
Solutions to Problems and Projects for Chapter 4

4.1. 28 = 22 · 7; 143 = 11 · 13; 192 = 26 · 3; 720 = 24325.

4.2. The hint provides everything except the conclusion. Since mt2 = s2, the primes in the

factorization of mt2 and hence of m occur with even powers only. So m is a square.

So the assumption that
√
m is rational implies that m is a square.

4.3. The number
√
n is rational only if n is a square. In the first case, the largest rational

number that arises is
√

100 =
√

102 = 10. All the others have the form
√
n for n equal

to 12, 22, 32, 42, 52, 62, 72, 82, and 92. The rest are irrational. It follows that there are

ten rational numbers of the form
√
n with 1 ≤ n ≤ 100. All are positive integers.

The second situation is done in the same way. Since 10002 = 1,000,000, exactly one

thousand numbers of the form
√
n with 1 ≤ n ≤ 1,000,000 are rational numbers. They

are those with n equal to 12, 22, 32, . . . , 9992, and 10002. Again, all are positive integers.

4.4. a) Let r = 1.77777... . So 10r = 17.77777... . Therefore 10r − r = 16 and r = 16
9

.

b) Put r = 2.676767... .. So 100r = 267.6767... . Hence 100r − r = 265 and r = 265
99

.

(Why would the use of 10r not be productive?)

c) Let r = 4.728728... . Since 1000r = 4728.728728... , it follows that 1000r− r = 4724.

Therefore r = 4724
999

.

d) This computation is more challenging. As before, let r = 35.34672638638... . Notice

that by moving the decimal point five places to the right, it ends up to the left of

the first sequence of 638. So 100,000r = 3534672.638638 and hence 100,000,000r =

3534672638.638638... . It follows that

100,000,000r − 100,000r = 3,534,672,638− 3,534,672 = 3,531,137,966

and hence r = 3,531,137,966
99,900,000

.

4.5. 5
4

= 1 + 1
4

= 1 + 0.25 = 1.25 = 1.25000

198 468

396

  720

  594

  1260

  1188

      720

      594        

2.3636...

So 468
192

= 2.3636 ...



4.6. Let u and v be any two distinct real numbers. Let u be the smaller one and v the

larger one. Whether they are large or small, there is a first digit (from the left)

where they are different, say the billion digit, the 10 million digit, the 10 digit, the

10th digit, the millionth digit, or whatever. Let u1 and v1 be the two numbers in

this “place.” So u1 < v1. Let r be the number that is the same as both u and v

up to the first place where they are different, let it equal r1 with u1 < r1 ≤ v1 in

this first place, and let all the digits be equal to zero thereafter. Given the way it

is constructed, this number r satisfies u < r ≤ v and it is rational because it has

the repeating 0000... at the end. All this is best illustrated with an example. Let

u = 91648327.1403528... and v = 91648327.1403538... . The first “place” at which u

and v differ is the millionth place where u has a 2 and v a 3. The recipe described

above tells us that r = 91648327.1403530000... is a rational number between u and v.

4.7. Turn to Section 7.10 and see that e = 2.7182818284590452... . Consider the number r =

2.7182818281828... . Since 10r = 27.18281828... and 10,000(10r) = 271828.18281828...,

we see that 100,000r − 10r = 271828 − 27. Therefore 99,990r = 271,801 and hence

r = 271,801
99,990

. A one step division tells us that r = 2 71,821
99,990

.

4.8. A 3 × 5 rectangle can be divided into 15 identical 1 × 1 squares. Each of these can

be divided into 4 identical 1
2
× 1

2
squares. This provides a division of the rectangle

into 60 identical squares. This process can be continued, to give subdivisions of the

rectangle into more and more identical squares that are tinier and tinier. A rectangle

with sides
√

2 and
√

8 = 2
√

2 can be divided into 2 squares of size
√

2 ×
√

2. As was

just illustrates for 1×1 squares, these in turn can be subdivided identically into smaller

and smaller squares.

4.9. Suppose that the rectangle R has been subdivided into such a finite array of identical

squares. Let each of these squares have side length s. Suppose that there are n squares

along the side a and m squares along the side b. Then a = ns and b = ms. Hence
a
b

= ns
ms

= n
m

is a rational number. Suppose, conversely, that a
b

= n
m

is a rational

number. Let s = a
n

= b
m

. Since a = ns and b = ms, the rectangle R can be subdivided

into nm identical squares of side s.

4.10. Neither
√
2
1

nor
√
6√
3

=
√
2
√
3√

3
=
√

2 is rational, so that neither of these rectangles can be

subdivided into identical squares. Since
√
45√
20

=
√
325√
225

= 3
√
5

2
√
5

= 3
2

is a rational number,

the third rectangle can be subdivided into identical squares.

4.11. The steps are these:

4x2 − 8x− 12 = 4[x2 − 2x− 3] = 4[x2 − 2x+ (2
2
)2 − (2

2
)2 − 3]

= 4[(x2 − 2x+ 1)− 1− 3] = 4[(x− 1)2 − 4].

2



The smallest value that 4x2 − 8x − 12 can have is 4[0 − 4] = −16 and it occurs for

x = 1. The solutions of 4x2 − 8x− 12 = 0 are the same as those of 4[(x− 1)2 − 4] = 0

and in turn those of (x− 1)2 = 4. Since x− 1 = ±2, the solutions are x = −1, 3.

4.12. Follow the recipe to get

−5x2 + 3x+ 4 = −5(x2 − 3
5
x− 4

5
) = −5

(
x2 − 3

5
x+ ( 3

10
)2 − ( 3

10
)2 − 4

5

)
= −5

(
(x− 3

10
)2 − ( 3

10
)2 − 4

5

)
= −5

(
(x− 3

10
)2 − 9

100
− 80

100

)
= −5

(
(x− 3

10
)2 − 89

100

)
.

So −5x2 + 3x+ 4 = 0 when x− 3
10

= ±
√

89
100

= ±
√
89
10

and hence when x = 3
10
±
√
89
10

.

Doing exactly the same thing with −5x2 + 3x− 4, we get

−5x2 + 3x− 4 = −5
(
(x− 3

10
)2 − ( 3

10
)2 + 4

5

)
= −5

(
(x− 3

10
)2 + 71

100

)
.

Since (x− 3
10

)2 ≥ 0 for any x, −5x2 + 3x− 4 = −5
(
(x− 3

10
)2 + 71

100

)
is always negative

and hence never 0.

4.13. Note that 3x2 + 21x+ 12 = 3(x2 + 7x+ 4). By completing the square,

x2 + 7x+ 4 = x2 + 7x+ (7
2
)2 − (7

2
)2 + 4 = (x+ 7

2
)2 + 4− 49

4
= (x+ 7

2
)2 − 33

4
.

So x2 + 7x+ 4 is equal to 0 precisely when x = −7
2
±
√
33
2

.

4.14. By completing the square, we get

ax2 + bx+ c = a[x2 + b
a
x+ c

a
] = a[x2 + b

a
x+ ( b

2a
)2 − ( b

2a
)2 + c

a
]

= a[
(
x2 + b

a
x+ ( b

2a
)2
)
− b2

(2a)2
+ 4ac

(2a)2
] = a[(x+ b

2a
)2 − b2−4ac

(2a)2
].

So ax2 + bx+ c = 0 translates to a[(x+ b
2a

)2− b2−4ac
(2a)2

] = 0 and hence (x+ b
2a

)2 = b2−4ac
(2a)2

.

Notice that b2−4ac ≥ 0. So we get, x+ b
2a

= ±
√

b2−4ac
(2a)2

= ± 1
2a

√
b2 − 4ac, and therefore

x = −b±
√
b2−4ac
2a

. If a = 0, the equation ax2 + bx + c = 0 reduces to bx = −c. If b 6= 0,

then x = − c
b
. And if b = 0?

4.15. Notice that the white areas of the three regions are equal. Therefore

x2 + dx = x2 + 2(d
2
· x) = (x+ d

2
)2 − (d

2
)2.

This is exactly what you get if you complete the square for x2 + dx.

4.16. If x is the intial number of apples, then x = x
5

+ x
12

+ x
8

+ x
20

+ x
4

+ x
7

+30+120+300+50.

Therefore x − x
5
− x

12
− x

8
− x

20
− x

4
− x

7
= 500. Since 5 · 12 · 2 · 7 = 840 is a common

denominator, we get

840x− 168x− 70x− 105x− 42x− 210x− 120x

840
= 500.

So 125x = 840 · 500, and hence x = 3360.

3



4.17. Let x, y, z and w be the respective weights of the gold, brass, tin, and iron in the crown.

Observe that

x+ y = 2
3
· 60 = 40; x+ z = 3

4
· 60 = 45; x+w = 3

5
· 60 = 36; and x+ y + z +w = 60.

This system of 4 equations in 4 unknowns can be solved as follows: Since y = 40−x, z =

45 − x, and w = 36 − x, we get that x + (40 − x) + (45 − x) + (36 − x) = 60. So

−2x+ 121 = 60, and x = 301
2
. Therefore, y = 91

2
, z = 141

2
, and w = 51

2
.

4.18. We will assume that the daily production of the son and son-in-law is 200 and 250

bricks respectively (even though they do not appear to have worked a full day). So the

three together can make 300 + 200 + 250 = 750 bricks in one day. Therefore, they will

require 300
750

= 2
5

of a day to make 300. Observe that the answer needs to be given in

hours. While the wording of the problem suggests that “day” means “working day,”

it is not clear how many hours such a working day has. If it has eight hours, then the

three brick makers will need 2
5
· 8 = 16

5
= 31

5
hours. And if it has twelve?

4.19. Let x be “thy” age in years. The determination of x is the only possible question.

A translation tells us that x = 1
6
x + 1

8
x + 1

3
x + 27. So x = 4x+3x+8x

24
+ 27 and hence

24x − 4x − 3x − 8x = (24)(27). So x = 3(24) = 72 years. The interpretation that

“likewise a wife and a later-born son” might involve an additional 1
3
x would result in

the equation 24x− 4x− 3x− 8x− 8x = (24)(27) or x = 648 years. Not likely.

4.20. To bring the problem to a “common denominator,” notice that in 12 days, the first

spout will fill 12 tanks, the second 6 tanks, the third 4 tanks, and the fourth will fill 3

tanks. So in 12 days the four spouts together will fill 12 + 6 + 4 + 3 = 25 tanks. So

together, they will fill one tank in 12
25

of a day.

4.21. Two questions might be: How many apples did each Grace have in her basket and how

many apples did each of them give to each Muse? The phrase “the nine and the three”

tells us that there are three Graces. The hint tells us to let each of the three Graces

have x apples and to let each Grace give y apples to the Muses. So the Muses get a

total of 3y apples. Since each Muse gets the same number of apples, each Muse must

get y
3

apples. Since they all have the same number of apples at the end, x − y = y
3
,

so that y = 3
4
x. The equality y = 3

4
x meets all the requirements if x is taken to be a

multiple of 4. If x = 4n then y = 3n and each of the 12 goddesses would have n apples

after the exchange.

An aside: In Greek mythology, the Graces were three (or more) minor deities,

commonly regarded to be daughters of Zeus. They were patrons of various pleasures

in life, such as play, amusement, rest, happiness, and relaxation. The Muses, also

daughters of Zeus, were Greek goddesses who presided over literature, science and the

arts. They were often invoked at the beginning of various lyrical poems—such as in
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the Homeric epics—to inspire the poet or to speak through the poet’s words. The

nine Muses were Calliope (epic poetry), Clio (history), Euterpe (lyric poetry), Thalia

(comedy and pastoral poetry), Melpomene (tragedy), Terpsichore (dance), Erato (love

poetry), Polyhymnia (sacred poetry, and Urania (astronomy).

4.22. Let x be Diophantus’s age when he died. Check that

x = x
6

+ x
12

+ x
7

+ 5 +
(
x
2

+ 4
)

= x
6

+ x
12

+ x
7

+ x
2

+ 9.

After multiplying through by the common denominator 7·12 = 84, we get

84x = 14x+ 7x+ 12x+ 42x+ 9·84 = 75x+ 9·84.

So x = 84.

4.23. Since x2−y2
x+y

= (x+y)(x−y)
x+y

= x− y = b, we get x = y + b. Since x
y

= a, x is also equal to

x = ay. Therefore ay = y + b and (a− 1)y = b. Since b > 0, a 6= 1. Therefore y = b
a−1

and x = ab
a−1 .

4.24. Since a 6= 0, we know that x 6= 0 and y = a
x
. Since x+ a

x
= b, it follows that x2+a

x
= b,

and hence that x2 − bx+ a = 0. By the quadratic formula x = b±
√
b2−4a
2

. Using y = a
x

we get y = 2a
b±
√
b2−4a .

4.25. Let x, y, z, and w be the four numbers. We know that

x+ y + z = 22, x+ y + w = 24, x+ z + w = 27, and y + z + w = 20.

Substracting the last equation from each of the other three gives us:

(a) x− w = 2, (b) x− z = 4, and (c) x− y = 7.

Subtracting (a) from (b) and then from (c), gives w−z = 2 and w−y = 5. So z = w−2

and y = w − 5. Therefore using y + z + w = 20, we get (w − 5) + (w − 2) + w = 20.

So 3w = 27. Hence w = 9. It follows that z = 7, y = 4, and x = 11.

4.26. Since the ratios DC : CA : AD are equal to 3 : 4 : 5, we let DC = 3x, and get that

CA = 4x and AD = 5x. Since DC and CA are integers, CA−DC = x is an integer.

Let DB = y and AB = z. Putting all this into the triangle we get Figure 4.31. Observe

that tan θ
2

= 3x
4x

= 3
4
, and tan θ = 3x+y

4x
. Using the formula, tan θ =

2 tan( θ2)
1−tan2( θ2)

, we get

3x+y
4x

=
3
2

1− 9
16

= 3
2
·16
7

= 24
7
.
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So 21x + 7y = 96x, and 75x = 7y. Since 7 is a prime that divides 75x, it must divide

75 or x. But it does not divide 75, so 7 divides x. Therefore, 7 is the smallest possible

value for x. Does x = 7 work? With x = 7, DC = 21, CA = 28, and AD = 35. Since

75x = 7y, y = 75. By Pythagoras’s theorem:

z2 = 16x2 + (3x+ y)2 = 16·49 + (21 + 75)2 = 16·49 + (6·16)2

= 16(49 + 6216) = 16(49 + 576) = 16·625 = 42·252 = 1002.

Therefore z = 100. Finally, we need to check whether the condition that AD bisects

the angle θ at A is met. Let α = ∠CAD,α′ = ∠DAB, and let β be the angle at B.

Notice that sinα = 3
5
. If we can show that sinα′ = 3

5
, then α = α′ because both α and

α′ are acute angles. By the law of sines, sinα′

y
= sinβ

5x
. So sinα′ = 75

35
sin β = 15

7
sin β.

Since sin β = 4x
z

= 28
100

= 7
25

, we get sinα′ = 15
7
· 7
25

= 3
5
.

4.27. The hint is easily carried out. Since c2 = x2 + (2x− c)2 = x2 + 4x2 − 4xc+ c2, we get

5x2−4xc = 0. With x 6= 0, we get 5x = 4c. So x = 4
5
c. In this way, Diophantus comes

up with c2 = (4
5
)2c2 + (3

5
)2c2. If c is rational, then c2 is rational, so that c2 is the sum

of the two rational numbers (4
5
)2c2 and (3

5
)2c2. (Observe that (4

5
)2 + (3

5
)2 = 16+9

25
= 1.)

Assume that the word “quantity” in Problems 4.28 and 4.29 refers to the same number

in each case. (Otherwise there would be two different variables involved, and it would not

be possible to solve the equations that arise.)

4.28. With x the quantity in question, we get (x
3

+ 1)(x
4

+ 1) = 20. So x2

12
+ x

3
+ x

4
+ 1 = 20,

and hence

x2

12
+ 4x+3x

12
+ 1 = 20 and x2 + 7x− 228 = 0.

By the quadratic formula, x =
−7±
√

49−4(−228)
2

=
−7±
√

961)

2
= −7±31

2
= −19, 12.

4.29. With x the quantity, we get (x
3
)(x

4
) = x+24. So x2

12
−x−24 = 0. Hence x2−12x−288 =

0, and by the quadratic formula

x =
12±
√

144−4(−288)
2

= 12±
√
144+1152
2

= 12±
√
1296

2
= 12±36

2
= −12, 24.

4.30. There is an ambiguity here. The instructions have two interpretations. The equality

(x + 7)(
√

3x) = 10x is one of them and (x + 7)(
√

3x) = 10x is another. The second

one is more interesting and we will pursue it. Dividing both sides by
√
x, we get√

3(x + 7) = 10
√
x. After squaring both sides 3(x2 + 14x + 49) = 100x, and hence

3x2 − 58x+ 147 = 0. By the Pythagorean theorem

x = 58±
√
582−4·3·147

6
= 58±

√
582−1764
6

= 58±
√
1600

6
= 58±40

6
= 3, 49

3
.
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4.31. By the Pythagorean theorem, the height h of an equilateral triangle of side a satisfies

h2 + (a
2
)2 = a2. Therefore h2 = 3

4
a2 and hence h =

√
3
2
a. So the area of this triangle

is 1
2
ah =

√
3
4
a2. Gerbert’s value a

2
(a − a

7
) = a

2
(6
7
a) = 3

7
a2 for the area leads to the

approximation
√
3
4
≈ 3

7
, or 0.4330 ≈ 0.4286.

4.32. We’ll consider the right triangle shown below. The two perpendicular sides are x and

y, its base is the hypothenuse b =
√
x2 + y2 and h is its height. The area A of the

triangle is both A = 1
2
h
√
x2 + y2 and A = 1

2
xy. We need to solve these equations for

x
h

b

y

x and y in terms of A and h. Since y = 2A
x

and 4A2 = h2(x2 + y2), we get 4A2 =

h2(x2 + 4A2

x2
). After multiplying through by x2, we get 4x2A2 = h2(x4 + 4A2) and

therefore, h2(x2)2 − 4A2x2 + 4h2A2 = 0. By the quadratic formula,

x2 =
4A2±
√

16A4−4h2(4h2A2)

2h2
= 4A2±4A

√
A2−h4

2h2
= 2A2±2A

√
A2−h4

h2
= 2A

h2
(A±

√
A2 − h4).

So x =
√
2A
h

√
A±
√
A2 − h4 and y = 2A

x
=

√
2Ah√

A±
√
A2−h4

and we are done. Since

A >
√
A2 − h4, both + and − can occur.

4.33. The roots of −2x2 + 7x− 5 are
−7±
√

72−4(−2)(−5)
−4 = 7±3

4
. So they are 1 and 5

2
. Since the

terms x − 1 and x − 5
2

both divide −2x2 + 7x − 5 their product does as well. Check

that −2(x2 − 7
2
x+ 5

2
) = −2(x− 1)(x− 5

2
).

4.34. The roots of 3x2−9x+ 8 are
9±
√

92−4(3)(8)
6

= 9±
√
−15
6

. Since
√
−15 does not make sense

within the real numbers, there are no real roots, and there is no factorization (with

real coefficients).

4.35. The computation is(
x+ b−

√
b2−4ac
2a

)
·
(
x+ b+

√
b2−4ac
2a

)
= x2+

(
b−
√
b2−4ac
2a

+ b+
√
b2−4ac
2a

)
x+
(
b−
√
b2−4ac
2a

)(
b+
√
b2−4ac
2a

)
= x2 + b

a
x+ 1

4a2
(b2 − (b2 − 4ac)) = x2 + b

a
x+ c

a
.

Since a(x2 + b
a
x+ c

a
) = ax2 + bx+ c, we are done.

4.36. If the polynomial x3 + 6x2 − 9x − 14 factors and has a root that is an integer, then

this integer must divide 14. Start by checking x = ±1. At x = 1, the value of the
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polynomial is −16 ±1, but at x = −1, the value is zero. So −1 is a root. Checking

x = ±2, we find 2 is a root (but that −2 is not). Let’s check x = ±7 next. A

calculator confirms that x = −7 is a root. So the terms x+1, x−2, and x+7 all divide

x3 + 6x2 − 9x − 14 and hence their product does also. Since (x + 1)(x − 2)(x + 7) =

(x2 − x− 2)(x+ 7) = x3 − x2 − 2x+ 7x2 − 7x− 14 = x3 + 6x2 − 9x− 14, we are done.

4.37. Notice that 125− 4 · 25− 4 · 5− 5 = 0, so that x = 5 is a root of x3 − 4x2 − 4x− 5. A

polynomial division confirms that x3 − 4x2 − 4x − 5 = (x − 5)(x2 + x + 1). Consider

the factor x2 + x + 1. Since the term b2 − 4ac of the quadratic formula is 1− 4(1)(1)

and therefore negative, x2 + x + 1 has no real roots and therefore no factors of the

from x− d with d real. So over the real numbers, the factorization x3− 4x2− 4x− 5 =

(x− 5)(x2 + x+ 1) is complete.

4.38. Complete the segments BA and AC to a parallelogram BACD with D a point on the

segment CE. Since AC and BD are parallel, the triangles ∆OAB and ∆BDE are

similar. So b
1

= BE
BD

= BE
a

and hence ab = BE.

4.39. The relabeled version of Figure 4.33 is shown below. The ratio of segments a
b

is defined

to be the segment BE. Now regard 1, a, b, and BE to be the lengths of the segments

of the figure. Complete the segments BA and AC to the parallelogram BACD. By

B

E

abO A

1

C

D

similar triangles, the lengths 1, b, a, and BE satisfy 1
b

= BE
a

. Since the length of BE

is equal to a
b
, the definition of the ratio of two segments agrees with the definition of

the ratio of real numbers.

4.40.
√

(1− 4)2 + (1− 5)2 =
√

32 + 42 = 5 and
√

(1− (−1))2 + (−6− (−3))2 =
√

13.

4.41. This length is the distance from (−3,−7) to (6, 8). So it is
√

(−3− 6)2 + (−7− 8)2 =√
92 + 152 =

√
81 + 225 =

√
306 ≈ 17.49.

4.42. Let’s suppose that a ≤ b (because the argument in the other case is the same). It

follows that a ≤ a+b
2
≤ b. The distance between a and a+b

2
is a+b

2
− a = b

2
− a

2
and that

between b and a+b
2

is b− a+b
2

= b
2
− a

2
. Since c = a+b

2
is the same distance from a and

b, it is the midpoint of the segment on the number line that a and b determine.

For the situation in the plane, consider the figure below. Let P1 = (x1, y1) and P2 =
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O

x2

P1 = (x1, y1)

P2 = (x2, y 2)

x1
x

y2

y1

y

a

c

b

d 

M

C

B

(x2, y2) be two points in the coordinate plane and let M be the midpoint of the segment

that connects them. The two triangles that P1M and P2M along with the accompa-

nying vertical segments (with lengths a and c) and horizontal segments (with lengths

b and d) determine are similar. By applying the “ratio of corresponding sides prop-

erty” of similar triangles,we get the equalities a
P1M

= c
P2M

and b
P1M

= d
P2M

. Since

P1M = P2M , it follows that a = c and b = d. But this means that the point B is the

midpoint of the segment determined by the coordinates y1 and y2 and that C is the

midpoint of the segment determined by the coordinates x1 and x2. From the earlier

case of the number line, it follows that the y-coordinate of B is y1+y2
2

and that the

x-coordinate of C is x1+x2
2

. It follows that M is the point
(
x1+x2

2
, y1+y2

2

)
.

4.43. By applying the conclusion of Problem 4.42, we get

i. The midpoint is
(
1+7
2
, 3+15

2

)
= (4, 9).

ii. The midpoint is
(−1+8

2
, 6−12

2

)
=
(
7
2
,−3

)
.

4.44. Using the distance formula, we get that the lengths of the segments AB,AC, and BC

are

AB =
√

(6− 11)2 + (−7− (−3))2 =
√

25 + 16 =
√

41,

AC =
√

(6− 2)2 + (−7− (−2))2 =
√

16 + 25 =
√

41, and

BC =
√

(11− 2)2 + (−3− (−2))2 =
√

81 + 1 =
√

82.

So AB2 + AC2 = BC2, and therefore the triangle ∆ABC is a right triangle with

hypotenuse BC.

4.45. Notice that the x-coordinates of the points A,B, and C occur in increasing order. If

the sum of the distance from A to B plus the distance from B to C is equal to the

9



distance from A to C, then the points must lie on the same line. Let’s check. Since

AB =
√

(−1− 3)2 + (3− 11)2 =
√

80 = 2
√

20, BC =
√

(3− 5)2 + (11− 15)2 =
√

20,

and AC =
√

(−1− 5)2 + (3− 15)2 =
√

180 = 3
√

20, this is indeed the case.

4.46. The graphs of x = 3 and y = −2 are the lines labeled in the figure below. The graph

of y = |1| consists of the two lines y = 1 and y = −1. For xy to equal 0, either x = 0

or y = 0. So the graph of xy = 0 consists of the x-axis together with the y-axis.

x

y

x = 3

y = −2

y = 1

y = −1

4.47. i. The set
{

(x, y) | x ≥ 1
}

of “all points (x, y) with the property that x ≥ 1” is

everything in the plane on the line x = 1 and to its right. See the region in light

gray in the figure below.

x

y

x = 1

−1

−1

1

10



ii. The set
{

(x, y) | |x| < 1 and |y| < 1
}

of “all points (x, y) with the property that

|x| < 1 and |y| < 1” consists of all points (x, y) with −1 < x < 1 and −1 < y < 1.

This is everything in the box depicted in dark gray in the figure (but not the

boundary of the box).

4.48. i. The set {(x, y) | xy < 0} consists of all (x, y) such that x and y are either both

positive or both negative. In the context of Figure 4.4, this consists of the first

and third quadrants (without the two coordinate axes).

ii. The set {(x, y) | 0 ≤ y ≤ 4 and x ≤ 2} is depicted in gray on the left in the figure

below. There is no restriction on this strip on the right (it goes on forever).

x

y

2

y = 4

x

y

2

−2

−3 3

iii. The set {(x, y) | |x| < 3 and |y| < 2} consists of everything inside the gray box

shown in the figure above on the right (except the boundary of the box).

4.49. This is easily sketched. The center of the circle is the point (3,−5) and its radius is√
7 ≈ 2.65.

4.50. This is (x− 3)2 + (x− (−1))2 = 52 or (x− 3)2 + (x+ 1)2 = 25.

4.51. This circle has center (3,−7) and radius
√

9 = 3. So its equation is (x−3)2+(x+7)2 = 9.

4.52. Rewrite the given equation as x2− 4x+ y2 + 10y = −13. Completing both squares and

the balancing things by adding the appropriate constants on the right, we get

x2 − 4x+ (4
2
)2 + y2 + 10y + (10

2
)2 = −13 + (4

2
)2 + (10

2
)2,

x2 − 4x+ 22 + y2 + 10y + 52 = −13 + 4 + 25, and finally

(x− 2)2 + (y + 5)2 = 16.

This is a circle with center (2,−5) and radius 4.

4.53. By completing the square, first for the x-terms and then for the y-terms, we get

11



x2 + ax+ y2 + by + c = x2 + ax+
(
a
2

)2 − (a
2

)2
+ y2 + bx+

(
b
2

)2 − ( b
2

)2
+ c

= (x+ a
2
)2 + (y + b

2
)2 + c−

(
a
2

)2 − ( b
2

)2
= (x+ a

2
)2 + (y + b

2
)2 + c−

(
a
2

)2 − ( b
2

)2
.

So x2 + y2 + ax + by + c = 0 translates to (x + a
2
)2 + (y + b

2
)2 =

(
a
2

)2
+
(
b
2

)2 − c.

For this last equality to hold, we must have
(
a
2

)2
+
(
b
2

)2 − c ≥ 0. For the equation

x2 + y2 + ax+ by + c = 0 to represent a circle, a, b, and c need to satisfy the condition(
a
2

)2
+
(
b
2

)2 − c > 0. If this is so, then
(
− a

2
,− b

2

)
is the center of the circle and√(

a
2

)2
+
(
b
2

)2 − c is its radius.

4.54. Completing the square for the term x2 + 4x + 7 does the trick. Since x2 + 4x + 7 =

x2 + 4x +
(
4
2

)2 − (4
2

)2
+ 7 = (x + 2)2 + 3, the equation of the parabola in rewritten

form is y = (x + 2)2 + 3. So the smallest possible y-coordinate on the graph of the

parabola is 3. The corresponding x-coordinate is −2. So (−2, 3) is the lowest point

on the parabola. The parabola crosses the y axis at the point (0, 7). Since the point

(−4, 7) is also on the parabola, it is now easy to sketch its graph.

4.55. The form of the equation y = 3x2 − 2x + 5 tells us that the graph is a parabola with

horizontal directrix. The discussion in Section 4.3 informs us that the general equation

of such a parabola is

y =
(

1
2(b−c)

)
x2 −

(
a
b−c

)
x+

(
a2+b2−c2
2(b−c)

)
,

where (a, b) is the focus and y = c is the directrix. In order to locate the focus and

directrix of the parabola y = 3x2 − 2x + 5, we need to set 1
2(b−c) = 3, a

b−c = 2, and
a2+b2−c2
2(b−c) = 5 and solve for a, b and c. The first equality tells us that b − c = 1

6
. So

a
b−c = 6a = 2, and hence a = 1

3
. Since

5 = a2+b2−c2
2(b−c) = a2

2(b−c) + (b−c)(b+c)
2(b−c) = 1

32·2( 1
6
)

+ b+c
2

= 1
3

+ b+c
2
,

it follows that 2 + 3(b + c) = 30, and hence that b + c = 28
3

. Since b − c = 1
6
,

2b = 28
3

+ 1
6

= 57
6

= 19
2

and b = 19
4
. Finally, c = b− 1

6
= 19

4
− 1

6
= 57−2

12
= 55

12
. Therefore

the focus of the parabola y = 3x2− 2x+ 5 is the point (a, b) = (1
3
, 19

4
) and its directrix

is the line y = 55
12

.

4.56. A look at the Figure 4.34 tells us that a point P = (x, y) is on the parabola precisely

when
√

(x− a)2 + (y − b)2 = −x + c = −(x − c). So (x − a)2 + (y − b)2 = (x − c)2
and therefore x2 − 2ax + a2 + y2 − 2by + b2 = x2 − 2cx + c2. Solving for x we get,

2cx−2ax = −y2 +2by−a2−b2 +c2 or 2ax−2cx = y2−2by+a2 +b2−c2 and therefore

x = 1
2(a−c)y

2 − b
a−cy + a2+b2−c2

2(a−c) .

12



4.57. The figure below tells us that this infinite region consists of all points outside the two

parabolas.

x

y = −x

y

2

y = x   + 12 

4.58. Let P = (x, y) be any point in the plane. If y = x2 + 3x + 4, then (x, y) is on the

parabola of Figure 4.12. It follows that if y > x2 + 3x + 4, then (x, y) lies above the

parabola. If in addition y < 4, then (x, y) lies below the line y = 4. So if the point

(x, y) is to lie inside the parabolic section of the figure, its coordinates must satisfy

x2 + 3x + 4 < y < 4. If the boundaries of the parabolic section are included, then the

condition on the coordinates is x2 + 3x+ 4 ≤ y ≤ 4.

4.59. By completing the square we get

y = 3x2 + 6x+ 7 = 3(x2 + 2x+ 7
3
) = 3(x2 + 2x+ 1− 1 + 7

3
) = 3((x+ 1)2 + 4

3
).

It follows that (−1, 4) is the lowest point on the parabola. Note that 3x2 + 6x+ 7 = 8

is equivalent to 3((x+ 1)2 + 4
3
) = 8. Solving this equation for x, gives us (x+ 1)2 = 4

3

and hence that x = −1 ± 2√
3
. It follows that the parabola crosses the cut y = 8

at the points (x, 8) with x = −1 − 2√
3
≈ −2.15 and x = −1 + 2√

3
≈ 0.15. Notice

that the x-coordinate −1 of the lowest point of the parabola lies halfway between the

x-coordinates of its two points of intersection with the line y = 8. It is now easy to

sketch the parabolic section. Let (x, y) be any point in the plane. The point lies on

the parabola if y = 3x2 + 6x+ 7 and above the parabola if 3x2 + 6x+ 7 < y. It follows

that the point lies within the parabolic section if 3x2 + 6x+ 7 < y < 8.

4.60. Completing the square for y = x2 + x− 11, we get

y = x2 + x− 11 = x2 + x+
(
1
2

)2 − (1
2

)2 − 11 =
(
x+ 1

2

)2 − 111
4

13



and doing so for y = 2x2 − 4x− 7, we get

y = 2(x2 − 2x− 7
2
) = 2(x2 − 2x+ 1− 1− 7

2
) = 2

(
(x− 1)2 − 9

2

)
.

The lowest point of the parabola y = x2 + x − 11 is
(
− 1

2
,−111

4

)
. To find its

x-intercepts, set

y = x2 + x− 11 =
(
x+ 1

2

)2 − 111
4

= 0

to get x = −1
2
±
√
45
2

. So the x-intercepts are x = −1
2
−
√
45
2
≈ −3.85 and x = −1

2
+
√
45
2
≈

2.85. The y-intercept is the point (0,−11).

The lowest point of y = 2x2−4x−7 is (1,−9). Setting 2x2−4x−7 = 0 and solving

for x, we get 2
(
(x− 1)2 − 9

2

)
= 0 and x = 1± 3√

2
for the x-intercepts of this parabola.

So the x-intercepts are x = 1 − 3√
2
≈ 1.12 and x = 1 + 3√

2
≈ 3.12. The y-intercept is

the point (0,−7).

To find the x-coordinates of the points of intersection of the two parabolas set

2x2 − 4x− 7 = x2 + x− 11 and solve for x. So x2 − 5x+ 4 = 0. An easy factorization

tells us that (x − 1)(x − 4) = 0, so that x = 1 or x = 4. It follows that the points of

intersection are (1,−9) and (4, 9).

The two parabolas intersect for x = 1 and x = 4. But what happens for 1 < x < 4?

Checking at x = 2, we get x2+x−11 = −5 and 2x2−4x−7 = −7. It is not hard to check

(use the quadratic formula) that 2x2− 4x− 7 < x2 + x− 11 for any x with 1 < x < 4.

Outside the interval 1 ≤ x ≤ 4, things are reversed and x2 + x − 11 < 2x2 − 4x − 7.

Given all that has been established, it is now fairly routine (plot additional points if

needed) to sketch the graphs of both y = x2+x−11 and y = 2x2−4x−7 and to see the

relationship of the two graphs to each other. The set of points that the two parabolas

enclose is the set of points above the parabola y = 2x2−4x−7 and below the parabola

y = x2+x−11. In set theoretic notation this is
{

(x, y)
∣∣ 2x2−4x−7 ≤ y ≤ x2+x−11

}
.

4.61. There is not much left to do. Only a little algebra remains. From y = (tan θ)x− d and

d = bt2, it follows that y = −bt2 + (tan θ)x. From cos θ = x
v0t

, we get t2 = 1
(v0 cos θ)2

x2

and therefore y = −b
(v0 cos θ)2

x2 + (tan θ)x.

4.62. Comparing the equation y = 1
2
x2 with equation (∗) of Section 4.3, we see that 1

2(b−c) =
1
2
, a = 0, and a2 + b2 − c2 = 0. It follows that b− c = 1 and b2 − c2 = (b− c)(b+ c) =

b + c = 0. So 2b = 1 and hence b = 1
2
, and c = −1

2
. Therefore the focal point of the

parabola is F = (a, b) = (0, 1
2
) and the directrix is the horizontal line y = −1

2
.

After dividing 3x2 + 4y2 = 6 through by 6 we get x2

2
+ y2

3
2

= 1. This is equal to

x2

(
√
2)2

+ y2

(
√

3
2
)2

= 1. So the ellipse has semimajor axis a =
√

2 and semiminor axis

b =
√

3
2
.

14



Dividing 3x2 − 4y2 = 12 by 12, we get x2

4
− y2

3
= 1 and therefore x2

22
− y2

(
√
3)2

= 1.

With a = 2 and b =
√

3, we see from Section 4.5 that the asymptotes of the hyperbola

are the two lines y =
√
3
2

and y = −
√
3
2

. Since c2 = a2 + b2 = 4 + 3 = 7, the x-intercepts

of the hyperbola are ±
√

7.

x

y

x

y

x

y

2

√ 2

3

2

√

3√

The three graphs along with the relevant information are sketched above.

4.63. Since the ellipse has equation x2

52
+ y2

22
= 1, the analysis in Section 4.4 tells us that

a = 5 is the semimajor axis and b = 2 is the semiminor axis. Form a2 = b2 + c2 follows

that c =
√

52 − 22 =
√

21, so that the eccentricity is equal to ε = c
a

=
√
21
5
≈ 0.92.

4.64. Since the semimajor axis and semiminor axis are a = 5 and b = 3, respectively, the

distance between the center (0, 0) and either focal point is c =
√
a2 − b2 =

√
52 − 32 =

4. So the two focal points are (±4, 0). The circle with center (4, 0) and radius 2 has

equation (x − 4)2 + y2 = 4. By multiplying x2

52
+ y2

32
= 1 through by 52 · 32, we get

9x2 + 25y2 = 9 · 25 = 225. Using the equations of the circle and the ellipse together we

see that the x-coordinate of a point of intersection satisfies

9x2 + 25(4− (x− 4)2) = 9x2 + 25(4− x2 + 8x− 16) = −16x2 + 8·25x− 12·25 = 9·25

and hence that −16x2 + 8·25x− 21·25 = 0. By the quadratic formula

x = −8·25±
√
82·252−4·16·21·25
−32 = −8·25±8·5

√
25−21

−32 = 8·5(5±2)
32

= 5(5±2)
4

= 15
4

or 35
4

.

Since −5 ≤ x ≤ 5 for any point (x, y) on the ellipse, x = 35
4

cannot arise. So x = 15
4

=

33
4

is the only possibility. How to get the corresponding y-coordinates is clear.

15



4.65. The ellipse of the first equation has semimajor axis a = 6 and semiminor axis b = 4.

The center of the ellipse is the origin (0, 0) and it’s focal axis is the x-axis. The ellipse

is shown in Figure (a) below. The second equation is that of the ellipse shown in Figure

(a) shifted without rotating it so that its center ends up at the point (2, 4).

x

y

x

y

(a)               (b)

6
4

(2, 4)

4.66. It follows from Section 4.3 that i. y = −x2 + 3x + 4 is a parabola with horizontal

directrix. The equation ii. x = 2y2 represents a parabola with vertical directrix. The

two parabolas are sketched below.

x

y

y = −x   + 3x + 4 2

x = 2y  2

Since ii. x2 + 4y2 = 16 is equivalent to x2

16
+ y2

4
= 1 and hence to x2

42
+ y2

22
= 1, this

is an ellipse of the sort studied in Section 4.4 with horizontal focal axis. The equation

iv. 9x2 + 2y2 = 12 is equivalent to 9
12
x2 + 2

12
y2 = 1 and in turn to 3

4
x2 + 1

6
y2 = 1 and

x2
4
3

+ y2

6
= 1 and x2

( 2√
3
)2

+ y2

(
√
6)2

= 1. The two ellipses are sketched below.
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x

y

x

y

2

−2

−4 4

6√

3√
2

4.67. For c =
√
a2 − b2 we’ll take the points F1 = (0, c) and F2 = (0,−c) in the coordinate

plane and show that the ellipse determined by these two points and the number k = 2a

has equation x2

b2
+ y2

a2
= 1. This will imply that F1 and F2 are the focal points of this

ellipse and that k = 2a is the defining constant. The nature of the equation tells us in

turn that the graph of the ellipse is as depicted in Figure 4.36. The derivation of the

equation is in essence the same as the one provided in Section 4.4.

(x, y)

y

x

a

b

F1

F2

Let P = (x, y) be a point in the plane. Then P is on the ellipse precisely when the

sum PF1 +PF2 = k = 2a. In view of the figure above, we get the first equation below.

The other equations follow in successive steps via algebraic maneuvers:

17



√
x2 + (y − c)2 +

√
x2 + (y + c)2 = 2a,√

x2 + (y − c)2 = 2a−
√
x2 + (y + c)2,

x2 + (y − c)2 = 4a2 − 4a
√
x2 + (y + c)2 + x2 + (y + c)2,

(y − c)2 = 4a2 − 4a
√
x2 + (y + c)2 + (y + c)2,

y2 − 2cy + c2 = 4a2 − 4a
√
x2 + (y + c)2 + y2 + 2cy + c2,

a
√
x2 + (y + c)2 = a2 + cy,

a2
(
x2 + (y + c)2

)
= a4 + 2a2cy + c2y2,

a2(x2 + y2 + 2cy + c2) = a4 + 2a2cy + c2y2,

a2x2 + a2y2 + 2a2cy + a2c2 = a4 + 2a2cy + c2y2,

a2x2 + a2y2 − c2y2 = a4 − a2c2,
a2x2 + (a2 − c2)y2 = a2(a2 − c2).

Since b2 = a2 − c2, this last equation becomes a2x2 + b2y2 = a2b2. Because a > c ≥ 0

and b > 0, we can divide a2x2 + b2y2 = a2b2 by a2b2 to get

x2

b2
+
y2

a2
= 1.

4.68. Since B2−4AC = 0−4 ·1 ·4 = −16 is negative, the graph of x2 +4y2−6x+8y+9 = 0

is an ellipse (if the equation is not degenerate). Completing squares gives us

x2+4y2−6x+8y+9 = x2−6x+32−32+4(y2+2y+12−12)+9 = (x−3)2+4(y+1)2−4,

so that (x− 3)2 + 4(y + 1)2 = 4. Therefore, (x−3)2
22

+ (y + 1)2 = 1. It follows that this

is indeed the equation of an ellipse. Its graph is obtained by ishifting the graph of the

ellipse x2

22
+ y2 = 1, 3 units to the right and 1 unit down. So the center of the given

ellipse is (3,−1) and its semimajor and semiminor axes are 2 and 1, respectively.

x

y

(3, −1)

1 5

−3

4.69. Let the points F1 and F2 and two lengths a and b with a ≥ b be given. Put a

sheet of graph paper on your board and place the two points so that F1 = (c, 0)

and F2 = (−c, 0) for some where c =
√
a2 − b2. So the distance 2c = 2

√
a2 − b2

is determined by a and b. With a string of length 2a + 2
√
a2 − b2 in a loop and

stretched as described, any point P that the pencil marks out has the property that

PF1 + PF2 = (2a + 2
√
a2 − b2) − (2

√
a2 − b2) = 2a. But this means that we have

18



a  −b√ 2        22

P

F
2

F
1

drawn an ellipse with defining constant k = 2a and focal points F1 and F2. Since 2a is

the defining constant, a is the semimajor axis and since c =
√
a2 − b2, b =

√
a2 + c2 is

the semiminor axis.

4.70. The segment of fixed length and the fixed point P on it are shown. The distances

from P to the two endpoints of the segment are a and b respectively. We’ll assume

that a ≥ b. Suppose that P is in the first quadrant and let x and y be its coordinates.

Consider the two right triangles with hypotenuse a and b that P determines and refer

to the figure below. Since these two triangles are similar, and (by the Pythagorean

x

y

a

P

x

y
b

b  −y2 2√

theorem) the base of this second triangle has length
√
b2 − y2, it follows that x

a
=√

b2−y2
b

. Therefore

x2

a2
= b2−y2

b2
= 1− y2

b2
.
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It follows that x2

a2
+ y2

b2
= 1. This argument is easily modified for the situation where P

is in the second (replace x by −x), third (replace x and y by −x and −y), and fourth

quadrants. Carry out the details for the fourth.

4.71. Completing the square is the key. Doing so, we get

16x2 − 96x− 25y2 − 100y − 356 = 16(x2 − 6x+ 32 − 32)− 25(y2 + 4y + 22 − 22)− 356

= 16(x− 3)2 − 25(y + 2)2 − 16 · 32 + 25 · 22.

Therefore 16(x−3)2−25(y+2)2−144+100 = 356 and hence 42(x−3)2−52(y+2)2 = 400.

After dividing by 42 · 52 = 16 · 25 = 400, we finally get (x−3)2
52
− (y+2)2

42
= 1. Taking

c =
√

52 + 42 =
√

41 in the discussion of Section 4.5, we get that the focal points are

(−
√

41, 0) and (
√

41, 0) and that the eccentricity is c
a

=
√
41
5
.

4.72. The figure below shows the two defining rectangles for the two hyperbolas. They are

both squares. The smaller square is the 2×2 square of the inner hyperbola x2−y2 = 1

and the larger square is the 2
√

2×2
√

2 square of the outer hyperbola x2

(
√
2)2
− y2

(
√
2)2

= 1.

Since the diagonals of the two squares determine the same pair of lines, the asymptotes

of the hyperbolas x2 − y2 = 1 and x2

2
− y2

2
= 1 are the same. They are the lines

x

y

y = ±1
1
x = ±

√
2√
2
x. The focal points are determined by the diagonals of the squares.

For x2 − y2 = 1 are the points (±
√

2, 0). Since
√

(
√

2)2 + (
√

2)2 =
√

4 = 2, the focal

points of x2

2
− y2

2
= 1 are (±2, 0). The focal axis is the x-axis in either case.

4.73. Let’s consider a point P = (x, y) in the xy-plane of Figure 4.17. As shown in Sec-

tion 4.5, such a point is on the right branch of the hyperbola precisely if√
(x+ c)2 + y2 −

√
(x− c)2 + y2 = 2a.
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By simplifying, squaring both sides, canceling, moving things around, and simplifying

once more, this equation is transformed in successive steps to√
(x+ c)2 + y2 = 2a+

√
(x− c)2 + y2,

(x+ c)2 + y2 = 4a2 + 4a
√

(x− c)2 + y2 + (x− c)2 + y2,

(x+ c)2 = 4a2 + 4a
√

(x− c)2 + y2 + (x− c)2,
x2 + 2cx+ c2 = 4a2 + 4a

√
(x− c)2 + y2 + x2 − 2cx+ c2,

a
√

(x− c)2 + y2 = −a2 + cx,

a2
(
(x− c)2 + y2

)
= a4 − 2a2cx+ c2x2,

a2(x2 − 2cx+ c2 + y2) = a4 − 2a2cx+ c2x2,

a2x2 − 2a2cx+ a2c2 + a2y2 = a4 − 2a2cx+ c2x2,

a2x2 − c2x2 + a2y2 = a4 − a2c2,
(a2 − c2)x2 + a2y2 = a2(a2 − c2).

Since c2 = a2+b2 and hence a2−c2 = −b2, this last equation becomes b2x2−a2y2 = a2b2.

Because a > 0 and b > 0, we can divide b2x2 − a2y2 = a2b2 by a2b2 to get

x2

a2
− y2

b2
= 1.

For the left branch, start with the equation
√

(x− c)2 + y2−
√

(x+ c)2 + y2 = 2a and

proceed as above.

4.74. Since any line has the form ax + by + c = 0, the hint suggests that the equation

x2 + 4xy + 4y2 + 6x+ 12y + 9 = 0 might be of the form (ax+ by + c)2 = 0. Since

(ax+ by+ c)2 = a2x2 + 2ax(by+ c) + (by+ c)2 = a2x2 + 2abxy+ 2acx+ b2y2 + 2bcy+ c2,

we’ll set a2x2 + 2abxy+ b2y2 + 2acx+ 2bcy+ c2 = x2 + 4xy+ 4y2 + 6x+ 12y+ 9. To get

a2 = 1, ab = 2, b2 = 4, ac = 3, bc = 6, and c2 = 9, we can take a = 1, b = 2, and c = 3,

and see that all six equations are satisfied. It follows that with the line x+ 2y+ 3 = 0,

x2 + 4xy + 4y2 + 6x+ 12y + 9 = (x+ 2y + 3)2 = 0. So the equation is degenerate and

its graph is the single line x+ 2y + 3 = 0.

4.75. If what is asserted is correct, then x and y satisfy 3x2 + 19x− 2xy − y2 + 9y + 14 = 0

precisely if either x− y + 7 = 0 or 3x+ y − 2 = 0. This suggests that

(x− y + 7)(3x+ y − 2) = 3x2 + 19x− 2xy − y2 + 9y + 14.

Since (x − y + 7)(3x + y − 2) = 3x2 + xy − 2x − 3xy − y2 + 2y + 21x + 7y − 14 =

3x2 + 19x− 2xy − y2 + 9y − 14, this equality holds and solves the problem.
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4.76. Let Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 be the equation of a conic section and

consider the term B2 − 4AC. If the conic section is a parabola, then it is always the

case that B2 − 4AC = 1.

For the circle x2 + y2 − 1 = 0, A = 1, B = 0, and C = 1, so that B2 − 4AC = −4.

Now let x2

a2
+ y2

b2
= 1 be the standard equation of an ellipse. After multiplying through

by a2b2, we get b2x2 + a2y2 − a2b2 = 0. For this equation, A = b2, B = 0, and C = a2,

so that B2 − 4AC = −4a2b2. Take a > 0 very large and set b = 1
a
. Since a is large, b

is small, so that this is a flat ellipse. The larger the choice of a, the flatter this ellipse.

In all cases, B2 − 4AC = −4.

4.77. Completing squares is again the key. Suppose first that A 6= 0 and C 6= 0. After

completing squares,

Ax2 + Cy2 +Dx+ Ey + F = A(x2 + D
A
x) + C(y2 + E

C
y) + F

= A
(
x2 + D

A
x+ ( D

2A
)2 − ( D

2A
)2
)

+ C
(
y2 + E

C
y + ( E

2C
)2 − ( E

2C
)2
)

+ F

= A
(
(x+ D

2A
)2 − ( D

2A
)2
)

+ C
(
(y + E

2C
)2 − ( E

2C
)2
)

+ F

= A(x+ D
2A

)2 + C(y + E
2C

)2 + F − D2

4A
− E2

4C
.

We must have A(x + D
2A

)2 + C(y + E
2C

)2 = D2

4A
+ E2

4C
− F with D2

4A
+ E2

4C
− F ≥ 0

since the original equation is that of a conic section. If D2

4A
+ E2

4C
− F = 0, then

A(x + D
2A

)2 + C(y + E
2C

)2 = 0. If A and C have the same sign, then we are in the

degenerate case of the point (x, y) =
(
− D

2A
,− E

2C

)
. If A and C have opposite signs, say

A > 0 and C < 0, then
√
A(x + D

2A
) = ±

√
−C(y + E

2C
) and we are in the degenerate

situation of a line.

It follows that A(x + D
2A

)2 + C(y + E
2C

)2 = D2

4A
+ E2

4C
− F with D2

4A
+ E2

4C
− F > 0.

The next step is to divide this equation through by D2

4A
+ E2

4C
− F . If both A > 0 and

C > 0, we get (a positive constant p can be put in the form p = (
√
p)2) the rewritten

version

A(x+ D
2A

)2

D2

4A
+E2

4C
−F

+
C(y+ E

2C
)2

D2

4A
+E2

4C
−F

=
(x+ D

2A
)2

D2

4A2+
E2

4AC
−F
A

+
(y+ E

2C
)2

D2

4AC
+ E2

4C2−
F
C

=
(x+ D

2A
)2(√

D2

4A2+
E2

4AC
−F
A

)2 +
(y+ E

2C
)2(√

D2

4AC
+ E2

4C2−
F
C

)2 = 1.

of the original equation Ax2 + Cy2 + Dx + Ey + F = 0. A look back at Section 4.4

tells us that in this rewritten form we are dealing with the shifted version of an ellipse

with focal axis either the x- or the y-axis.

If A and B are both negative, then apply the above progression of computations

to the equation −Ax2 − Cy2 − Dx − Ey − F = 0. If A and B are nonzero with

opposite sign, the same argument tells us that we are dealing with the shifted version

of a hyperbola that has either the x- or y-axis as focal axis (or degenerate situations).
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If either A = 0 or C = 0, then it is easy to see that the equation is either degenerate

or that it represents the shift of a parabola that has focal axis either the x-axis or the

y-axis.

4.78. Let’s start with θ = 50. Since 50
2π
≈ 7.96, we know that 50 ≈ 7.96(2π) ≈ 16π, so

Pθ ≈ (1, 0), so that cos 50 ≈ 1 and sin 50 ≈ 0. A calculator provides the more accurate

cos 50 ≈ 0.965 and sin 50 ≈ −0.262. To play this game more accurately, we can write

50 ≈ 7.96(2π) ≈ 8(2π)− 0.04(2π) = 8(2π)− 0.16(π
2
)

≈ 8(2π)− 1
6
(π
2
) = 8(2π)− 1

2
(π
6
).

So a close approximation of P50 can be gotten by going around the unit circle counter-

clockwise and stopping 1
2
· (π

6
) or 1

2
· 30◦ short of 8 complete revolutions. To estimate

cos 50 and sin 50 with this approximation of P50, one can make use of formulas

cos
(
8(2π)− 1

2
· π
6

)
= cos(1

2
· π
6
) and sin

(
8(2π)− 1

2
· π
6

)
= − sin(1

2
· π
6
)

in combination with the formulas sin2 φ
2

= 1
2
(1− cosφ) and cos2 φ

2
= 1

2
(1 + cosφ) from

Problem 1.23i. So

cos2 50 ≈ cos2(1
2
· π
6
) = 1

2
(1 + cos π

6
) = 1

2
(1 +

√
3
2

) = 2+
√
3

4
≈ 3.73

4
and

sin2 50 ≈ sin2(1
2
· π
6
) = 1

2
(1− cos π

6
) = 1

2
(1−

√
3
2

) = 2−
√
3

4
≈ 0.27

4
.

It follows that cos 50 ≈ 0.966 and sin 50 ≈ −0.259. Now to θ = −25 radians. From

above, −25
2π
≈ −3.98, so that −25 ≈ −3.98(2π) ≈ −8π. It follows that P−25 is closely

approximated by going around the unit circle almost 4 complete revolutions clockwise.

So P−25 ≈ (1, 0). Therefore cos(−25) ≈ 1 and sin(−25) ≈ 0. A calculator shows that

cos(−25) ≈ 0.99 and sin(−25) ≈ 0.13.

4.79. Since 17.52
2π
≈ 2.79, we see that

17.52 ≈ 2.79(2π) = 2(2π) + 0.79(2π) = 2(2π) + 1.58π = 2(2π) + π + 0.58π

= 2(2π) + π + 1.16(π
2
) = 2(2π) + π + π

2
+ 0.16(π

2
) ≈ 2(2π) + π + π

2
+ 1

6
(π
2
)

= 2(2π) + π + π
2

+ π
12
. .

So P17.52 is near the point obtained by starting at (1, 0) on the unit circle, then pro-

ceeding around it counterclockwise for two complete revolutions, then for another half

revolution, then a quarter of a revolution, and finally for
(
180
12

)◦
= 15◦ more degrees.

It follows—see the figure below—that the x- and y-coordinates of P17.52 are approxi-

mately, x = sin 15◦ and y = − cos 15◦. Using the half-angle formulas of Problem 1.23i,

we know that sin 15◦ =
√

1
2
(1− cos 30◦) ≈ 0.26 and cos 15◦ =

√
1
2
(1 + cos 30◦) ≈ 0.97.

A calculator provides the approximations cos 17.52 ≈ 0.239 and sin 17.52 ≈ −0.971.
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O

(1, 0) x

P

y

A

15
o

17.52
= (cos 17.52, sin 17.52)

15
o

O cos 15

1

o

sin 15 o

4.80. The figure below depicts a situation of an angle θ such that the point Pθ falls into

the second quadrant. Since the right triangles of the figure with hypotenuse P(θ+π
2
)O,

P(θ+π
2
)Q, and PθO have an additional angle in common, they are all similar. It follows

(1, 0)

y

x

  

      
        

      θ   +  π
2

y

( ) += (cos(       ), sin(       )) 
2

          θ   +
  π

2
          θ   +  π

P  = (  θ θcos   ,   θsin )

P

Q

O

P  = (  θ θcos   ,   θsin )

O

      
        

      θ   +  π
2

( ) += (cos(       ), sin(       )) 
2

          θ   +
  π

2
          θ   +  πP

that the two triangles on the right side of the figure are similar. So cos(θ+ π
2
) = − sin θ

and sin(θ + π
2
) = cos θ.

4.81. The conclusion sin(θ− π
2
) = − cos θ and cos(θ− π

2
) = sin θ is easily verified by modifying

Figure 4.25b.
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4.82. Since sec θ = 1
cos θ

, the equalities for the secant follow from those for the cosine. To see

that sec2 θ = tan2 θ + 1, take the identity sin2 θ + cos2 θ = 1 and divide it through by

cos2 θ.

4.83. That the point (x, y) with x = r cos θ and y = r sin θ is on the circle x2+y2 = r2 follows

immediately from the identity sin2 θ + cos2 θ = 1. That every point on this circle has

this form is demonstrated in the discussion of Section 4.6 that precedes Example 4.19.

Let θ increase from θ = 0 to θ = π
2
. Over this stretch x = r cos θ decreases from

r · 1 to r · 0 and x = r sin θ increases from r · 0 to r · 1. So the point (x, y) moves

counterclockwise from (r, 0) on the circle to (0, r). Continuing in this way for seven

more quarter circles does the rest.

4.84. Let a and b be a positive numbers, and consider the ellipse x2

a2
+ y2

b2
= 1. Let x = a cos θ

and y = b sin θ. Since
(
x
a

)2
= cos2 θ and

(
y
b

)2
= sin2 θ, it follows that

(
x
a

)2
+
(
y
b

)2
= 1.

Therefore the point (x = a cos θ, y = b sin θ) is on the ellipse for any θ. With θ = 0,

(x = a cos θ, y = b sin θ) = (a, 0). For θ increasing from 0 to π
2
, cos θ decreases from 1

to 0 and sin θ increases from 0 to 1. In the process, (a cos θ, b sin θ) moves from (a.0) to

(0, b) and traces out the top right quarter of the ellipse. Continuing in this way shows

that for 0 ≤ θ ≤ 2π the point traces out the entire ellipse.
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