈ 1.047 feet in one hour. So

it travels a total of (704
5
)π
3
≈ 74.14 feet. For every one hour rotation of the hour hand

along the dial, the minute hand does one complete revolution. Since it is r = 2.5 feet

long, its tip will move through a distance of 704
5
· 2πr = 354π ≈ 1112.12 feet.

3.5. We saw that during autumn v rotates, on average, faster than r. During summer, E

moves from B to C (summer solstice to autumn equinox) and both r and v rotate from

B to C. The arrow r rotates through an angle greater the 90◦ while v rotates through

exactly 90◦. Therefore

during summer v rotates, on average, more slowly than r.

Since the rotational speed of r is constant, it follows that v has, on average, greater

angular velocity during autumn than during summer. This observation is consistent

with Kepler’s second law. This says that a planet moves faster in its orbit when it is

closer to the Sun than when it is farther away.

3.6. The only thing to do in this problem is to understand.

3.7. Since arc B′B = 0.0035r, β = arcB′B
r

= 0.0035 radians, and hence β = 0.0035 · 180◦
π
≈

0.20◦. Since this angle is small, we know from the pattern that Table 1.2 estab-

lishes that sin β is essentially equal to 0.0035. (A calculator confirms that sin 0.0035 ≈
0.00349999.) Applied to the circular sector OB′B, this means that b

r
is essentially

equal to arcB′B
r

, and hence that the same is true for b and B′B.

3.8. Use the data of Hipparchus’s time: spring: 941
2

days, summer: 921
2

days, autumn:

881
8

days, winter: 901
8

days, and let r = OE and c = SO as before. Adapting the

discussion of Section 3.2 to these data, provides the modified versions of Figures 3.7

and 3.8 sketched below. The lengths of spring and summer together tell us that Earth

E takes 941
2

+ 921
2

= 187 days to travel from point A to point C. This means that

∠AOC = 187 · 0.0172 = 3.2164 radians. So arc AC = 3.2164r. Therefore

arc AA′ = 1
2
(arc AC − arc A′C ′) = 1

2
(3.2164− π)r

= 1
2
(3.2164− 3.1416)r = 1

2
(0.0748)r = 0.0374r.

Notice that arc AB = arc AA′ + arc A′B′ + arc B′B. Since arc AB = 94.5 · 0.0172r =

1.6254r, it follows that

arc B′B = arc AB − arc AA′ − arc A′B′ = (1.6254− 0.0374− π
2
)r

= (1.6254− 0.0374− 1.5708)r = 0.0172r.
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Since α = 0.0374 · 180
π

= 2.14◦ is a small angle, sinα = a
r

is approximately equal to

α in radian measure (see the information in Table 1.2), and we can take a = 0.0374r.

In the same way, β = 0.0172 · 180
π

= 0.99◦ is small, so that sin β = b
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equal to β in radian measure, and we can take b = 0.0172r. The Pythagorean theorem

determines the hypotenuse c = SO of the small triangle with sides a and b to be c =√
(0.0374r)2 + (0.0172r)2 = r

√
0.03742 + 0.01722 = 0.0412r. Since tanλ = 0.0172

0.0374
=

0.4599, λ = 24.70◦.

3.9. Approximate values for the current lengths of the seasons are: spring, 92 days, 18

hours, 20 minutes, or 92.764 days; summer, 93 days, 15 hours, 31 minutes, or 93.647

days; autumn, 89 days, 20 hours, 4 minutes, or 89.836 days; and winter, 88 days, 23

hours, 56 minutes, or 88.997 days. This and more recent information can be derived

from data provided by the United States Naval Observatory (USNO) on the website

http://aa.usno.navy.mil/data/docs/EarthSeasons.php

These values for the lengths of the seasons tell us that the starting diagram for

this analysis is the same as that of Figure 3.7. This figure is reproduced below. The
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points D′ and the perihelion position P have been added. As before, we’ll let r = OE

and c = OS.

The lengths of spring and summer tell us that the Earth E takes 186.411 days

to travel from point A to point C. Since the segment EO rotates at a rate of 0.0172
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radians per day, ∠AOC = 186.411 · 0.0172 = 3.2063 radians. So arc AC = 3.2063r.

Therefore

arc AA′ = 1
2
(arc AC − arc A′C ′) = 1

2
(3.2063− π)r

= 1
2
(3.2063− 3.1416)r = 1

2
(0.0748)r = 0.0324r.

Notice that arc AB′ = arc AA′ + arc A′B′ = 0.0324r + π
2
r = 0.0324r + 1.5708r =

1.6032r. Since arc AB = 92.764 · 0.0172r = 1.5955r, we get that

arc BB′ = arc AB′ − arc AB = (1.6032− 1.5955)r = 0.0077r.

As in Section 3.2, this provides the information for the right triangle at the center of

the figure. It follows that tanλ = 0.0077
0.0324

= 0.2377, and hence that λ = 0.2333. Since

 0.0077 r

O

S

c

0.0324 r

λ

∠FOB′ = λ, arc FB′ = 0.2333r. So arc FB = 0.2333r+0.0077r = 0.2410r. It follows

that Earth takes 0.2410r
0.0172r

≈ 14 days to travel from the summer solstice position B to the

aphelion position F . Since ∠D′OP is also equal to λ, arc D′P = 0.2333r. The fact that

arc D′D = arc BB′ = 0.0077r, means that arc DP = 0.2333r − 0.0077r = 0.2256r.

Since 0.2256r
0.0172r

≈ 13, Earth is at perihelion 13 days after it arrives at the winter solstice

position D.

3.10. In Figure 3.40, r = OA is a radius and L is the tangent at A. Suppose that the angle

between them is not 90◦. So the segment from L to O that is perpendicular to L

is different from OA. It is designated by OB in the figure. Notice that OA is the

hypotenuse of the right triangle ∆OBA. Since OA is the hypotenuse, OA > OB. It

follows from the figure that r = OA > OB > OC = r. This contradicts the assumption

that OA is not perpendicular to L.

3.11. In the figure below, r is Earth’s radius and O is its center. Let x be the length of the

line of sight of the person to the horizon and let y be the distance of the eyes above the

ground. By the Pythagorean theorem, (r + y)2 = r2 + x2. So r2 + 2ry + y2 = r2 + x2

and hence x2 = 2ry + y2. We’ll work in miles. So y = 6 · 1
5280
≈ 0.00114 miles and

therefore,

x =
√

2ry + y2 ≈
√

2(3950)(0.00114) + 0.001142.

Since 0.001142 ≈ 0.000001 is tiny compared to 2(3950)(0.00114) ≈ 9.006, we find that
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r = 3950 miles

eyes

O

x

y

x =
√

2ry + y2 ≈
√

2(3950)(0.00114) =
√

9.006 ≈ 3 miles.

3.12. Let r be the Earth’s radius in miles. If the angle that the geometer measures between

his line of sight to the horizon and a plumb line is θ, then by Figure 3.41, sin θ = r
r+1.5

.

So (r + 1.5) sin θ = r and hence r(1 − sin θ) = 1.5 sin θ, so that r = 1.5 sin θ
1−sin θ . With θ

equal to 881
6

◦
, 881

2

◦
, and 881

3

◦
, we get the respective values of about 2929, 4376, and

3544 miles. We know from the previous problem that today’s accurate value for this

radius is 3950 miles. It is obvious that this method of determining the radius r is very

susceptible to errors in the measurement of the angle θ.

3.13. The figure below depicts two typical quadrilaterals. The quadrilateral on the left is

β

γ

α

μ

σ

τ

split into two triangles and it follows that its interior angles add to

α + (β + µ) + σ + (τ + γ) = (α + β + γ) + (µ+ σ + τ) = 180◦ + 180◦ = 360◦.

A similar thing works for the quadrilateral on the right.

3.14. Focus on Figure 3.42. From the point A you have sited the points B and C so that the

segments AB and AC that you have drawn are tangent to the tank. Since the segments

OB and OC are both radii of the circular cross section of the tank, the angles ∠ABO
and ∠ACO are both 90◦. Since you have measured ∠BAC, you now know—thanks to
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Problem 3.13—what ∠BOC is equal to. In addition, you can measure the length of

arc BC by walking it off. With ∠BOC in radians and r the radius of the tank, you

have ∠BOC = arcBC
r

. So the value of r is now in hand.

3.15. From the discussion in Section 3.3, we know in the case of Mercury M and its dis-

tance MS from the Sun, that sinα = MS
ES

. Therefore Copernicus’s estimate is MS =

(sin 22◦)ES ≈ 0.3746ES.

3.16. Copernicus studies the orbit of Jupiter at opposition and then again at quadrature.

See Figure 3.43. His finding that α − β ≈ 79◦ tells him that cos 79◦ ≈ ES
JS

. So

JS ≈ ES
cos 79◦

≈ 5.24ES.

3.17. This problem uses Figure 3.44 and explains how the law of sines leads to the formula

MS

ES
=

sinα

sin β
.

3.18. Copernicus knew the period of the orbit of Mars to be about 1.9 years or 1.9 ·12 = 22.8

months. Since Mars traces out its full orbit of 360◦ in 22.8 months it, it traces out

360◦ · 2
22.8

= 31.6◦ in two months. This is the angle ∠M ′SM in Figure 3.44. In the

same two months Earth traces out an angle of 360◦ · 2
12

= 60◦. Therefore ∠MSE =

60◦ − 31.6◦ = 28.4◦. Since he measured the angle α to be 114.9◦, he had the estimate

β ≈ 180◦ − 28.4◦ − 114.9◦ = 36.7◦. Therefore

MS

ES
=

sinα

sin β
=

sin 114.9◦

sin 36.7◦
= 1.52.

Table 3.1 tells us that this is exactly the value that Copernicus achieves.

3.19. i. Let E be a typical position of Earth on its circular orbit. Since the rotational speed

of OE is constant and Earth takes 3651
4

days to complete its orbit, its rotational

speed is 360
365.25

degrees per day. Earth is at E1 on March 5, 1590, returns to E1 one

year later and then moves for another 3213
4

days to reach E2 on January 21, 1592.

In reference to Figure 3.14, the assumption that Earth moves clockwise around

its circular orbit is not consistent with what has just been described.

ii. Suppose that O,E, and Mars M lie in a line. Since the Earth moves counter-

clockwise in its orbit it is in position E shortly after it arrives at E4. By knowing

the time involved, Tycho can estimate the angle ∠E4OE = ∠E4OM . Know-

ing the times involved, he can then estimate ∠E3OE,∠E2OE, and ∠E1OE, and

therefore, ∠E3OM,∠E2OM , and ∠E1OM .

iii. The discussion of Section 3.2 informs us that in Copernicus’s model, the distance

OS is small compared to the radius of Earth’s circular orbit. So the angles

∠OE1M to ∠OE4M are approximated by ∠SE1M to ∠SE4M , respectively.

iv. By knowing that the angles of any triangle add to 180◦.
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3.20. Kepler knew that the center C of Mars’s circular orbit has to lie on the perpendicular

bisectors of the segments M1M2 and M2M3. (This follows from the conclusion of

Problem 1.9, a fact already known to the Greeks.) So the correct position of C is the

intersection of the two bisectors.

3.21. It follows from Figure 3.19 that max = a + c and min = a − c, and therefore that

avg = 1
2
[(a+ c) + (a− c)] = a. So max − avg

avg
= avg − min

avg
= c

a
= ε, the eccentricity of the

orbit.

3.22. Since (a − c) + (a + c) = 2a is the sum of the distances AF1 and AF2, it follows

that k = 2a. Since the semiminor axis lies on the perpendicular bisector F1F2, the

symmetry of the situation implies that BF1 = BF2. Therefore, 2BF1 = 2a, and hence

BF1 = BF2 = a. The Pythagorean theorem tells us that a2 = b2 + c2, and hence that

b = a
√

1− ε2. This last equality tells us that if ε is close to 0, then b is close to a, so

the ellipse is close to a circle. The closer ε is to 0, the closer the ellipse to a circle. If

ε is close to 1, then b is close to 0, so the ellipse is flat. The closer ε is to 1, the flatter

the ellipse.

3.23. By one of the conclusions of Problem 3.22, the focal points of an ellipse can be located

as follows. Take a segment of length equal to the semimajor axis, place one endpoint

at the top of the ellipse, and rotate it until the other endpoint lies on the focal axis.

This other endpoint—note that there are two possibilities, one to the left, the other

to the right of the center of the ellipse—determines the focal points. This is how the

focal points 1, 2, and 3 of the three ellipses of Figure 3.46 are determined.

3.24. From Table 3.3, a = 0.387 au and ε = 0.206. Since b = a
√

1− ε2, b ≈ 0.379 au. At

a scale 1 au = 25 cm, a = 25(0.387) = 9.675 cm and b = 25(0.379) = 9.475 cm. The

difference a− b is 2 millimeters and the distance between the center of the ellipse and
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either of its focal points is c = εa = 0.206(9.675) ≈ 2 cm. The figure above (its

scale depends on the screen size) shows both the ellipse with semimajor axis a and

semiminor axis b and—as a dashed curve—the circle of radius a with the same center.

The difference between the two—if they were drawn in the same way and placed side

by side—would probably not be detectable visually.

3.25. For any two identical time intervals IP and IA the areas of the two corresponding

elliptical sectors in the figure below are the same by Kepler’s second law. Since P and

A are the points of the planet’s closest and farthest distances from S, it follows (for

the given time interval) that the arc at P is the longest and the arc at A the shortest.

Hence the speed of the planet at P is greatest and that at A is least. The point of the

A P

arc P

arc A

S

problem is to draw a numerical consequence from this observation. Let a and ε be

the semimajor axis and eccentricity of the orbit of the planet and let arc P and arc A

designate the lengths of the two arcs depicted in the figure above.

i. Since arc P and arc A are short, they are approximated by circular arcs both

centered at S. Since SP = a(1− ε) and SA = a(1 + ε), it follows from the study

of the circular sector in Section 2.2 that the areas of the two elliptical sectors

in the figure are approximately equal to 1
2
a(1 − ε)(arc P ) and 1

2
a(1 + ε)(arc A),

respectively. Therefore,

1
2
a(1− ε)(arc P ) ≈ 1

2
a(1 + ε)(arc A).

ii. The fact that average speed is equal to distance traveled divided by the time it

takes, tells us that the average speeds of the planets in traversing the two arcs

are arc P
IP

and arc A
IA

, respectively. Since the arcs are both small, these averages are

approximately equal to vmax and vmin, respectively.

iii. The approximations

vmax

vmin
≈ arc P

arc A
≈ 1+ε

1−ε

9



follow from (i) and (ii) above.

iv. When the time interval IP = IA is pushed to zero, the approximations above get

tighter and tighter, so that vmax

vmin
= 1+ε

1−ε .

v. If follows directly from the data in Table 3.3 that vmax

vmin
is approximately equal to

1.03 for Earth, 1.20 for Mars, and 1.52 for Mercury.

3.26. Since ε ≈ 0, 1 + ε ≈ 1− ε, so that by the result of Problem 3.25iv, vmin ≈ vmax. Since

the orbital speed v of any planet satisfies vmin ≤ v ≤ vmax, all these speeds are nearly

constant. If the orbit of a comet satisfies, 0.999 < ε < 1, then 1 + ε > 1.999. Also,

−ε < −0.999 and 1− ε < 1− 0.999 = 0.001. It follows that vmax

vmin
= 1+ε

1−ε >
1.999
0.001

= 1999.

So vmax > 1999vmin.

3.27. If εA > εB, then 1 + εA > 1 + εB and 1 − εB > 1− εA (since −εB > −εA). It follows

that 1+εA
1−εA

> 1+εB
1−εA

> 1+εB
1−εB

.

3.28. From the given, vmax ≈ vmin + (0.1)vmin = (1.1)vmin. So 1+ε
1−ε = vmax

vmin
≈ 1.1 and hence

1 + ε ≈ 1.1(1 − ε) = 1.1 − 1.1ε. So 2.1ε ≈ 0.1 and hence ε ≈ 0.1
2.1
≈ 0.048. A look at

Table 3.3 tells us that the planet is Jupiter.

3.29. Consider Earth’s orbit and let a be its semimajor axis and T its period. We know that

a = 1 au and that T = 1 year. It follows from Kepler’s third law that in the units au

and years, the ratio a3

T 2 is equal to 1 for every planet. So if the period TJ of a planet

is known in years, then its semimajor axis is aJ = (T 2
J )

1
3 = T

2
3
J au.

3.30. The problem here is simply to understand the derivation—as it is described—of the

formula

1 + 2 + 3 + · · ·+ (k − 1) + k = k(k+1)
2

,

where k can be any positive integer.

3.31. Start by adding the sum 1 + 3 + 5 + · · ·+ (2k − 3) + (2k − 1) twice:

1 + 3 + 5 + · · ·+ (2k − 3) + (2k − 1) + 1 + 3 + 5 + · · ·+ (2k − 3) + (2k − 1).

As in the solution of Problem 3.30, add two terms at a time from the inside out to get

2k+2k+ · · ·+2k. Since 1, 3, 5, . . . , 2k−3, (2k−1) are the first k odd positive integers,

there are k of these 2k in this sum. Therefore

1 + 3 + 5 + · · ·+ (2k − 3) + (2k − 1) = 1
2
(k · 2k) = k2.

With the principle of induction, the verification of this formula proceeds as follows.

Let Sk be the statement, 1 + 3 + 5 + · · · + (2k − 3) + (2k − 1) = k2. For k = 1, the

sum stops at (2k − 1) = 1 and k2 = 1. So statement S1 is true. Assuming that Sk or

1 + 3 + 5 + · · ·+ (2k − 3) + (2k − 1) = k2 is true, it follows that
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1 + 3 + 5 + · · ·+ (2k − 3) + (2k − 1) + (2k + 1) = k2 + 2k + 1 = (k + 1)2

and therefore that Sk+1 is true. We have shown that for any k ≥ 1, the truth of Sk
implies the truth of Sk+1. Therefore the principle of induction with m = 1 tells us that

the formula 1 + 3 + 5 + · · ·+ (2k − 3) + (2k − 1) = k2 is valid for all k ≥ 1.

3.32. Galileo conceives the motion of a projectile as a simultaneously and separately occur-

ring composite of a vertical and horizontal motion. In reference to the ball’s parabolic

fall from the table, this vertical component is the same as the motion of a ball that

is dropped from rest at the edge of the table. Given Galileo’s principle of horizontal

inertia, the horizontal component of the ball’s parabolic fall is a continuation of its

horizontal roll on the table at 3 meters per second. It follows from this conceptual

separation, that it will take the parabolic ball 2
5

of a second to hit the floor. Since

the ball’s horizontal speed during its fall is a constant 3 meters per second, this means

that the ball will hit the ground a distance of 2
5
· 3 = 6

5
feet from the foot of the table.

3.33. i. Galileo knew that d ∝ t2 from the experiment described in connection with Fig-

ure 3.21. Since we have already observed that y ∝ d, it follows that y ∝ t2.

ii. Since 1
2
v · t = d and d ∝ t2, it follows that v · t ∝ d ∝ t2. Therefore v ∝ t and in

view of (i), v ∝ √y.

iii. Let t0 be the time it takes for the ball to fall from rest straight down to the floor

from the edge of the table. This fall is the vertical component of the ball’s flight

no matter what velocity v the ball has after its descent from the inclined plane.

By Galileo’s law of horizontal inertia, the horizontal component of the ball’s fall

to the ground has constant speed v. It follows that x = v · t0. So x ∝ v.

iv. Galileo’s conclusion x ∝ √y follows by combining the results of (ii) and (iii).

3.34. The figure below captures what Urania has observed and recorded. The Greek col-

umn is positioned at C and C1 and C2 are the two distinctive features of Mount

Olympus that she sees it against. The points B1 and B2 are the positions from

which she observes C1 and C2 respectively and 5◦ is the angle that Urania measured.

Since the baseline B1B2 = 12 is short and the distances to C1 and C2 long, the

11



C

1

θ

C

2C

5
o

2B

1B

lines of sight B1C2 and B2C2 are close to being parallel. Therefore θ is close to 5◦.

Since 5◦ is equal to 5 · π
180

radians, it follows from the discussion about parallax in

Section 3.7, that 5 · π
180
≈ 12

d(C)
where d(C) is the distance from B1 or B2 to the column

C. It follows that d(C) ≈ 12·180
5π
≈ 137.5 strides.

3.35. The specifics of what the students need to do are identical to the solution of Prob-

lem 3.34 described above.

3.36. With EE ′ = 2ES = 2 au and the angle of stellar parallax p(A) = 1
2
∠EAE ′ in seconds,

we get the approximation d(A,E) ≈ 2
9.7p(A)

× 106 au for the distance of A from Earth

E by applying the last formula of page 106. Since 1 ly = 63,241 au,

d(A,E) ≈ 2
9.7p(A)

× 106

6.3×104 ≈
3.3
p(A)

ly.

Putting in 0.29, 0.13, and 0.75 for p(A), results in the distance estimates

11.4, 25.4, and 4.4 light-years

for the stars 61 Cygni, Vega, and Alpha Centauri, respectively. Note that the largest

of these angles of parallax is a mere 0.75 · 1
3600
≈ 0.0002 degrees.

3.37. Taking p(A) = 60 seconds in the approximation d(A,E) ≈ 2
9.7p(A)

× 106 au tells us that

Tycho Brahe might have been able to detect the parallax of stars that are a distance of

around 3400 to 3500 au away. He would have been able to conclude that such stars are

very far from Earth, but given that the Earth-Sun distance had not been determined

he would have had no measure of comparison. In any case, there were and are no such

stars. The nearest stars are more than 4 light-years or 4× 63,241 ≈ 250,000 au away

from Earth. In particular, the largest angles of stellar parallax—for example the 0.75

seconds of Alpha Centauri—were much too small for Tycho to detect.

3.38. i. Let r be the radius of the circle in Figure 3.50b. A look at Figure 3.50a tells us

that cosϕ = r
rE

. Hence r = rE cosϕ.

ii. The conclusion of Problem 1.9 tells us that the center O of the circle in Fig-

ure 3.50b lies on the perpendicular bisector of the segment BB′. This bisector
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bisects the angle θ as well (because the two triangles that are created are con-

gruent). It follows that sin θ
2

=
1
2
BB′

r
. Therefore BB′ = 2r sin θ

2
. By formula (i)

of Problem 1.23, sin2 θ
2

= 1
2
(1 − cos θ). So 4 sin2 θ

2
= 2(1 − cos θ), and therefore

2 sin θ
2

=
√

2(1− cos θ). That BB′ = (rE cosϕ)
√

2(1− cos θ) follows by combin-

ing this result with the conclusion of (i).

iii. Let’s turn to the baseline BB′ of Flamsteed’s calculation of the parallax of Mars

and its depiction in Figure 3.50b. Given that the elapsed time between his mea-

surements was 6 hours and 10 minutes, θ =
6 1
6

24
× 360◦ = 92.5◦. The latitude of

Flamsteed’s town of Derby is known to be ϕ = 52.92◦. Using the value rE = 6370

kilometers, we get that Flamsteed’s baseline BB′ is given by

BB′ = (rE cosϕ)
√

2(1− cos θ) = (6370 cos 52.92◦)
√

2(1− cos 92.5◦) ≈ 5549 km

The value BB′ ≈ 5300 kilometers is implicit in Flamsteed’s calculations.

3.39. The figure below depicts Mars in opposition and at perihelion. With perihelion and

aphelion distances for Earth of 147,098,291 kilometers and 152,098,233 kilometers,

SunEarth

d

Mars 

at perihelion

d(E,S)

respectively, and a perihelion distance for Mars of 206,655,216 kilometers, it follows

that 147,098,291 km ≤ d(E, S) ≤ 152,098,233 km and d + d(E, S) = 206,655,216 km.

So d = 206,655,216 km − d(E, S), and hence

206,655,216− 152,098,233 ≤ d ≤ 206,655,216− 147,098,291

and the conclusion that the distance d between Earth and Mars lies in the range

54,556,983 km ≤ d ≤ 59,556,925 km follows. Notice in particular that the estimates

for the distance d between Earth and Mars (with Mars in opposition as in Figure

3.28) of both Flamsteed—d ≈ 52,000,000 kilometers—and Cassini—d ≈ 53,000,000

kilometers—came up short. It follows from the parallax distance formula that their

measurements for the parallax p(M) of Mars were a too large.
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